Given an elliptic operator L=-div(A del)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L= - {{\,\textrm{div}\,}}(A \nabla \cdot )$$\end{document} subject to mixed boundary conditions on an open subset of Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>d$$\end{document}, we study the relation between Gaussian pointwise estimates for the kernel of the associated heat semigroup, H & ouml;lder continuity of L-harmonic functions and the growth of the Dirichlet energy. To this end, we generalize an equivalence theorem of Auscher and Tchamitchian to the case of mixed boundary conditions and to open sets far beyond Lipschitz domains. Yet, we prove the consistency of our abstract result by encompassing operators with real-valued coefficients and their small complex perturbations into one of the aforementioned equivalent properties. The resulting kernel bounds open the door for developing a harmonic analysis for the associated semigroups on rough open sets.

Bohnlein, T., Ciani, S., Egert, M. (2025). Gaussian estimates vs. elliptic regularity on open sets. MATHEMATISCHE ANNALEN, 391(2), 2709-2756 [10.1007/s00208-024-02939-0].

Gaussian estimates vs. elliptic regularity on open sets

Ciani S.;
2025

Abstract

Given an elliptic operator L=-div(A del)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L= - {{\,\textrm{div}\,}}(A \nabla \cdot )$$\end{document} subject to mixed boundary conditions on an open subset of Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>d$$\end{document}, we study the relation between Gaussian pointwise estimates for the kernel of the associated heat semigroup, H & ouml;lder continuity of L-harmonic functions and the growth of the Dirichlet energy. To this end, we generalize an equivalence theorem of Auscher and Tchamitchian to the case of mixed boundary conditions and to open sets far beyond Lipschitz domains. Yet, we prove the consistency of our abstract result by encompassing operators with real-valued coefficients and their small complex perturbations into one of the aforementioned equivalent properties. The resulting kernel bounds open the door for developing a harmonic analysis for the associated semigroups on rough open sets.
2025
Bohnlein, T., Ciani, S., Egert, M. (2025). Gaussian estimates vs. elliptic regularity on open sets. MATHEMATISCHE ANNALEN, 391(2), 2709-2756 [10.1007/s00208-024-02939-0].
Bohnlein, T.; Ciani, S.; Egert, M.
File in questo prodotto:
File Dimensione Formato  
s00208-024-02939-0.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 744.66 kB
Formato Adobe PDF
744.66 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/990406
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact