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Abstract
Given an elliptic operator L = − div(A∇·) subject tomixed boundary conditions on an
open subset ofR

d , we study the relation between Gaussian pointwise estimates for the
kernel of the associated heat semigroup, Hölder continuity of L-harmonic functions
and the growth of the Dirichlet energy. To this end, we generalize an equivalence
theorem of Auscher and Tchamitchian to the case of mixed boundary conditions
and to open sets far beyond Lipschitz domains. Yet, we prove the consistency of
our abstract result by encompassing operators with real-valued coefficients and their
small complex perturbations into one of the aforementioned equivalent properties.
The resulting kernel bounds open the door for developing a harmonic analysis for the
associated semigroups on rough open sets.

Mathematics Subject Classification 35J25 · 47F10 · 35B65 · 46E35

1 Introduction

Let d ≥ 2, O ⊆ R
d be open, A ∈ L∞(O; C

d×d) be elliptic and L = − div(A∇·) be
realized as an m-accretive operator in L2(O) subject to boundary conditions. To give
a first idea of our results, let us consider the simplest case of pure Dirichlet boundary
conditions, u = 0 on ∂O . We show that the following three properties are equivalent
up to minimal changes in the parameter μ ∈ (0, 1]:
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2710 T. Böhnlein et al.

D(μ) De Giorgi estimates for L and L∗-harmonic functions: There exists c > 0 such
that for all balls B(x, R) ⊆ R

d with x ∈ O and R ∈ (0, 1], all u ∈ H1
0(O) that

are L or L∗-harmonic in O ∩ B(x, R) and each r ∈ (0, R] the estimate

∫

O∩B(x,r)

|∇u|2 dy ≤ c
( r

R

)d−2+2μ
∫

O∩B(x,R)

|∇u|2 dy

is valid.
G(μ) Hölder continuity and pointwise Gaussian estimates for the kernel of the semi-

group (e−t L)t≥0.
H(μ) Local Hölder regularity of L and L∗-harmonic functions with L2-norm control:

There exists c > 0 such that for all balls as above and all L or L∗-harmonic
functions u ∈ H1

0(O) in that ball the estimate

‖u‖L∞(O∩B(x, r2 )) + rμ[u](μ)

O∩B(x, r2 )
≤ cr− d

2 ‖u‖L2(O∩B(x,r))

holds true, where [u](μ)
E := supy,z∈E, y �=z

|u(y)−u(z)|
|y−z|μ .

Our main interest lies in property G(μ) and we consider the other two properties as a
means of getting there. Property G(μ) opens the door for developing for the first time
harmonic analysis, and in particular a theory of geometric Hardy spaces for L as in [8,
15, 22, 40] on rough open sets far beyond Lipschitz domains. This link is explored in
the work [12] of the first author with Bechtel. Let us stress that positivity methods via
the Beurling–Deny criterion as in [3] are not suitable for getting G(μ)—this approach
can give the pointwiseGaussian bound, but itmisses theHölder continuity of the kernel
that is key to treating the semigroup via methods from singular integral operators.

The geometric framework

In order to prove this equivalence,we only assume that Oc is locally 2-fat. It is shown in
[34, Thm. 3.3], see also Proposition 3.12 below, that this is equivalent to the following
weak Poincaré inequality at the boundary: There are c0, r0 > 0, c1 ≥ 1 such that

‖u‖L2(O∩B(x,r)) ≤ c0r‖∇u‖L2(O∩B(x,c1r)) (PD)

for all u ∈ H1
0(O) and balls B(x, r) ⊆ R

d with x ∈ ∂O and r ∈ (0, r0]. This condition
seems indispensable, for example to control the growth of the Dirichlet energy in the
derivation of D(μ) from H(μ), making it reasonable to conjecture that our geometric
assumptions are in the realm of the best possible.

Now,we pass to the case of pure Neumann boundary conditions for L . The Poincaré
inequality that we need (for the same reason as above) is that for the same balls as
before and u ∈ H1(O) we have

‖u − (u)O∩B(x,r)‖L2(O∩B(x,r)) ≤ c0r‖∇u‖L2(O∩B(x,c1r)), (PN )
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where (u)E := 1
|E |

∫
E u dx . However, in the Neumann case we need different geomet-

ric properties of O , because, roughly speaking, the extension of functions in the form
domain H1(O) by 0 is not meaningful anymore. The most general geometric frame-
work that we are aware of and that satisfies all our needs is the class of locally uniform
domains with a positive radius condition. This should be thought of as a quantitative
connectedness condition of O , see [13, 30].

Our methods are flexible enough to treat mixed Dirichlet/Neumann boundary con-
ditions with hardly any additional effort. Let D ⊆ ∂O be closed and N := ∂O\D.
We call D the Dirichlet part and N the Neumann part of the boundary. The boundary
conditions are encoded in the form domain V := H1

D(O), which is defined as the
closure in H1(O) of smooth functions that vanish near D (Definition 2.1). Then the
properties D(μ),G(μ) and H(μ) are understood in this context (see Sect. 4).

Remarkably, and in contrast to several earlier results [41, 43], we can work without
an interface condition between D and N , which is where typically the main difficulties
lie. Our geometric assumptions “interpolate” between the two extremal cases. Namely,
we need:

(Fat) Oc is locally 2-fat away from N ,
(LU) O is locally uniform near N ,

see Sect. 3.1 for precise definitions. Within this setting, we can express both (PD) and
(PN ) by the single property

‖u − 1[x∈N ] · (u)O∩B(x,r)‖L2(O∩B(x,r)) ≤ c0r‖∇u‖L2(O∩B(x,c1r)), (P)

for all balls as before and u ∈ H1
D(O). Here, 1[x∈N ] = 1N (x) denotes the indicator

function of the set N .
We recall the basic L2 operator theory for L in Sect. 2 and introduce all relevant

geometric concepts in Sect. 3. The rest of the paper is divided into three parts.

The equivalence theorem (Sections 4 to 7)

We prove the equivalence of D(μ), G(μ) and H(μ) for mixed boundary conditions.
This is the main result and illustrated in Fig. 1.

Theorem 1.1 Let d ≥ 2, O ⊆ R
d be locally uniform near N, Oc locally 2-fat away

from N and μ0 ∈ (0, 1]. Then the following assertions are equivalent.

(i) L and L∗ have property D(μ) for all μ ∈ (0, μ0).
(ii) L has property G(μ) for all μ ∈ (0, μ0).
(iii) L and L∗ have property H(μ) for all μ ∈ (0, μ0).

Theorem 1.1 originates from results of Auscher and Tchamitchian on O = R
d , see

[4, Chap. 4] and [9, Chap. 1]. They have been extended to special Lipschitz domains
with pure Dirichlet or Neumann boundary conditions using localization techniques
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Fig. 1 The geometric
assumptions needed in Theorem
1.1. Except for the implication
H(μ) �⇒ D(μ) the value of μ

changes. Any property for
μ = μ0 implies any other
property for all μ < μ0

[10]. We highlight that we do not only recover the known statements of [10], but we
generalize the geometric setting to a far larger class of admissible geometries.

The proof of Theorem 1.1 is inspired by the monograph [9] and the work of ter
Elst and Rehberg [43], who studied property G(μ) for real-valued coefficients, when
O has a weakly Lipschitz boundary around the Neumann part, satisfies an exterior
thickness condition around the Dirichlet part and an interface condition in between.
Concerning the geometric setup, the present work also extends their result, see the
discussion in Sect. 3.2.

It remains the question whether some operator L that satisfies one or equivalently
all three of these properties exists. This leads us to the second part.

Real-valued coefficients (Sections 8 and 9)

Here, we study real-valued A and show:

Theorem 1.2 Let d ≥ 2, O ⊆ R
d be locally uniform near N, Oc locally 2-fat away

from N and let A be real-valued. Then L has property H(μ) for some μ ∈ (0, 1].

To this end, we combine De Giorgi’s classical approach [18, 26] with a method of
DiBenedetto for non-linear operators of p-growth [19, 20]. The simple underlying idea
is that a Poincaré inequality, with a lower exponent than the 2-growth of the operator,
implies an estimate for the growth of the level sets as in the case of the isoperimetric
inequality. Here, we use the deep fact that p-fatness is an open ended condition in p
[35, 38]. Furthermore, we prove local boundedness and Hölder continuity up to the
boundary for functions lying in a wider function class than the mere solutions to the
equation (Definition 8.2). In fact, we can also be slightlymore general on the geometric
side by replacing (Fat) and (LU) by a p-adapted version of (P) for some p ∈ (1, 2)
joint with the embedding H1

D(O) ⊆ L2∗
(O) for d ≥ 3, where 2∗ = 2d/(d−2), or an

interpolation type inequality when d = 2.
Theorem 1.2 is already known in the pure Dirichlet case provided that O satis-

fies an exterior thickness condition [33, Chap. II, App. C & D]. In several papers
[17, 28, 29, 36, 41] the Hölder regularity of solutions to non-homogeneous elliptic
problems was studied for the case of mixed boundary conditions. However, all afore-
mentioned papers use either Lipschitz coordinate charts around the Neumann part,
stronger assumptions on D and an interface condition between D and N or their geo-
metric setup is almost impossible to check [41]. We refer to [43] for further references
and applications.
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Further special cases (Sections 9 and 10)

In the setup of Theorem 1.1 we follow an argument of [4] to prove that D(μ), and
thus G(μ) and H(μ), are stable under small complex perturbations of the coefficients,
too. Property G(μ) for small perturbations of real-valued A has been obtained in [42]
via a different method. Moreover, when d = 2, only a slightly stronger geometric
assumption on D—the so-called (d − 1)-set property—is needed to obtain for every
elliptic operator L some μ ∈ (0, 1] such that G(μ) and hence also D(μ) and H(μ)

hold.

Notation

Throughout, we use the following notation and abbreviations to simplify the exposi-
tion.

• For X,Y ≥ 0, we write X � Y, if there is some c > 0, which is independent of the parameters at
stake, such that X ≤ cY. To emphasize that c = c(a), we write X �a Y.

• Given p ∈ [1,∞], we write p′ for its Hölder conjugate satisfying 1 = 1/p + 1/p′. We denote by
p∗ := dp/(d+p) the lower Sobolev conjugate of p and, provided p ∈ [1, d), we let p∗ := dp/(d−p) be
the upper Sobolev conjugate of p.

• For x ∈ R
d and r > 0 we denote by B(x, r) the open ball centered in x with radius r . Given

E, F ⊆ R
d we write d(E, F) := dist(E, F) for their Euclidean distance and abbreviate dE (x) :=

d(x, E) := d({x}, E). The ball relative to E is denoted by E(x, r) := E ∩ B(x, r) and we write
∂E(x, r) = ∂(E(x, r)) for its boundary.

• Given E ⊆ R
d and δ > 0, we set Eδ := {x ∈ R

d : dE (x) < δ}.
• Given E ⊆ R

d and a function u : E → C, we denote by u0 its 0-extension to R
d .

• We abbreviate norms in Lp(O) by ‖ · ‖p and norms in W1,p(O) by ‖ · ‖1,p . All integrals are taken
with respect to the Lebesgue measure. Functions are C-valued unless stated otherwise.

• We abbreviate ut := e−t L u for all t ≥ 0 and u ∈ L2(O).

2 Operator theoretic setting and relevant function spaces

Throughout this work, we let O ⊆ R
d , d ≥ 2, be open. We denote by D ⊆ ∂O

a closed set, which we call the Dirichlet part of the boundary, and we denote its
complement by N := ∂O \ D, the Neumann part of the boundary.

In this section we recall the basic theory for L := − div(A∇·) viewed as an m-
accretive operator in L2(O).

Definition 2.1 Let C∞
D (Rd) := C∞

c (Rd \D). We define the space of smooth functions
in O that vanish near D as

C∞
D (O) := {ϕ|O : ϕ ∈ C∞

D (Rd)}.

For p ∈ [1,∞) we let

W1,p
D (O) := C∞

D (O)
‖·‖1,p & H1

D(O) := W1,2
D (O).
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Remark 2.2 In general, the spaceH1
∅

(O) is a proper subspace ofH1(O) andmodels so-
called goodNeumann boundary conditions. However, if we have a bounded Sobolev
extension operator E : H1(O) → H1(Rd) at our disposal, then equality holds, because
C∞
c (Rd) is dense in H1(Rd).

These Sobolev spaces with partial Dirichlet condition are closed under truncation
in the following sense.

Lemma 2.3 [43, Lem. 2.2 (a)] Let p ∈ (1,∞), u ∈ W1,p
D (O; R) and k ≥ 0. Then

(u − k)+ and u ∧ k are contained inW1,p
D (O; R).

We introduce the operator L subject to mixed boundary conditions.

Assumption 2.4 We assume that A : O → C
d×d is elliptic in the sense that

∃ λ > 0 ∀ u ∈ H1
D(O) : Re

∫

O

A∇u · ∇u ≥ λ‖∇u‖22 & � := ‖A‖∞ < ∞.

The divergence form operator L is realized in L2(O) via the closed and densely
defined sectorial form

a : H1
D(O) × H1

D(O) → C, a(u, v) :=
∫

O

A∇u · ∇v.

Its domain is given by

D(L) =
{
u ∈ H1

D(O) : ∃ Lu ∈ L2(O) ∀ v ∈ H1
D(O) : (Lu | v)2 = a(u, v)

}
.

Kato’s form method [31, Chap. 6] yields that L is m-accretive and thus generates
an analytic C0-contraction semigroup (e−t L)t≥0 in L2(O). The semigroup and its
gradient also satisfy so-called L2 off-diagonal estimates, which the reader should
think of as an L2-averaged form of kernel bounds.

Proposition 2.5 [11, Prop. 3.2], [24, Prop. 4.2] There are C, c > 0 depending only
on λ,� such that

‖1F e−t L(1Eu)‖2 + ‖1F
√
t∇ e−t L(1Eu)‖2 ≤ C e−c d(E,F)2

t ‖1Eu‖2,

for all measurable sets E, F ⊆ O, t > 0 and u ∈ L2(O).

3 The geometric setup

3.1 Assumptions (Fat) and (LU)

We introduce the geometric setup and explain its consequences.
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Fig. 2 The parts of the balls
around x and y for which we
require a lower bound on the
2-capacity are in blue. The full
picture of assumption (Fat) is
obtained by letting x , y and the
size of the balls vary

Definition 3.1 Let p ∈ (1, d], U ⊆ R
d be open and K ⊆ U be compact. The p-

capacity of the condenser (K,U) is defined as

capp(K ;U ) := inf
{
‖∇u‖p

Lp(U ) : u ∈ C∞
c (U ; R) with u ≥ 1 pointwise on K

}
.

Definition 3.2 Let C ⊆ R
d be closed, Ĉ ⊆ C and p ∈ (1, d]. We call C locally p-fat

in ̂C if:

∃ c > 0 ∀ x ∈ Ĉ, r ∈ (0, 1] : capp(B(x, r) ∩ C; B(x, 2r)) ≥ crd−p. (3.1)

If Ĉ = C , then we say that C is locally p-fat.

Here, we refer to Remark A.1 for elementary properties related to this definition
and to [1] for general background on capacities.

Definition 3.3 (Assumption (Fat)p) Let p ∈ (1, d]. We say that Oc is locally p-fat
away from N , if there is some δ > 0 such that:

(i) D is locally p-fat in D ∩ Nδ ,
(ii) Oc is locally p-fat in D.

For p = 2 we write (Fat) instead of (Fat)2 to mean that Oc is locally 2-fat away from
N .

This terminology carries the idea of a fatness assumption on Oc(⊇ D) with the
additional requirement that the lower bound on the capacity already has to come from
the complementary boundary part D(⊆ Oc) as points get closer to N (point x instead
of y in Fig. 2). In Sect. 8 we will need a self-improvement property of (Fat)p with
respect to p in the spirit of Lewis’ result [35]. To this end, the equivalent formulation
of (Fat)p below will be useful. For most of the paper, we shall work with (Fat) and
set p = 2.

Given δ > 0, let � ⊆ R
d be a grid of closed, axis-parallel cubes of diameter δ/8

and define

N�
δ := interior

(⋃
{Q ∈ � : Q ∩ Nδ �= ∅}

)
.

The set N�
δ is a regularized version of Nδ such that Nδ ⊆ N�

δ ⊆ N9δ/8. In particular,
as a union of cubes of the same size, (N�

δ )c is locally p-fat for any p ∈ (1, d] by
Poincaré’s inequality, see also Sect. 3.2, which is not necessarily true for (Nδ)

c.
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2716 T. Böhnlein et al.

Lemma 3.4 Let p ∈ (1, d]. The following assertions are equivalent.

(i) D ∪ (Oc \ N�
δ ) is locally p-fat for some δ > 0.

(ii) Oc is locally p-fat away from N.

In addition, if one of the conditions holds true with δ > 0, then the other one holds
true with δ/2.

Proof (ii)�⇒ (i):Let δ > 0 be as inDefinition 3.3.We show thatU := D∪(Oc\N�
δ/2)

is locally p-fat. Let x ∈ U and r ≤ δ/4. We make the following case distinction:
(1) B(x, r/2) ∩ (D ∩ Nδ) �= ∅∅∅. Pick z ∈ B(x, r/2)∩(D∩Nδ). Then B(z, r/2)∩D ⊆

B(x, r) ∩U and the local p-fatness of D in D ∩ Nδ yields the claim.
(2) B(x, r/2) ∩ (D ∩ Nδ) = ∅∅∅. Then x ∈ Oc \ N�

δ/2 and we consider two subcases.

(2.1) B(x, r/2) ∩ D �= ∅∅∅. Let z ∈ B(x, r/2) ∩ (D \ Nδ). Since r ≤ δ/4 we get
B(z, r/2) ∩ Oc ⊆ B(x, r) ∩U and conclude from the local p-fatness of Oc in D.

(2.2) B(x, r/2) ∩ D = ∅∅∅. It follows that B(x, r/2) ⊆ Oc. Thus,we have B(x, r/2)∩
(N�

δ/2)
c ⊆ B(x, r) ∩U and deduce the claim from the local p-fatness of (N�

δ/2)
c.

(i) �⇒ (ii): LetU := D ∪ (Oc \ N�
δ ). We show that D is locally p-fat in D ∩ Nδ/2

and Oc is locally p-fat in D. The second assertion follows, sinceU ⊆ Oc and D ⊆ U .
For the first assertion, let x ∈ D ∩ Nδ/2 and r ≤ δ/4. Then B(x, r) ∩ D = B(x, r) ∩U
and we conclude again from the local p-fatness of U . ��

We will see in Proposition 3.9 that (Fat) is substantial for having a boundary
Poincaré inequality on H1

D(O) without average. There are essentially two ways to
get this inequality: either the extension of u to the whole ball B vanishes on a set that
has measure comparable to B or u vanishes on a portion of D that is “nice enough”
in this capacitary sense. The fatness assumption treats both cases simultaneously.

While (Fat) describes O away from N in our main result, we use the following
quantitative connectedness condition near N , see also Fig. 3.

Definition 3.5 (Assumption (LU)) Let ε ∈ (0, 1] and δ ∈ (0,∞]. We call O locally
an (ε, δ)-domain near N , if the following properties hold:

(i) All points x, y ∈ O ∩ Nδ with 0 < |x − y| < δ can be joined in O by an ε-
cigar with respect to ∂O ∩ Nδ , that is to say, a rectifiable curve γ ⊆ O of length

(γ ) ≤ |x−y|/ε such that we have for all z ∈ tr(γ ) that

d(z, ∂O ∩ Nδ) ≥ ε|z − x ||z − y|
|x − y| . (3.2)

(ii) O has positive radius near N , that is, there is someC > 0 such that all connected
components O ′ of O with ∂O ′ ∩ N �= ∅ satisfy diam(O ′) ≥ Cδ.

If the values ε, δ,C need not be specified, then O is called locally uniform near N .

Definition 3.6 Let c > 0. We say that

(i) c depends on the geometry if c depends only on dimension and the parameters
in the definitions of (Fat) and (LU).
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Fig. 3 An illustration of an ε-cigar between x and y. In view of (3.2), the cigar is contained in O . In order
to understand the nature of the cigar shape, we use the length condition 
(γ ) ≤ |x−y|/ε to obtain from (3.2)

that ε2 (|z − x | ∧ |z − y|) ≤ ε|z−x ||z−y|
|x−y| ≤ |z − x | ∧ |z − y|. Hence, (3.2) means essentially that every point

z on tr(γ ) keeps distance to ∂O ∩ Nδ that is at least the minimum of its distance to x and y. We refer to
[27, 44] for more information

(ii) c depends on ellipticity if c depends on λ and �.

Assumption (LU) has been introduced in [14], to which we refer for a detailed
discussion. It is slightly stronger than the related condition in [13], see [14, Prop. 2.5
(ii)].

Notice further that (Fat) and (LU) become weaker as δ decreases. Hence, we can
(and will) always assume that δ ≤ 1 with the same choice of δ in both conditions.

Theorem 3.7 ([13, Thm. 10.2], (E)) Assume (LU). There are K ≥ 1, A ≤ 1/2 and an
extension operator E from L1

loc(O) into the space of measurable functions defined on
R
d such that for all p ∈ [1,∞) one has that E restricts to a bounded operator from

W1,p
D (O) toW1,p

D (Rd), which is local and homogeneous, that is,

‖∇
Eu‖Lp(B(x,r)) � ‖∇
u‖Lp(O(x,Kr)) (3.3)

holds true for all u ∈ W1,p
D (O), 
 = 0, 1, x ∈ ∂O and r ∈ (0, Aδ]. The implicit

constant depends only on the parameters in (LU).

Now, we draw important consequences from (Fat) and (LU). The first one implies
that O has no exterior cusps near N .

Proposition 3.8 [14, Prop. 2.9] Assume (LU).Wehave an interior corkscrewcondition
for O near N:

∃ α > 0 ∀ x ∈ O ∩ Nδ/2, r ∈ (0, 1] ∃ z ∈ O : B(z, αr) ⊆ O(x, r). (ICCNδ )

The second one is a weak Poincaré inequality with correct scaling. In the formu-
lation, E, A, δ and K are as in Theorem 3.7. In the proof, we frequently use the fact
that

inf
c∈C

‖u − c‖Lp(E) ≤ ‖u − (u)E‖Lp(E) ≤ 2 inf
c∈C

‖u − c‖Lp(E)
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2718 T. Böhnlein et al.

whenever p ∈ [1,∞), E ⊆ R
d has positive and finite measure, and u ∈ Lp(E).

Proposition 3.9 (Weak Poincaré inequality) Let p ∈ (1, d] and assume (Fat)p
and (LU). There is c0 > 0 depending on the geometry and p such that

‖u − 1[dD(x)>r ] · (u)O(x,r)‖Lp(O(x,r)) ≤ c0r‖∇u‖Lp(O(x,3Kr)) (P)p

for all u ∈ W1,p
D (O), each x ∈ O and all r ∈ (0, Aδ/2].

Proof By density, we can assume u ∈ C∞
D (O). First, we note that if B(x, r) ⊆ O ,

then dD(x) > r and O(x, r) = B(x, r), and (P)p follows from the standard Poincaré
inequality (with subtraction of the average) on the ball B(x, r). Hence, we assume
from now on that B(x, r) ∩ ∂O �= ∅.

We distinguish two cases.
(1) dD(x) ≤ r . In this case there exists xD ∈ B(x, r) ∩ D.
(1.1) xD ∈ D ∩ Nδ . We estimate

‖u‖Lp(O(x,r)) ≤ ‖u‖Lp(O(xD,2r))

≤ ‖Eu‖Lp(B(xD,2r)).

Since u ∈ C∞
D (O) and E is local and homogeneous, we have for all y ∈ D and

sufficiently small r > 0 that ‖Eu‖Lp(B(y,r)) � ‖u‖Lp(O(y,Kr)) = 0. From this we
conclude that Eu vanishes almost everywhere on an open neighborhood of D. Hence,
in view of (Fat)p, we can apply Mazya’s Poincaré inequality [32, Lem. 3.1] and (3.3)
to continue by

� r‖∇Eu‖Lp(B(xD,2r))

� r‖∇u‖Lp(O(xD,2Kr))

≤ r‖∇u‖Lp(O(x,3Kr)).

(1.2) xD ∈ D \ Nδ . Since 2r ≤ δ/2, we know that u0 belongs to W1,p(B(xD, 2r)),
and of course u0 vanishes on Oc. Hence, the same argument as in case (1.1) applies
with u0 replacing Eu.

(2) r < dD(x). In this case there exists xN ∈ B(x, r) ∩ N . Using the standard
Poincaré inequality on B(xN , 2r) and (3.3), we get the desired estimate

‖u − (u)O(x,r)‖Lp(O(x,r)) ≤ 2‖u − (Eu)B(xN ,2r)‖Lp(O(x,r))

≤ 2‖Eu − (Eu)B(xN ,2r)‖Lp(B(xN ,2r))

� r‖∇Eu‖Lp(B(xN ,2r))

� r‖∇u‖Lp(O(xN ,2Kr))

≤ r‖∇u‖Lp(O(x,3Kr)). ��
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As with (Fat)p we simply write (P) instead of (P)2. From now on we set p = 2
and use the fixed constants

c1 := 3K ≥ 3 (c1)

and

r0 := (A ∧ C)
δ

2
. (r0)

Incorporating C > 0 from Definition 3.5 in the definition of the radius r0 will be
useful at later occurrences.

Remark 3.10 As we have seen in the last proof, working with weak Poincaré inequal-
ities bears the advantage that the ball can be centered at the boundary. Because of this,
(P)p could equivalently be required with x ∈ ∂O instead of x ∈ O . Moreover, by
using the triangle inequality, we get the Poincaré inequality with average,

‖u − (u)O(x,r)‖Lp(O(x,r)) � r‖∇u‖Lp(O(x,c1r)),

for all u ∈ W1,p
D (O), x ∈ O and r ∈ (0, r0].

3.2 Comparison of the geometric setup

Now, we provide a short comparison of our chosen geometry with the one in [21, 43].
We believe that it is instructive to see how their assumptions are built into our general
framework.

To show G(μ) for real-valued A, the following geometric setup is used, compare
with [43, Thm. 7.5]:

(I) Uniform Lipschitz charts around N: There is K ≥ 1 such that for all x ∈ N
there is an open neighbourhood Ux of x and a bi-Lipschitz map �x : Ux →
B(0, 1) with bi-Lipschitz constant at most K and the properties �x (x) = 0 and
�x (Ux ∩ O) = (Rd+)(0, 1).

(II) O is exterior thick in D:

|(Oc)(x, r)| � rd (x ∈ D, r ≤ 1).

(III) Interface condition between D and N: There is c > 0 such that

Hd−1(((Rd−1 × {0}) ∩ [d�x (N∩Ux )(·) > cr ])(y, r)) � rd−1,

for all x ∈ D ∩ N , y ∈ �x (D ∩ N ∩ Ux ) and r ≤ 1. Here, Hd−1 is the
(d − 1)-dimensional Hausdorff measure in R

d .

Lemma 3.11 If O, D and N satisfy (I), (II) and (III), then they also satisfy (Fat)
and (LU).
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Proof It is classical that (I) implies (LU), see [14, p. 9] and references therein. The
full details have been written out in [23, Lem. 2.2.20].

To see that (II) implies that Oc is locally 2-fat in D, let x ∈ D, r ≤ 1 and
u ∈ C∞

c (B(x, 2r)) with u = 1 on B(x, r) ∩ Oc. Then (II) joint with Poincaré’s
inequality yields

rd−2 � r−2|(Oc)(x, r)| ≤ r−2‖u‖2L2(B(x,2r)) � ‖∇u‖2L2(B(x,2r)),

and hence

rd−2 � cap2(B(x, r) ∩ Oc; B(x, 2r)).

Finally, let us explain why D is locally 2-fat in D ∩ Nδ for some δ > 0. In fact, (I),
(III), and [43, Lem. 5.4] show that there is some δ ∈ (0, 1] such that

Hd−1(D(x, r)) � rd−1 (r ≤ 1, x ∈ D ∩ N2δ), (3.4)

compare also with [43, p. 304]. It seems to be folklore that this implies the local 2-
fatness of D in D ∩ Nδ . For convenience, we include the details in the appendix, see
Lemma B.1. Altogether, we have concluded (Fat) from (I), (II) and (III). ��

To construct explicitly a set O that fulfills (LU) and (Fat), but not the geometric
setup from above, we consider R

2 \ {(x, y) ∈ R
2 : x ≥ 0 & 0 ≤ y ≤ x2} and add a

part of the von Koch snowflake, see Fig. 4. We put Neumann boundary conditions on
the “fractal part” coming from the snowflake and Dirichlet boundary conditions on its
complement. Let us sketch that O is an admissible example.

(i) As |(Oc)(0, r)| ≤ ∫ r
0 x2 dx = r3/3 for small enough r > 0 it follows that O is

not exterior thick at the origin.
(ii) The boundary of the von Koch snowflake is not even rectifiable, so there are no

Lipschitz coordinate charts around N .
(iii) By inspection,H1(D(x, r)) � r for all r ∈ (0, 1] and x ∈ D. Hence, LemmaB.1

reveals that D is locally 2-fat (in itself). As D ⊆ Oc, also (Fat) is satisfied.
(iv) Since the von Koch snowflake is an (ε,∞)-domain (see [27, Prop. 6.30]), one

can verify that O is an (ε,∞)-domain as well.

We close this section by showing that (under the background assumption (LU))
having (Fat) is just as good as having the abstract assumption (P). Recall that (LU) is
void in the case of pure Dirichlet boundary conditions.

Proposition 3.12 Let d ≥ 2 and assume (LU). Then (Fat) is equivalent to (P).

Proof That (Fat) and (LU) imply (P) has been shown in Proposition 3.9. For the
converse statement, we borrow ideas from [34, Thm. 3.3]. To show (Fat)we fix x ∈ D
and r ≤ r0. We consider two cases.

(1) x ∈ D \ Nδ . Let u ∈ C∞
c (B(x, 2r)) with u = 1 on B(x, r)∩ Oc. If we assume

that

1

4
|B(x, r/2c1)| ≤ ‖u‖2L2(B(x,r/2c1))

,
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Fig. 4 A geometric constellation in R
2 that satisfies (Fat) and (LU), but not the geometric setup introduced

in this subsection. Here, N can be constructed by the following algorithm: divide the line segment between
(1, 0) and (2, 0) into three parts of equal length, remove the middle one, and build an equilateral triangle
over this segment. Then apply this procedure to each of the four remaining segments and iterate

then Poincaré’s inequality applied on B(x, 2r) implies

rd−2 � ‖∇u‖2L2(B(x,2r)).

Now, we assume the converse estimate. Then

1

2
|B(x, r/2c1)| ≤ ‖1 − u‖2L2(B(x,r/2c1))

+ ‖u‖2L2(B(x,r/2c1))

≤ ‖1 − u‖2L2(B(x,r/2c1))
+ 1

4
|B(x, r/2c1)|

and hence

rd � ‖1 − u‖2L2(B(x,r/2c1))
.

Let ϕ ∈ C∞
c (B(x, r)) with ϕ = 1 on B(x, r/2) and put v := ϕ(1 − u). Note that

v ∈ C∞
c (Rd) with v = 0 on D. Hence, v ∈ H1

D(O) by [1, Thm. 9.1.3] and (P) yields

rd �
∫

B(x,r/2c1)

|1 − u|2 =
∫

O(x,r/2c1)

|v|2 � r2
∫

O(x,r/2)

|∇v|2 = r2
∫

B(x,r/2)

|∇u|2.

This shows that Oc is locally 2-fat in D\Nδ .
(2) x ∈ D ∩ Nδ . To prove that D is locally 2-fat in D ∩ Nδ , we systematically

replace Oc by D and B(x, r/2c1) by O(x, r/2c1) in (1) and apply the same argument.
The key points are that we now have v ∈ H1

0(R
d \ D) and hence v|O ∈ H1

D(O), and
|O(x, r/2c1)| � rd due to (ICCNδ

). ��

4 Properties D(�), G(�) and H(�)

The property that we are mostly interested in is the Gaussian estimate for the kernel
of the semigroup (e−t L)t≥0. Let us introduce this property in detail:
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Definition 4.1 Let μ ∈ (0, 1]. We say that L has property G(μ) if the following
holds:

(G1) For any t > 0 there is a measurable function Kt : O × O → C such that

(e−t L f )(x) =
∫

O

Kt (x, y) f (y) dy ( f ∈ L2(O), a.e. x ∈ O).

(G2) There are b, c, ω > 0 such that we have for each t > 0 that

|Kt (x, y)| ≤ ct−
d
2 e−b |x−y|2

t eωt .

(G3) For every x, x ′, y, y′ ∈ O and t > 0 we have

|Kt (x, y) − Kt (x
′, y′)| ≤ ct−

d
2 − μ

2 (|x − x ′| + |y − y′|)μ eωt .

Remark 4.2 The following facts will be useful in this paper:

i. Property G(μ) is stable under taking adjoints since the kernel of the adjoint
semigroup is given by K ∗

t (x, y) = Kt (y, x).
ii. Logarithmic convex combinations of (G2) and (G3) yield for all ν ∈ (0, μ), each

x, y ∈ O , h ∈ R
d with y + h ∈ O and t > 0 a bound

|Kt (x, y + h) − Kt (x, y)| ≤ ct−
d
2

( |h|√
t

)ν

e−b |x−y|2
t eωt ,

with different constants b, c, ω provided that |h| ≤ |x−y|/2. A similar estimate
holds true in the x-variable.

The (eventually equivalent) properties D(μ) and H(μ) talk about the regularity
of weak solutions in subsets of O . For pure Dirichlet boundary conditions, these
properties have appeared in the introduction, but their adaptation to general boundary
conditions requires some care. Following [43], we do that by looking at solutions to
− div A∇u = 0 in O(x, r) = O ∩ B(x, r) that are compatible with the “global"
boundary conditions (Dirichlet on D, Neumann on N ), that is, we use test functions
with pure Dirichlet boundary conditions only on ∂O(x, r)\N (x, r). In this case we
write LDu = 0 in O(x, r) and the precise variational formulation is as follows:

Definition 4.3 Let x ∈ O , r > 0, u ∈ H1(O(x, r)) and f ∈ L2(O(x, r)), F ∈
L2(O(x, r))d . We write LDu = f − div F in O(x, r) if

∫

O(x,r)

A∇u · ∇ϕ =
∫

O(x,r)

f ϕ + F · ∇ϕ (ϕ ∈ H1
∂O(x,r)\N (x,r)(O(x, r))).
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In addition, given u ∈ H1
D(O) and f ∈ L2(O), F ∈ L2(O)d , we write LDu =

f − div F in O if

∫

O

A∇u · ∇ϕ =
∫

O

f ϕ + F · ∇ϕ (ϕ ∈ H1
D(O)).

One reason why this definition of LDu = f − div F is natural for our purpose is
because the class of test functions in the previous definition is canonically embedded
into H1

D(O): If u ∈ H1
D(O) satisfies a global equation LDu = f − div F , then also

LDu = f − div F in all local sets O(x, r) due to part (i) of the following lemma
applied with U = B(x, r).

Lemma 4.4 Let U ⊆ R
d be open and p ∈ [1,∞).

i. N ∩U is open in ∂(O ∩U ) and the 0-extension E0 : W1,p
∂(O∩U )\(N∩U )(O ∩U ) →

W1,p
D (O) is isometric.

ii. If ψ ∈ C∞
c (U ), then multiplication by ψ maps the spaceW1,p

D (O) boundedly into

W1,p
∂(O∩U )\(N∩U )(O ∩U ).

Proof For (i) see [43, Lem. 6.3]. For (ii) we pick u ∈ W1,p
D (O). By definition this

means that there is a sequence (ϕn)n ⊆ C∞
c (Rd\D) with ϕn|O → u in W1,p(O).

Then ψϕn ∈ C∞
c (Rd) and to see that supp(ψϕn) ∩ [∂(O ∩ U ) \ (N ∩ U )] = ∅, we

notice that supp(ψϕn) ⊆ U \ D and

(U \ D) ∩ (∂(O ∩U ) \ (N ∩U )) ⊆ (∂O ∩U ) \ (D ∪ (N ∩U )) = ∅.

We have shown that ψϕn ∈ C∞
∂(O∩U )\(N∩U )(R

d) and the claim follows by passing to
the limit in n. ��

Now, we introduce D(μ) and H(μ).

Definition 4.5 Let μ ∈ (0, 1]. We say that L has property D(μ) if there is some
cD(μ) > 0 such that for all 0 < r ≤ R ≤ 1, every x ∈ O and all u ∈ H1

D(O) with
LDu = 0 in O(x, R) we have

∫

O(x,r)

|∇u|2 ≤ cD(μ)

( r

R

)d−2+2μ
∫

O(x,R)

|∇u|2.

Remark 4.6 The interest in property D(μ) lies in radii that are not comparable by
absolute constants. Otherwise the estimate holds by monotonicity of the integral with
any choice of μ. In particular, we can replace the condition 0 < r ≤ R ≤ 1 by the
more flexible condition 0 < cr ≤ R ≤ R0 for any fixed R0 > 0 and c > 1.

Definition 4.7 Let μ ∈ (0, 1]. We say that L has property H(μ) if there is some
cH(μ) > 0 such that for all r ∈ (0, 1], every x ∈ O and all u ∈ H1

D(O) with LDu = 0
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in O(x, r) we have that u has a continuous representative in O(x, r/2) that satisfies

rμ[u](μ)

O(x, r2 )
≤ cH(μ)r

− d
2 ‖u‖L2(O(x,r)). (4.1)

Note that this definition is different from the one given in the introduction, but with
some work it turns out to be equivalent as we will see in Lemma 4.9 below. In the
setting of H(μ) the function u extends continuously to O(x, r/2) and the Dirichlet
condition gets a pointwise meaning:

Lemma 4.8 Assume (Fat) and (LU). Let x ∈ O, r > 0 and u ∈ H1
D(O). If u has a

continuous representative in O(x, r), then u(y) = 0 for all y ∈ D(x, r).

Proof By continuity, and since y and r are arbitrary, it suffices to prove u(y) = 0 when
y ∈ D. We can assume that u is real-valued, since otherwise we consider real- and
imaginary parts separately. For the sake of a contradiction, suppose that |u(y)| �= 0.
By continuity, pick 0 < ρ ≤ r0 ∧ r and c > 0 such that |u| ≥ c on O(y, ρ). Repeated
application of the truncation property in Lemma 2.3 gives |u| ∧ c ∈ H1

D(O). But on
O(y, ρ) this function is the constant c and the Poincaré inequality in Proposition 3.9
yields the contradiction c = 0. ��

A further consequence of our geometric setup is that property H(μ) yields a poste-
riori local boundedness of L-harmonic functions.

Lemma 4.9 Assume (Fat) and (LU) and let L have propertyH(μ). Then there is some
cH(μ) > 0 such that for all r ∈ (0, 1], every x ∈ O and all u ∈ H1

D(O) with LDu = 0
in O(x, r) we have that u has a continuous representative in O(x, r/2) that satisfies

‖u‖L∞(O(x, r2 )) + rμ[u](μ)

O(x, r2 )
≤ cH(μ)r

− d
2 ‖u‖L2(O(x,r)).

Proof We only need to bound the L∞-norm. We distinguish the following cases:
(1) x ∈ Nδ/2 or B(x, r/4) ⊆ O. Using H(μ) we have for all y, z ∈ O(x, r/2) that

|u(y)| ≤ rμ[u](μ)

O(x, r2 )
+ |u(z)| � r− d

2 ‖u‖L2(O(x,r)) + |u(z)|.

Now, we average with respect to z on O(x, r/2) to get

|u(y)| � (r− d
2 + |O(x, r/2)|− 1

2 )‖u‖L2(O(x,r)).

By either (ICCNδ
) or B(x, r/4) ⊆ O we get |O(x, r/2)| � rd , which proves the claim.

(2) x ∈ (Nδ/2)
c and (∂O)(x, r/4) �= ∅∅∅. We consider two subcases.

(2.1) D(x, r/4) �= ∅∅∅. Pick y ∈ D(x, r/4). Lemma 4.8 implies u(y) = 0 and we get
for all z ∈ O(x, r/2) that

|u(z)| = |u(z) − u(y)| ≤ rμ[u](μ)

O(x, r2 )
� r− d

2 ‖u‖L2(O(x,r)).
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(2.2) D(x, r/4) = ∅∅∅. Pick w ∈ N (x, r/4). Then O(w, r/4) ⊆ O(x, r/2) and we
have for all y ∈ O(x, r/2) and z ∈ O(w, r/4) that

|u(y)| ≤ rμ[u](μ)

O(x, r2 )
+ |u(z)|.

Now, we average with respect to z on O(w, r/4) and conclude as in the first case. Note
that w ∈ N , so we have (ICCNδ

) at our disposal. ��
Remark 4.10 Using Lemma 4.9, the following modifications can be made in Defini-
tion 4.7 and Lemma 4.9.

1. It is possible to replace the condition r ∈ (0, 1] by r ∈ (0, R] for any R > 0.
Indeed, it suffices to consider R > 1 and r ∈ (1, R). The L∞-part is clear, as it is a
pointwise estimate for all y ∈ O(x, r/2). To bound the Hölder seminorm, we pick
y, z ∈ O(x, r/2). If |y − z| ≥ 1/8, then we can use the L∞-bound. If |y − z| < 1/8,
then we can apply the estimate in O(x, 1/4).

2. By the same type of argument, the radius r/2 on the left-hand side of (4.1) can be
replaced by γ r for any γ ∈ (0, 1).

Next, we discuss the solvability of the local problem LDu = f −div F in O(x, R)

with an a priori bound that has the correct scaling in R. To see that this does not come
for free, we consider a simple counterexample.

Fix r ∈ (0, 1] and put Or := B(0, r) ∪ B(4e1, 1) as the union of two disjoint
balls. We impose Neumann boundary conditions on ∂B(0, r) and Dirichlet boundary
conditions on ∂B(4e1, 1). Take some f ∈ L2(Or ) that is not average free over B(0, r).
Choosing R = 2, the local problem LDu = f in Or (0, R) = B(0, r) cannot have a
solution as we can take the constant 1-function as a test function.

However, changing the radius from R = 2 to ρ = r/2 yields a pure Dirichlet
problem LDu = f in Or (0, ρ) = B(0, ρ), which admits a unique solution by the
Lax–Milgram lemma. The correct scaling in ρ in the a priori estimate comes from the
classical Poincaré inequality on balls. Now, the key observation is that our geometric
setup does not allow that r shrinks to 0 (see Definition 3.5). This ensures that the ratio
ρ/R is bounded from below. We will need this fact in Sect. 5.

Getting the correct scaling in R can be more difficult. Here, the geometry has to
ensure that the local Dirichlet part ∂O(x, R) \ N (x, R) is large enough in a suitable
sense.

The key point in the next lemma is the following: even when we cannot solve every
local problem with an a priori bound that has the correct scaling in R, we can use our
geometric setup to do it for some smaller radius ρ still comparable to R.

Lemma 4.11 Assume (Fat) and (LU). Let x ∈ O, r ≤ r0, f ∈ L2(O(x, r)) and
F ∈ L2(O(x, r))d . There is some ρ ∈ [r/4, r ] such that the problem LDv = f −div F
in O(x, ρ) has a unique weak solution v ∈ H1

∂O(x,ρ)\N (x,ρ)(O(x, ρ)) that satisfies

‖∇v‖L2(O(x,ρ)) � ρ‖ f ‖L2(O(x,ρ)) + ‖F‖L2(O(x,ρ)) (4.2)

with an implicit constant depending on λ and geometry.
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Proof The proof is divided into three main cases. We abbreviate

Vρ := H1
∂O(x,ρ)\N (x,ρ)(O(x, ρ)).

The main issue, as seen from the example above, is the coercivity of the form on Vρ .
(1) r < d∂O(x). Then O(x, r) = B(x, r) and we have Poincaré’s inequality on

Vr = H1
0(B(x, r)) at our disposal. Hence, the result for ρ = r follows from the

Lax–Milgram lemma.
(2) dD(x) ≤ r . Lemma 4.4 (i) joint with (P) implies the Poincaré inequality

‖ϕ‖L2(O(x,r)) � r‖∇ϕ0‖L2(O(x,c1r)) = r‖∇ϕ‖L2(O(x,r)) (ϕ ∈ Vr )

and we conclude as in the first case.
(3) r < dD(x) and dN (x) ≤ r . We need to consider two subcases:
(3.1) ∂B(x, r) ∩ O = ∅∅∅. Since x ∈ O , this means that O splits into two com-

ponents O = Oloc ∪ (O \ Oloc), where Oloc is open and contained in B(x, r). As
r < dD(x), the boundary of all connected components of Oloc intersects ∂O in N .
Hence, O has a connected component with diameter less than 2r ≤ Cδ that intersects
N in contradiction with (LU). Thus, this case can never occur.

(3.2) ∂B(x, r) ∩ O �= ∅∅∅. As in the second case it suffices to prove

‖ϕ‖L2(O(x,ρ)) � ρ‖∇ϕ‖L2(O(x,ρ)) (ϕ ∈ Vρ) (4.3)

for some ρ ∈ [r/4, r ]. By the argument in (3.1) we can assume that there is some
y ∈ ∂B(x, r/2) ∩ O ⊆ Nδ/2 ∩ O .

Now, our goal is to show that there is a radiusρ (comparable to r ) such that ∂O(x, ρ)

carries a large portion of Dirichlet boundary conditions (not necessarily coming from
D). For this we will find a ball B(z, αρ/4) that lies inside O with center z ∈ ∂B(x, ρ):
By (ICCNδ

) there is some z with B(z, αr/4) ⊆ O(y, r/4). We set ρ := |z − x | so that
ρ ∈ [r/4, 3r/4]. Notice that z ∈ ∂B(x, ρ) and B(z, αρ/4) ⊆ O , which is exactly what
we need (see Fig. 5).

Let now ϕ ∈ C∞
∂O(x,ρ)\N (x,ρ)(O(x, ρ)) and extend ϕ by 0 to O (see Lemma 4.4

(i)). Then

‖ϕ‖L2(O(x,ρ)) ≤ ‖Eϕ0‖L2(B(x,ρ)).

Note that Eϕ0 ∈ H1(B(x, ρ)) vanishes on ∂B(x, ρ) ∩ B(z, αρ/4) and thus we have

‖ϕ‖L2(O(x,ρ)) � ρ‖∇Eϕ0‖L2(B(x,ρ)).

Indeed, when x = 0, ρ = 1 and z is the north pole of B(x, ρ), then this Poincaré
inequality follows by compactness and then we can use scaling and a rigid motion.
Finally, we use that E is local and homogeneous in order to derive

‖∇Eϕ0‖L2(B(x,ρ)) � ‖∇ϕ0‖L2(O(x,c1ρ)) = ‖∇ϕ‖L2(O(x,ρ)).
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Fig. 5 Geometric configuration,
where ∂O(x, ρ)\N (x, ρ) is
large enough

The combination of these three estimates proves (4.3) and completes the proof. ��
Wewill showTheorem 1.1 by proving the implications (i)�⇒ (ii), (ii)�⇒ (iii), and

(iii) �⇒ (i) in this order as in [9]. This is the content of the following three sections.

5 FromD(�) to G(�)

In this section we prove the implication (i) ⇒ (ii) of Theorem 1.1. Throughout the
entire section we make the geometric assumptions (Fat) and (LU), see Definitions 3.3
and 3.5, and our goal is thus to show:

Theorem 5.1 Let L and L∗ have property D(μ0) and fix μ ∈ (0, μ0). Then L
has property G(μ) with implicit constants depending on geometry, ellipticity and
[cD(μ), μ,μ0].

To prove this result, we use D(μ0) to obtain semigroup bounds in L∞ and Ċμ

with correct scaling. Once in place, existence of the kernel with estimates will follow
from the Dunford–Pettis theorem. This will be explained at the end of this section.
Compared to [9, 43], we interpolate the L∞ and Ċμ-bounds for the semigroup with the
L2 off-diagonal estimates from Proposition 2.5 instead of directly applying Davies’
perturbation method. This provides a much shorter and streamlined argument, since
it does not produce lower order perturbations for the divergence form operator.

To bound e−t L in L∞ and Ċμ, we use Morrey and Campanato spaces and bootstrap
regularity. Let us introduce them properly and refer to [25, Chap. 3] or [16] for more
information.

Definition 5.2 Let κ ∈ [0, d), r > 0 and x ∈ O . We define the local Morrey space

Lκ
x,r (O) :=

{
u ∈ L2(O) : ‖u‖Lκ

x,r (O) := sup
ρ∈(0,r ]

ρ− κ
2 ‖u‖L2(O(x,ρ)) < ∞

}
.
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Definition 5.3 Let κ ∈ [0, d + 2), r > 0 and x ∈ O . We define the local Campanato
space

Lκ
x,r (O) :=

{
u ∈ L2(O) : [u]Lκ

x,r (O) := sup
ρ∈(0,r ]

ρ− κ
2 ‖u − (u)O(x,ρ)‖L2(O(x,ρ)) < ∞

}
,

and set

‖u‖Lκ
x,r (O) := ‖u‖L2(O(x,r)) + [u]Lκ

x,r (O).

Convention. We abbreviate ‖ · ‖Lκ
x,r (O) =: ‖ · ‖κ,x,r and drop the dependence on x

whenever the context is clear. We also write

‖ · ‖Lκ
x,r (O) =: ‖ · ‖Lκ

x,r
=: ‖ · ‖Lκ

r
,

and we use the same abbreviations for [ · ]Lκ
x,r (O).

The following results from [43, Lem. 3.1] are central.

Lemma 5.4 Let γ ∈ (0, 1), r ∈ (0, 1], κ ∈ [0, d + 2) and x, y ∈ O with |O(x, ρ)| ∧
|O(y, ρ)| ≥ γ |B(x, ρ)| for all ρ ∈ (0, r ]. The following properties hold true with
implicit constants depending only on [d, γ, κ]:
(i) If κ < d, then Lκ

x,r (O) ∼= Lκ
x,r (O) with estimate

[u]Lκ
x,r

≤ ‖u‖κ,x,r � r− d
2 ‖u‖L2(O(x,r)) + [u]Lκ

x,r
(u ∈ Lκ

x,r (O)).

(ii) If κ > d and u ∈ Lκ
x,r (O), then u(x) := limρ↘0(u)O(x,ρ) exists and

|u(x) − (u)O(x,ρ)| � ρ
κ−d
2 [u]Lκ

x,ρ
(ρ ∈ (0, r ]).

(iii) If κ > d, |x − y| ≤ r/2 and u ∈ Lκ
x,r (O) ∩ Lκ

y,r (O), then

|u(x) − u(y)| � ([u]Lκ
x,r

+ [u]Lκ
y,r

)|x − y| κ−d
2 .

Webegin with gradient estimates for global weak solutions inMorrey spaces. Later,
we will apply these estimates iteratively to ut = e−t L u with u ∈ L2(O).

Proposition 5.5 Assume that L has property D(μ). Let κ ∈ [0, d), σ ∈ (0, 2] with
κ + σ < d − 2 + 2μ, x ∈ O, R0 ∈ (0, r0] and f ∈ Lκ

x,R0
(O). Then we have for all

u ∈ H1
D(O) with LDu = f in O(x, R0) and ε ∈ (0, 1] the estimate

‖∇u‖κ+σ,x,R0 � ε2−σ ‖ f ‖κ,x,R0 + ε−(κ+σ)‖∇u‖L2(O(x,R0))
,

where the implicit constant depends only on [λ, cD(μ), μ, κ, σ, R0] and geometry.
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Before we start the proof, we recall the classical Campanato lemma.

Lemma 5.6 [25, Chap. 3, Lem. 2.1] Let φ : R → [0,∞) be non-decreasing, and let
C1,C2, R0, ε ≥ 0 as well as 0 ≤ β < γ . If we have

φ(r) ≤ C1

[(
r

R

)γ

+ ε

]
φ(R) + C2R

β (0 < r ≤ R ≤ R0),

then there exists ε0, c > 0 depending only on [C1, γ, β] such that if ε < ε0, then

φ(r) ≤ c

[(
r

R

)β

φ(R) + C2r
β

]
(0 < r ≤ R ≤ R0).

Proof of Proposition 5.5. Let 0 < r ≤ R ≤ R0ε
2 and define the function

φ(r) :=
∫

O(x,r)

|∇u|2.

We pick ρ ∈ [R/4, R] as in Lemma 4.11, so that there exists some function
v ∈ H1

∂O(x,ρ)\N (x,ρ)(O(x, ρ)) such that LDv = f in O(x, ρ). It also satisfies the
a priori bound (4.2), which implies

∫

O(x,ρ)

|∇v|2 � Rκ+2‖ f ‖2κ,R ≤ (R0ε
2)2−σ ‖ f ‖2κ,R0

Rκ+σ . (5.1)

By Lemma 4.4 (i) we can extend v by 0 and view it as an element of H1
D(O). Then

w := u − v ∈ H1
D(O) satisfies LDw = 0 in O(x, ρ). Provided that r ≤ ρ, we can

use property D(μ) to get

φ(r) �
∫

O(x,r)

|∇v|2 +
∫

O(x,r)

|∇w|2

�
∫

O(x,r)

|∇v|2 +
(
r

ρ

)d−2+2μ ∫

O(x,ρ)

|∇w|2

�
∫

O(x,ρ)

|∇v|2 +
(
r

ρ

)d−2+2μ

φ(ρ). (5.2)

Inserting (5.1) into (5.2) and using R/4 ≤ ρ ≤ R delivers

φ(r) �
( r

R

)d−2+2μ
φ(R) + (R0ε

2)2−σ ‖ f ‖2κ,R0
Rκ+σ .
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If r ≥ ρ, then r/R ≥ 1/4 and the same estimate follows by monotonicity of φ, even
without the semi-norm of f . Lemma 5.6 improves this bound to

φ(r) �
( r

R

)κ+σ

φ(R) + (R0ε
2)2−σ ‖ f ‖2κ,R0

rκ+σ ,

with an implicit constant depending only on [cD(μ), μ, κ, σ ] and geometry. Hence, we
get for all r , R as above that

r− 1
2 (κ+σ)φ(r)

1
2 � R− 1

2 (κ+σ)‖∇u‖L2(O(x,R0))
+ (R0ε

2)1−
σ
2 ‖ f ‖κ,R0 .

In particular, if we pick R := R0ε
2, then we get for 0 < r ≤ R0ε

2 the estimate

r− 1
2 (κ+σ)φ(r)

1
2 � R

− 1
2 (κ+σ)

0 ε−(κ+σ)‖∇u‖L2(O(x,R0))
+ R

1− σ
2

0 ε2−σ ‖ f ‖κ,R0 .

As before, this estimate remains valid for R0ε
2 < r ≤ R0 by monotonicity of φ.

Taking the supremum in r ≤ R0 yields the claim. ��
Lemma 5.7 Let κ ∈ [0, d) and σ ∈ (0, 2]. There is some c > 0 depending only on
geometry, κ and σ such that we have for all ε ∈ (0, 1], u ∈ H1

D(O) and x ∈ O that

[u]Lκ+σ
x,r0

≤ c(ε2−σ ‖∇u‖κ,x,c1r0 + ε−(κ+σ)‖u‖L2(O(x,r0))).

Moreover, if x /∈ Nδ/2, then the same estimate holds for u0 on B(x, r0).

Proof If r ∈ (0, ε2r0], then we have by Remark 3.10 that

r− 1
2 (κ+σ)‖u − (u)O(x,r)‖L2(O(x,r)) �c0,d r1−

σ
2 r− κ

2 ‖∇u‖L2(O(x,c1r))

�c1,κ,σ r
1− σ

2
0 ε2−σ ‖∇u‖κ,x,c1r0 .

In the other case, we get

r− 1
2 (κ+σ)‖u − (u)O(x,r)‖L2(O(x,r)) ≤ 2r− 1

2 (κ+σ)‖u‖L2(O(x,r))

≤ r
− 1

2 (κ+σ)

0 ε−(κ+σ)‖u‖L2(O(x,r0))

as required.
Finally, if x /∈ Nδ/2, then u0 ∈ H1(B(x, r)) since we have r0 < δ/2 by definition

and hence we can use the standard Poincaré inequality on balls in the first case. ��
Next, we proceed as follows with ut = e−t L u, where u ∈ L2(O):

• We increase the regularity of ∇ut in Morrey spaces up to the critical exponent
d − 2 + 2μ.

• We pass to an estimate for the Campanato seminorm of ut with exponent d + 2μ.
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Lemma 5.8 Let L have property D(μ0) and let μ ∈ (0, μ0). There are c, ω > 0 and
γ ∈ (0, 1] depending only on geometry, ellipticity and [cD(μ), μ,μ0] such that

[ut ]Ld+2μ
x,γ r0

≤ ct−
d
4 − μ

2 eωt ‖u‖2 (t > 0, u ∈ L2(O), x ∈ O). (5.3)

Moreover, if x /∈ Nδ/2, then we can replace u by u0 on the left-hand side.

Proof Let κ ∈ [0, d − 2 + 2μ0) and r ∈ (0, r0]. Consider the following statement:
P(κ, r). There are c, ω > 0 depending on geometry and [λ,�, cD(μ), μ0, κ] such

that

‖ut‖κ,x,r + ‖√t∇ut‖κ,x,r ≤ ct−
κ
4 eωt ‖u‖2 (t > 0, u ∈ L2(O), x ∈ O).

Here, P(0, r0) holds true by the L2-theory in Sect. 2. Let σ ∈ (0, 2] with κ + σ <

d − 2 + 2μ0. We claim that

P(κ, r) �⇒ P(κ + σ, r/c1).

This will yield (5.3) with γ := 1/c
m0+2
1 , where m0 is the largest integer with 2m0 <

d−2+2μ, by iterating (m0+1)-times and a final application of the Poincaré inequality
in Remark 3.10. For the additional claim when x /∈ Nδ/2, we simply use the standard
Poincaré inequality on balls in the final step as in the previous proof.

Assume that P(κ, r) is valid and define ε := t 1/4 e−t ∈ (0, 1]. We prove P(κ +
σ, r/c1) in two steps.

Non-gradient bound. If x ∈ Nδ/2, then we have (ICCNδ
) at hand and we can apply

Lemma 5.4 (i) and then Lemma 5.7 to get

‖ut‖κ+σ,r/c1 � ‖ut‖Lκ+σ
r/c1

� (t
1
4 e−t )2−σ ‖∇ut‖κ,r + (t

1
4 e−t )−(κ+σ)‖ut‖2.

Using P(κ, r) and the L2-contractivity of the semigroup gives us

‖ut‖κ+σ,r/c1 �
(
t−

κ+σ
4 eωt +t−

κ+σ
4 e(d+2)t

)
‖u‖2 � t−

κ+σ
4 e(ω∨(d+2))t ‖u‖2.

If x /∈ Nδ/2, then we can do the first step for the 0-extension on B(x, r), to which
Lemma 5.7 applies as well.

Gradient bound. Proposition 5.5 with f = Lut = e−t/2L Lut/2 reveals the bound

‖√t∇ut‖κ+σ,r/c1 �
√
t(t

1
4 e−t )2−σ ‖ e− t

2 L Lut/2‖κ,r/c1 + (t
1
4 e−t )−(κ+σ)‖√t∇ut‖2

� t−
σ
4 ‖ e− t

2 L(t Lut/2)‖κ,r/c1 + t−
κ+σ
4 e(d+2)t ‖√t∇ut‖2.
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Next, we use P(κ, r) joint with the bound ‖t Lut/2‖2 � ‖u‖2 for analytic semigroups
for the first summand and the estimate ‖√t∇ut‖2 � ‖u‖2 from ellipticity (or Propo-
sition 2.5) for the second one to deduce

‖√t∇ut‖κ+σ,r/c1 � t−
κ+σ
4 e( ω

2 ∨(d+2))t ‖u‖2. ��

Finally, we can prove:

Proposition 5.9 Assume that L has property D(μ0) and fix μ ∈ (0, μ0). Then there
are c, ω > 0 depending on geometry, ellipticity and [cD(μ), μ,μ0] such that

‖ut‖∞ + t
μ
2 [ut ](μ)

O ≤ c eωt t−
d
4 ‖u‖2 (t > 0, u ∈ L2(O)). (5.4)

Proof We prove the two bounds separately.
L∞-bound. Let r := γ r0

√
t e−t ≤ γ r0 and fix x ∈ O .

(1) x ∈ O ∩ Nδ/2. Due to (ICCNδ
), we can apply Lemma 5.4 (ii) to get

|ut (x)| � rμ[ut ]Ld+2μ
x,r

+ |(ut )O(x,r)| ≤ rμ[ut ]Ld+2μ
x,r

+ |O(x, r)|− 1
2 ‖ut‖2.

Lemma 5.8 controls the first summand and (ICCNδ
) together with the contractivity of

the semigroup the second one:

|ut (x)| � t−
d
4 e−μt eωt ‖u‖2 + r− d

2 ‖u‖2 � t−
d
4 e(ω∨ d

2 )t ‖u‖2.

(2) x ∈ O\Nδ/2. The argument is the same upon working with the 0-extension of
ut on B(x, r) instead of ut on O(x, r).

Ċμ-bound. Fix x, y ∈ O . For |x − y| > γ r0/2 we use the L∞-bound and that
tμ/2 ≤ eμt/2:

t
μ
2
|ut (x) − ut (y)|

|x − y|μ � e
μ
2 t ‖ut‖∞ ≤ c e(ω+ μ

2 )t t−
d
4 ‖u‖2.

Now, let |x − y| ≤ γ r0/2. We distinguish three cases.
(1) x, y ∈ O ∩ Nδ/2. Lemma 5.4 (iii) joint with Lemma 5.8 gives

|ut (x) − ut (y)| � |x − y|μ([ut ]Ld+2μ
x,γ r0

+ [ut ]Ld+2μ
y,γ r0

)
� |x − y|μt− d

4 − μ
2 eωt ‖u‖2.

(2) x, y ∈ O\Nδ/2. This case is again identical to the first one upon working with
the 0-extension (ut )0.

(3) x ∈ O ∩ Nδ/2 and y ∈ O \ Nδ/2. The proof of [43, Lem. 3.1] easily reveals the
more precise estimate

|ut (x) − ut (y)| = |ut (x) − (ut )0(y)| � |x − y|μ([ut ]Ld+2μ
x,γ r0

+ [(ut )0]Ld+2μ
y,γ r0 (B(y,γ r0))

)
,

which is enough to conclude once more by Lemma 5.8. ��
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We come to the main result, Theorem 5.1. For this we need a criterion to decide
when a linear operator is given by a measurable kernel, known as the Dunford–Pettis
theorem.

Theorem 5.10 (Dunford–Pettis, [2, Thm. 1.3]) Let p ∈ [1,∞). The map

L∞(O;Lp′
(O)) → L(Lp(O),L∞(O)), K �→

⎛
⎝ f �→

∫

O

K (·, y) f (y) dy
⎞
⎠

is an isometric isomorphism.

Armed with this result, we are going to use off-diagonal estimates as follows:

Corollary 5.11 Consider the following two statements:

(i) There are p ∈ [1, 2], μ ∈ (0, 1] and c, ω > 0 such that

‖1F e−t L 1Eu‖∞ + ‖1F e−t L∗
1Eu‖∞ � eωt t−

d
2p e−c d(E,F)2

t ‖1Eu‖p, (5.5)

for all measurable sets E, F ⊆ O, t > 0 and u ∈ L2(O) as well as

[e−t L u](μ)
O + [e−t L∗

u](μ)
O � eωt t−

μ
2 − d

2p ‖u‖p (t > 0, u ∈ L2(O)). (5.6)

(ii) L has property G(μ).

Then (i) implies (ii) and, conversely, (ii) implies (i) for every p ∈ [1, 2] and any
ν ∈ (0, μ) in place of μ.

The result is not particularly deep, but we believe that the precise formulation and
the flexibility coming from the exponent p will also be useful for other applications.

Proof (i) �⇒ (ii): The assumption with E = F = O and Theorem 5.10 imply that
e−t L is given by a measurable kernel, (e−t L f )(x) = ∫

O Kt (x, y) f (y) dy say, which
is (G1). But this does not yet give the desired pointwise estimates.

To this end, we use the change-of-exponents formulas from [6, Chap. 4] for this
type of off-diagonal estimates and the semigroup law to obtain from (5.5) and (5.6)
the following two estimates:1 There are c, ω > 0 such that for all measurable sets
E, F ⊆ O , t > 0 and u ∈ L1(O) ∩ L2(O) we have

‖1F e−t L 1Eu‖∞ + ‖1F e−t L∗
1Eu‖∞ � eωt t−

d
2 e−c d(E,F)2

t ‖1Eu‖1,
[e−t L u](μ)

O + [e−t L∗
u](μ)

O � eωt t−
μ
2 − d

2 ‖u‖1.

1 In the language of [6] we start with Lp −L∞, go to L2 −L∞ ([6, Rem. 4.8 & Lem. 4.14]) and L1 −L2

(duality), and finally to L1 − L∞ ([6, Lem. 4.6]).
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Using the kernel and the L1 − L∞-duality on E , the first bound means that

esssup
x∈F, y∈E

|Kt (x, y)| � eωt t−
d
2 e−c d(E,F)2

t .

Taking E and F as balls in O with small radius around x and y yields the pointwise
bound (G2). In the same manner, the Hölder bound for the semigroup means that

esssup
y∈O

|Kt (x, y) − Kt (x
′, y)| � eωt t−

μ
2 − d

2 |x − x ′|μ,

for all x, x ′ ∈ O , which is one half of (G3). The other half follows from the bounds
for e−t L∗

with kernel K ∗
t (x, y) = Kt (y, x).

(ii) �⇒ (i): Since G(μ) is stable under taking adjoints and L∗ is of the same type
as L , it suffices to prove (5.5) and (5.6) for L . Given x ∈ O , we use (G2) and polar
coordinates to get

⎛
⎝

∫

E

|Kt (x, y)|p′
dy

⎞
⎠

1
p′

� t−
d
2 eωt

⎛
⎜⎝

∞∫

dE (x)

e−p′b r2
t r d

dr

r

⎞
⎟⎠

1
p′

= t−
d
2p eωt

⎛
⎜⎝

∞∫

dE (x)/
√
t

e−p′br2 rd
dr

r

⎞
⎟⎠

1
p′

� t−
d
2p eωt e−b

dE (x)2

2t ,

(5.7)

with the obvious modifications when p′ = ∞. Hence, (5.5) follows from Hölder’s
inequality. To prove (5.6), we let x ∈ O and h ∈ R

d\{0} with x + h ∈ O . First, we
consider the case |h| ≤ √

t . We split the domain of integration of

⎛
⎝

∫

O

|Kt (x + h, y) − Kt (x, y)|p′
dy

⎞
⎠

1
p′

into the two regions O(x, 2|h|) and O\B(x, 2|h|). On O(x, 2|h|)we invoke (G3) and
obtain due to |h| ≤ √

t that

⎛
⎜⎝

∫

O(x,2|h|)
|Kt (x + h, y) − Kt (x, y)|p′

dy

⎞
⎟⎠

1
p′

� eωt t−
μ
2 − d

2 |h|μ+ d
p′ ≤ eωt t−

μ
2 − d

2p |h|μ.
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On O \ B(x, 2|h|) we use Remark 4.2 (ii), which delivers the estimate

⎛
⎜⎝

∫

O\B(x,2|h|)
|Kt (x + h, y) − Kt (x, y)|p′

dy

⎞
⎟⎠

1
p′

� eωt t−
ν
2 − d

2 |h|ν
⎛
⎜⎝

∞∫

2|h|
e−p′b r2

t r d
dr

r

⎞
⎟⎠

1
p′

= eωt t−
ν
2 − d

2p |h|ν
⎛
⎜⎝

∞∫

2|h|/√
t

e−p′br2 rd
dr

r

⎞
⎟⎠

1
p′

� eωt t−
ν
2 − d

2p |h|ν .

For |h| >
√
t these estimates also hold, simply by (5.7) and the triangle inequality.

Combining the last two estimates, (5.6) follows again from Hölder’s inequality. ��
Proof of Theorem 5.1 Of course, we base the argument on Corollary 5.11 with p = 2.
Since (5.6) has been shown in Proposition 5.9, it remains to show (5.5). Since L and
L∗ are of the same type, we only need to argue for L . The missing control of the
L∞-norm from the Hölder bound (5.6) and the L2-theory is a refined version of the
proof of Lemma 4.9.

Let r > 0, x ∈ F and normalize ‖1Eu‖2 = 1. We have for all y ∈ O(x, r) that

|(1Eu)t (x)| ≤ [(1Eu)t ](μ)
O rμ + |(1Eu)t (y)|.

By averaging over O(x, r) with respect to y, using (5.6) for the first summand and
Hölder’s inequality for the second one, we deduce

|(1Eu)t (x)| � eωt t−
d
4

(
r√
t

)μ

+ |O(x, r)|− 1
2 ‖1O(x,r)(1Eu)t‖2.

We pick r := e−c′d(E,F)2/t
√
t , with c′ > 0 to be chosen, to get

|(1Eu)t (x)| � eωt t−
d
4 e−c′μ d(E,F)2

t +|O(x, r)|− 1
2 ‖1O(x,r)(1Eu)t‖2. (5.8)

It remains to bound the second summand. Independently of our choice of c′ we have
d(O(x, r), E) ≥ d(E, F) − √

t . Now, we consider three cases.
(1)

√
t ≤ δ/4 and x ∈ Nδ/2. Then |O(x, r)| � rd by (ICCNδ

). If
√
t ≤ d(E,F)/2,

then d(O(x, r), E) ≥ d(E,F)/2 and Proposition 2.5 yields

|O(x, r)|− 1
2 ‖1O(x,r)(1Eu)t‖2 � r− d

2 e−c d(E,F)2
4t = t−

d
4 e−( c4− d

2 c
′) d(E,F)2

t .

Therefore, we pick c′ < c/4d to conclude. If
√
t > d(E,F)/2, then the same estimate

holds as it is not saying anything more than L2-boundedness of the semigroup.
(2)

√
t ≤ δ/4 and x ∈ F\Nδ/2. Since r ≤ δ/4, we have either B(x, r) ⊆ O , in

which case we can proceed as before, or D(x, r) �= ∅. In the latter case, we pick
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z ∈ D(x, r) and start over new. Namely, since we have (1Eu)t (z) = 0 by Lemma 4.8,
we get directly that

|(1Eu)t (x)| ≤ [(1Eu)t ](μ)
O rμ � t−

d
4 e−c′μ d(E,F)2

t .

(3)
√
t > δ/4. Let G be the set of all x ∈ O with dF (x) < d(E,F)/2. We split

‖1F (1Eu)t‖∞ ≤ ‖ e− δ2
16 L 1G e−(t− δ2

16 )L 1Eu‖∞ + ‖1F e− δ2
16 L 1Gc e−(t− δ2

16 )L 1Eu‖∞.

Using (5.4) and Proposition 2.5 to bound the first summand and (5.5) with t = δ2/16

from the previous cases (1) and (2) for the second one, we infer

‖1F (1Eu)t‖∞ � e
−c d(E,F)2

4t−δ2/4 + e− 4c
δ2

d(E,F)2 ≤ 2 e− c
4
d(E,F)2

t � eωt t−
d
4 e− c

4
d(E,F)2

t .

This completes the proof of (5.5), hence of the theorem. ��
Remark 5.12 In the above proof we have used the L∞-bound in (5.4) only for one fixed
value of t , namely for t = δ2/16 in the third step of the argument. This observation will
be useful in Sect. 10.

6 FromG(�) to H(�)

We highlight that this implication does not depend on the geometry at all, which is a
fundamental difference compared to the other parts of the equivalence. Heuristically,
this is due to the fact that G(μ) is a global property and D(μ) and H(μ) are local ones.

Theorem 6.1 Assume that L has property G(μ0) and let μ ∈ (0, μ0). Then L and L∗
have property H(μ).

The idea of the proof dates back to [9]. However, using the equivalent formulation of
G(μ) from Corollary 5.11, we provide a shorter argument even when O = R

d . Before
we start with the proof, let us recall Caccioppoli’s inequality for mixed boundary
conditions. The proof is identical to the standard argument in e.g. [6, Lem. 16.6] since
the test function class for LDu = 0 is invariant under multiplication with functions in
C∞
c (Rd).

Lemma 6.2 (Caccioppoli inequality) Let x ∈ O, r > 0, c ∈ (0, 1). If u ∈ H1
D(O)

solves LDu = 0 in O(x, r), then

r‖∇u‖L2(O(x,cr)) �λ,�

1

1 − c
‖u − 1[dD(x)>r ] · (u)O(x,r)‖L2(O(x,r)).

Proof of Theorem 6.1. We are going to use G(μ0) through the equivalent estimates
(5.5) and (5.6), see Corollary 5.11. Since G(μ0) is stable under taking adjoints, it
suffices to show H(μ) for L .
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Let x ∈ O , r ≤ 1 and u ∈ H1
D(O) with LDu = 0 in O(x, r). Let y ∈ O(x, r/2)

and h ∈ R
d such that y+h ∈ O(x, r/2). Pick ε > 0 such that B(y, ε)∪ B(y+h, ε) ⊆

O(x, r/2) and define τh f := f (· + h).
First, we claim that there is some c > 0 depending on the constants in G(μ0),

ellipticity, geometry, μ and μ0 such that

‖ e−t L∗
(τ−h − 1) f ‖L2(O\B(x, 34 r))

≤ c|h|μt− d
4 − μ

2 e− r2
ct ‖ f ‖L1(B(y,ε)) (6.1)

for all t ≤ 1 and f ∈ L1(B(y, ε)).
To see the claim, fix ν ∈ (μ,μ0). Property G(μ0) implies the bound (5.6), so that

‖(τh − 1) e−t L f ‖L∞(B(y,ε)) � |h|ν t− d
4 − ν

2 ‖ f ‖2 (t ≤ 1, f ∈ L2(O)).

By duality, we get

‖ e−t L∗
(τ−h − 1) f ‖2 � |h|ν t− d

4 − ν
2 ‖ f ‖L1(B(y,ε)) (t ≤ 1, f ∈ L1(B(y, ε))).

(6.2)

Let θ := μ/ν. We use (6.2) to estimate

‖ e−t L∗
(τ−h − 1) f ‖L2(O\B(x, 34 r))

≤ ‖ e−t L∗
(τ−h − 1) f ‖θ

2 · ‖ e−t L∗
(τ−h − 1) f ‖1−θ

L2(O\B(x, 34 r))

� |h|μt− θd
4 − μ

2 ‖ f ‖θ
L1(B(y,ε)) · ‖ e−t L∗

(τ−h − 1) f ‖1−θ

L2(O\B(x, 34 r))
.

Eventually, we apply the dual estimate of (5.5) with p = 2, E = O(x, r/2) and
F = O\B(x, 3r/4), that is

‖ e−t L∗
(τ−h − 1) f ‖L2(O\B(x, 34 r))

� t−
d
4 e−c r

2
t ‖ f ‖L1(B(y,ε)).

The previous two estimates together yield our claim (6.1).
With the claim at hand, we prove H(μ). By duality, it suffices to show for all

ϕ ∈ C∞
c (B(y, ε)) normalized to ‖ϕ‖1 = 1 that

|((τh − 1)u | ϕ)2| = |(u | (τ−h − 1)ϕ)2| � r− d
2 −μ‖u‖L2(O(x,r))|h|μ,

with an implicit constant not depending on ε.
We normalize ‖u‖L2(O(x,r)) = 1, abbreviate ϕh := (τ−h − 1)ϕ and pick χ ∈

C∞
c (Rd) with 1B(x,7r/8) ≤ χ ≤ 1B(x,8r/9) and ‖∇χ‖∞ � r−1. The fundamental
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theorem of calculus and (6.2) deliver

|(τh − 1)u | ϕ)2| =
∣∣∣∣(uχ | e−r2L∗

ϕh)2 +
r2∫

0

(uχ | L∗ e−t L∗
ϕh)2 dt

∣∣∣∣

≤ ‖ e−r2L∗
ϕh‖2 +

r2∫

0

∣∣∣(uχ | L∗ e−t L∗
ϕh)2

∣∣∣ dt .

� r− d
2 −μ|h|μ +

r2∫

0

∣∣∣(uχ | L∗ e−t L∗
ϕh)2

∣∣∣ dt

= r− d
2 −μ|h|μ +

r2∫

0

∣∣∣(A∇(uχ) | ∇ e−t L∗
ϕh)2

∣∣∣ dt

=: r− d
2 −μ|h|μ + (I).

Estimate for (I). Thanks to Lemma 4.4 (ii), we know that χ e−t L∗
ϕh serves as a

test function for the equation LDu = 0 in O(x, r). Hence, we get

(A∇(uχ) | ∇ e−t L∗
ϕh)2 = (uA∇χ | ∇ e−t L∗

ϕh)2 + (A∇u | χ∇ e−t L∗
ϕh)2

= (uA∇χ | ∇ e−t L∗
ϕh)2 − (A∇u | (e−t L∗

ϕh)∇χ)2.

Thus, using the properties of χ and Hölder’s inequality, we obtain

(I) ≤
r2∫

0

∣∣∣(uA∇χ | ∇ e−t L∗
ϕh)2

∣∣∣ dt +
r2∫

0

∣∣∣(A∇u | (e−t L∗
ϕh)∇χ)2

∣∣∣ dt

� r−1

r2∫

0

‖1B(x, 78 r)
c

√
t∇ e−t L∗

ϕh‖2 dt√
t

+ r−1‖∇u‖L2(O(x, 89 r))

r2∫

0

‖1B(x, 78 r)
c e−t L∗

ϕh‖2 dt

=: (II) + (III).

Estimate for (II).We split

‖1B(x, 78 r)
c

√
t∇ e−t L∗

ϕh‖2 ≤ ‖1B(x, 78 r)
c

√
t∇ e− t

2 L
∗
1B(x, 34 r)

e− t
2 L

∗
ϕh‖2

+ ‖√t∇ e− t
2 L

∗
1B(x, 34 r)

c e− t
2 L

∗
ϕh‖2.
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To bound the first summand, we use Proposition 2.5 joint with (6.2) to get

‖1B(x, 78 r)
c

√
t∇ e− t

2 L
∗
1B(x, 34 r)

e− t
2 L

∗
ϕh‖2 � e−c r2

64t |h|μt− d
4 − μ

2 .

As for the second summand, we use (6.1) instead of (6.2) to obtain the same upper
bound. Hence, the substitution s = r2/t eventually reveals

(II) � r−1|h|μ
r2∫

0

e−c r2
64t t−

d
4 − μ

2 − 1
2 dt � r− d

2 −μ|h|μ.

Estimate for (III).Using Caccioppoli’s inequality, (6.1) and again the substitution
s = r2/t, we have

(III) � r−2|h|μ
r2∫

0

e−c r
2
t t−

d
4 − μ

2 dt � r− d
2 −μ|h|μ,

which completes the proof. ��

7 FromH(�) to D(�)

In this section we close the circle of implications by proving:

Theorem 7.1 Let (Fat) and (LU) be satisfied. If L has property H(μ), then L has
property D(μ).

Proof It suffices to control the growth of the Dirichlet integral when 0 < 4c1r ≤ R ≤
r0, x ∈ O and u ∈ H1

D(O)with LDu = 0 in O(x, R), see Remark 4.6. We distinguish
between two cases.

(1) R/c1 < dD(x). Let ϕ ∈ C∞
D (Rd) with ϕ = 1 on B(x, R/c1). Then

v := ϕ(u − (u)O(x,R/c1)) ∈ H1
D(O) & LDv = 0 in O(x, R/c1).

Thanks to propertyH(μ), v has a continuous representative inO(x, R/2c1) ⊇ O(x, 2r).
We start with the Caccioppoli inequality

∫

O(x,r)

|∇u|2 =
∫

O(x,r)

|∇v|2

� r−2
∫

O(x,2r)

|v − v(x)|2,
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where now we can bring H(μ) into play and then apply (P) in order to get

� r−2R−d−2μ

⎛
⎜⎝

∫

O(x,2r)

|x − y|2μ dy

⎞
⎟⎠

∫

O(x,R/c1)

|v|2

= r−2R−d−2μ

⎛
⎜⎝

∫

O(x,2r)

|x − y|2μ dy

⎞
⎟⎠

∫

O(x,R/c1)

|u − (u)O(x,R/c1)|2

�
( r

R

)d−2+2μ
∫

O(x,R)

|∇u|2.

(2) dD(x) ≤ R/c1. We consider two subcases.
(2.1) dD(x) ≤ 2r . We pick xD ∈ D with dD(x) = |x − xD|. The most important

observation is that (the continuous representative of) u vanishes in xD by Lemma 4.8.
The Caccioppoli inequality yields

∫

O(x,r)

|∇u|2 � r−2
∫

O(x,2r)

|u|2.

By property H(μ) on O(x, R/2c1) ⊇ O(x, 2r) and (P), we obtain in the usual manner
that

� r−2
∫

O(x,2r)

|u(y) − u(x)|2 dy + rd−2|u(x) − u(xD)|2

� R−d−2μ(rd−2+2μ + rd−2dD(x)2μ)

∫

O(x,R/c1)

|u|2

�
( r

R

)d−2+2μ
∫

O(x,R)

|∇u|2.

(2.2) 2r < dD(x). In this case we can replace u by u − u(x) when we apply the
Caccioppoli inequality in case (2.1). Then xD is not needed and we conclude by the
same chain of estimates. ��

8 Property H(�) for divergence form operators with real coefficients

Our goal in this section is to show Theorem 1.2. As mentioned in the introduction, we
can go one step further and relax (Fat) and (LU) to the following axiomatic framework,
where p ∈ (1, 2).
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(E) Embedding property for H1
D(O). If d ≥ 3, assume there is cE > 0 such that

‖u‖2∗ ≤ cE‖u‖1,2 (u ∈ H1
D(O)).

If d = 2, assume there are q ∈ (2,∞) and cE > 0 such that

‖u‖q ≤ cE‖u‖1−
2
q

1,2 ‖u‖
2
q
2 (u ∈ H1

D(O)).

(P)p Weak p-Poincaré inequality. There are c0, r0 > 0, c1 ≥ 1 with

‖u − 1[dD(x)>r ] · (u)O(x,r)‖Lp(O(x,r)) ≤ c0r‖∇u‖Lp(O(x,c1r))

for all u ∈ W1,p
D (O), each x ∈ O and all r ∈ (0, r0].

The implicit constants in (P)p might be different from the ones chosen in and after
Proposition 3.9 but they serve the exact same purpose. It is only that in this section
we postulate (P)p instead of deriving it from geometric assumptions.

Let us explainwhy these properties follow fromour concrete geometric assumptions
in the previous sections.

Lemma 8.1 Assumptions (Fat) and (LU) imply (E) and (P)p for some p ∈ (1, 2).
Moreover, (E) holds true in the pure Dirichlet case on any open set O.

Proof For d ≥ 3, (E) follows from (E) and the embedding H1(Rd) ⊆ L2∗
(Rd).

Similarly, for d = 2, we can use all q ∈ (2,∞) since we have the interpolation
inequality

‖u‖Lq (Rd ) � ‖∇u‖1−
2
q

L2(Rd )
‖u‖

2
q

L2(Rd )
(u ∈ H1(Rd)),

see [39, Lec. 2, Thm.].
To show (P)p, we borrow a deep result from capacity theory:

Let d ≥ 2 and C be closed. If C is locally 2-fat, then C is locally p-fat for some
p ∈ (1, 2).

This is called ‘self-improvement of p-fatness’, a phenomenon that is attributed to
Lewis [35, Thm. 1] but for a slightly different version of capacities.With our definition,
the proof can be found in [38, Thm. 8.2].

We apply this result to the auxiliary set D∪(Oc\N�
δ ) in Lemma 3.4 to see that (Fat)

self-improves to (Fat)p for some p ∈ (1, 2). Hence, (P)p follows fromProposition 3.9.
��

To prove Theorem 1.2, we show in a first step that any L-harmonic function u is
locally bounded. For this we adapt the proof of [26, Prop. 8.15] to derive a decay
condition on the super-level sets of u. Here, we only need the embedding (E).

In a second step, we follow a classical approach [18, 26] and use the local bound-
edness of u to obtain estimates for its oscillation, which eventually results in local
Hölder continuity. At this point, (P)p is crucial, as it allows us to get a quantitative
decay in the super-level sets of u. This uses ideas from non-linear methods [19, 20].
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8.1 Local boundedness of functions in the De Giorgi class.

The central point of this subsection is that the local boundedness of a function is a
consequence of lying in a function class rather than solving an equation. However, the
latter is needed to obtain uniform control on the implicit constants, which is essential
for Theorem 1.2.

Definition 8.2 Let x ∈ O and R > 0. We define DGD,x,R(O) as the set of all u ∈
H1

D(O; R) for which there exists a constant c > 0 such that for all r ∈ (0, R) and
k ∈ [0,∞) it holds

∫

O(x,r)

|∇(u ∓ k)±|2 ≤ c

(R − r)2

∫

O(x,R)

|(u ∓ k)±|2. (8.1)

In addition, if R < dD(x), then we require both estimates for all k ∈ R.

Remark 8.3 Notice that u ∈ DGD,x,R(O) if and only if −u ∈ DGD,x,R(O) due to the
identities (−u − k)+ = (u + k)− and (−u + k)− = (u − k)+.

Next, we state the main result of this section. We define

θ := 1

2
+

√
1

4
+ 2

δ
> 1, where δ :=

{
2q
q−2 (d = 2),

d (d ≥ 3).
(8.2)

Theorem 8.4 Assume (E). Let x ∈ O, R0 > 0 and u ∈ DGD,x,R0(O). There is some
c > 0 such that we have for all k ≥ 0 and R ∈ (0, R0] the estimate

esssup
O(x, R2 )

u+ ≤ k + c

⎛
⎜⎝R−d

∫

O(x,R)

|(u − k)+|2
⎞
⎟⎠

1
2

(R−d |{u > k}(x, R)|) θ−1
2 .

In addition, if R < dD(x), thenwe canallow for all k ∈ R in the estimate. Furthermore,
if A is real-valued and u ∈ H1

D(O; R) with LDu = 0 in O(x, R), then c > 0 depends
only on d, ellipticity, R0 and (E).

Before we come to the proof of Theorem 8.4, let us show that DGD,x,R(O) is the
natural energy class associated to the equation LDu = 0 in O(x, R).

Lemma 8.5 Let A be real-valued, x ∈ O, R > 0 and u ∈ H1
D(O; R) such that

LDu = 0 in O(x, R). Then u ∈ DGD,x,R(O) with an implicit constant depending
only on ellipticity.

Proof Owing to Remark 8.3 we only have to show the estimate for (u − k)+. First,
assume that dD(x) ≤ R and k ≥ 0.

Let r ∈ (0, R) and ϕ ∈ C∞
c (B(x, R)) be [0, 1]-valued with ϕ = 1 on B(x, r) and

‖∇ϕ‖L∞(Rd ) ≤ 2/(R−r).
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Put w := (u − k)+ϕ and v := (u − k)+ϕ2. They are contained in H1
D(O) and test

functions for the equation for u, see Lemma 2.3 and Lemma 4.4 (ii). By the product
rule and ellipticity, we have

λ

2

∫

O

|∇(u − k)+|2ϕ2 ≤ λ

∫

O

|∇w|2 + |(u − k)+∇ϕ|2

≤
∫

O

A∇w · ∇w + λ|(u − k)+∇ϕ|2

=
∫

O

A∇u · ϕ∇w + A(u − k)+∇ϕ · ∇w + λ|(u − k)+∇ϕ|2

=
∫

O

−A∇u · w∇ϕ + A(u − k)+∇ϕ · ∇w + λ|(u − k)+∇ϕ|2,

where we have used the equation for u with test function v. By definition of w we can
continue by

≤
∫

O

−Aϕ∇(u − k)+ · (u − k)+∇ϕ + A(u − k)+∇ϕ · ϕ∇(u − k)+

+ A(u − k)+∇ϕ · (u − k)+∇ϕ + λ|(u − k)+∇ϕ|2.

At this point, we can use the boundedness of A and Young’s inequality to absorb all
terms with ϕ∇(u − k)+ on the right. We are left with

∫

O

|∇(u − k)+|2ϕ2 ≤ c
∫

O

|(u − k)+∇ϕ|2,

where c depends on ellipticity, and (8.1) follows by the choice of ϕ.
Finally, if R < dD(x), then v,w ∈ H1

D(O) for all k ∈ R and the same argument
applies. ��

Proof of Theorem 8.4. We begin with the case dD(x) ≤ R.
Fix r ∈ (0, R) and k ≥ 0. Let η ∈ C∞

c (B(x, (r+R)/2)) be [0, 1]-valued with η = 1
on B(x, r) and ‖∇η‖L∞(Rd ) ≤ 4/(R−r). Then η(u − k)+ ∈ H1

D(O) by Lemmas 2.3
and 4.4 (ii). We deduce from (8.1) that

‖∇(η(u − k)+)‖L2(O(x, r+R
2 ))

≤ ‖(u − k)+∇η‖L2(O(x, r+R
2 ))

+ ‖η∇(u − k)+‖L2(O(x, r+R
2 ))

� 1

R − r
‖(u − k)+‖L2(O(x,R)). (8.3)
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By Lemma 8.5 the implicit constant depends only on ellipticity in the case that LDu =
0 in O(x, R). We abbreviate

Ak,R := {u > k}(x, R).

First, let d ≥ 3. Using (E) and (8.3), we get

‖u − k‖L2∗ (Ak,r )
≤ ‖η(u − k)+‖2∗

� ‖∇(η(u − k)+)‖L2(O(x, r+R
2 ))

+ ‖η(u − k)+‖L2(O(x, r+R
2 ))

� 1 + R0

R − r
‖u − k‖L2(Ak,R).

(8.4)

Hölder’s inequality yields

‖u − k‖L2(Ak,r )
≤ |Ak,r | 1d ‖u − k‖L2∗ (Ak,r )

� |Ak,R | 1d
R − r

‖u − k‖L2(Ak,R). (8.5)

Now, let d = 2. Then (E) postulates a Gagliardo–Nirenberg-type inequality. When
we apply (E) in (8.4), we obtain instead of (8.5) the estimate

‖u − k‖L2(Ak,r )
≤ |Ak,r | 1δ ‖u − k‖Lq (Ak,r ) � |Ak,R | 1δ

(R − r)
2
δ

‖u − k‖L2(Ak,R). (8.6)

Recall the definition of θ from (8.2) and define

�(k, r) := ‖u − k‖δθ
L2(Ak,r )

|Ak,r |.

We raise (8.5) and (8.6) to the δθ -th power and multiply by |Ak,r | to get for all h < k
the estimate

�(k, r) � 1

(R − r)dθ
|Ak,R |θ |Ak,r |‖u − k‖δθ

L2(Ak,R)

� 1

(R − r)dθ
|Ah,R |θ |Ak,r |‖u − h‖δθ

L2(Ah,R)

≤ 1

(R − r)dθ

1

(k − h)2
|Ah,R |θ‖u − h‖2+δθ

L2(Ah,R)
.

Using that θ is the positive solution to θ2 − θ − 2/δ = 0, we have proven so far that
there is some c > 0 such that we have for all 0 < r < R, k ≥ 0 and h < k the
estimate

�(k, r) ≤ c

(R − r)dθ

1

(k − h)2
�(h, R)θ .
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At this point,we set up an iteration scheme to conclude. Let ζ > 0, set kn := k+ζ−ζ/2n

and rn := R/2 + R/2n+1, so that

�(kn+1, rn+1) ≤ c2dθ 2
(n+1)(dθ+2)

Rdθ ζ 2 �(kn, rn)
θ .

Let μ := (dθ+2)/(θ−1) > 0 and put ψn := 2μn�(kn, rn). Then

ψn+1 ≤ c
2θ(μ+d)

Rdθ ζ 2 ψθ
n .

We choose ζ > 0 such that

ψ1−θ
0 = c

2θ(μ+d)

Rdθ ζ 2 ,

that is,

ζ = c
1
2 2

θ(μ+d)
2 R− dθ

2 ‖u − k‖L2(Ak,R)|Ak,R | θ−1
2

= c′R− d
2 ‖u − k‖L2(Ak,R)(R

−d |Ak,R |) θ−1
2 .

Our choice of ζ and induction yields ψn ≤ ψ0 for all n ∈ N0. This eventually implies

�(k + ζ, R/2) ≤ lim sup
n→∞

�(kn, rn) = lim sup
n→∞

2−μnψn = 0.

Thus, �(k + ζ, R/2) = 0 and hence |Ak+ζ,R/2| = 0 or u = k + ζ on Ak+ζ,R/2. In both
cases we conclude that

esssup
O(x, R2 )

u+ ≤ k + ζ,

as claimed.
The restriction k ≥ 0 was only used in order to apply (8.1) and to guarantee that

η(u − k)+ ∈ H1
D(O). But when R < dD(x), this is true for all k ∈ R simply by the

support of η and the same argument applies. ��

8.2 Property H(�) for L

So far, we have worked under assumption (E) alone. Now, we will add (P)p in order
to upgrade local boundedness to local Hölder continuity.

Theorem 8.6 Assume (E) and (P)p. Let x ∈ O, R ≤ r0 and u ∈ DGD,x,R(O). Then
u is locally Hölder continuous in O(x, R/4) with

Rμ[u](μ)

O(x, R4 )
� R− d

2 ‖u‖L2(O(x,R)).
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The implicit constant and μ depend only on d, (P)p, (E) and the constant in (8.1).

This result implies Theorem 1.2.

Proof of Theorem 1.2 from Theorem 8.6 Let u ∈ H1
D(O) with LDu = 0 in O(x, r) for

some x ∈ O . By Remark 4.10 we can assume r ≤ r0 and it suffices to prove (4.1)
with O(x, r/4) on the left-hand side.

Since A is real-valued, Re(u), Im(u) ∈ H1
D(O; R) solve the same equation as

u. According to Lemma 8.5 they belong to DGD,x,r (O). As the geometric assump-
tions (Fat) and (LU) imply (E) and (P)p by Lemma 8.1, we can apply Theorem 8.6
to Re(u) and Im(u) to complete the proof. ��

In order to proveTheorem8.6,we still need two short lemmas.The slight asymmetry
in the scaling of the radius between (i) and (ii) is unavoidable and the reader might
want to think of c1 = 1 on a first reading.

Lemma 8.7 Assume (P)p, let u ∈ H1
D(O; R), r ∈ (0, r0] and x ∈ O.

(i) If r < dD(x), then it holds for all h < k that

(k − h)p|{u ≥ k}(x, r/c1)| ≤ cp0 r
p|O(x, r/c1)|p

|{u ≤ h}(x, r/c1)|p
∫

{h≤u≤k}(x,r)
|∇u|p. (8.7)

(ii) If dD(x) ≤ r , then it holds for all 0 ≤ h < k that

(k − h)p|{u ≥ k}(x, r)| ≤ cp0 r
p

∫

{h≤u≤k}(x,c1r)
|∇u|p. (8.8)

Proof We begin with (i). Let ϕ ∈ C∞
D (Rd) with ϕ = 1 on B(x, r). Set w := ϕ((u −

h)+ − (u − k)+) and estimate

(w)O(x,r/c1) ≤ (k − h)|{u > h}(x, r/c1)|
|O(x, r/c1)| ≤ k − h.

As w = k − h on {u ≥ k}(x, r/c1), we can use this bound and (P)p to get

(k − h)p
(
1 − |{u > h}(x, r/c1)|

|O(x, r/c1)|
)p

|{u ≥ k}(x, r/c1)|

=
∫

{u≥k}(x,r/c1)

∣∣∣∣k − h − (k − h)|{u > h}(x, r/c1)|
|O(x, r/c1)|

∣∣∣∣
p

≤
∫

O(x,r/c1)

|w − (w)O(x,r/c1)|p

≤ cp0 r
p

∫

O(x,r)

|∇w|p.
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Since ∇w = 1{h≤u≤k}∇u in O(x, r), we are done.
We turn to (ii).We first use Lemma 2.3 to conclude thatw := (u−h)+−(u−k)+ ∈

H1
D(O). Thus, (P)p implies

(k − h)p|{u ≥ k}(x, r)| =
∫

{u≥k}(x,r)
|w|p ≤ cp0 r

p
∫

O(x,c1r)

|∇w|p.

This completes the proof. ��
Definition 8.8 Let u : O → R be a measurable function, x ∈ O and r > 0. We define

(i) Mx,u(r) := esssup
O(x,r)

u.

(ii) mx,u(r) := essinf
O(x,r)

u.

(iii) oscx,u(r) := Mx,u(r) − mx,u(r).

Here the third expression is only defined, when at least one of the summands is
finite or both are infinite with a different sign.

Lemma 8.9 (Shrinking Lemma) Assume (E) and (P)p. Let r ∈ (0, 4c1r0], x ∈ O,
u ∈ DGD,x,r (O) with oscx,u(r/2) > 0 and define γ (p) := 1 − p/2 ∈ (0, 1).

(i) If r/4c1 < dD(x) and
∣∣∣
{
u > Mx,u(r/2) − 2−1oscx,u(r/2)

}
(x, r/4c21)

∣∣∣ ≤ 1

2
|O(x, r/4c21)|,

then there is some c > 0 depending only on (P)p and the implicit constant in (8.1)
for u such that for each n ∈ N the super-level sets of u shrink by the law
∣∣∣
{
u ≥ Mx,u(r/2) − 2−(n+1)oscx,u(r/2)

}
(x, r/4c21)

∣∣∣ ≤ c|O(x, r/4c1)| · n−γ (p).

(ii) If dD(x) ≤ r/4c1 and

Mx,u(r/2) − 2−1oscx,u(r/2) ≥ 0,

then there is some c > 0 depending only on (P)p and the implicit constant in (8.1)
for u such that for each n ∈ N the super-level sets of u shrink by the law

∣∣∣
{
u ≥ Mx,u(r/2) − 2−(n+1)oscx,u(r/2)

}
(x, r/4c1)

∣∣∣ ≤ c|O(x, r/4)| · n−γ (p).

Proof Theorem 8.4 implies oscx,u(r/2) < ∞. Define for i = 0, . . . , n the numbers

ki := ki (u) := Mx,u(r/2) − 2−(i+1)oscx,u(r/2) & Ai,r := {u ≥ ki }(x, r).
(8.9)
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We begin with case (i). Using that Ai,r is decreasing in i joint with the assumption

|{u ≤ k0}(x, r/4c21)| ≥ 1

2
|O(x, r/4c21)|,

we derive from (8.7) that

|ki+1 − ki |p|Ai+1,r/4c21
| � r p

∫

{ki≤u≤ki+1}(x,r/4c1)
|∇u|p (8.10)

Now, we use Hölder’s inequality and u ∈ DGD,x,r (O) to infer

|ki+1 − ki |p|Ai+1,r/4c21
| � r p

⎛
⎜⎝

∫

O(x,r/4c1)

|∇(u − ki )
+|2

⎞
⎟⎠

p
2

|Ai,r/4c1 \ Ai+1,r/4c1 |1−
p
2

�

⎛
⎜⎝

∫

O(x,r/2)

|(u − ki )
+|2

⎞
⎟⎠

p
2

|Ai,r/4c1 \ Ai+1,r/4c1 |1−
p
2 .

Now, we use that (u − ki )+ ≤ 2−(i+1)oscx,u(r/2) = 2(ki+1 − ki ) on O(x, r/2) and
that |O(x, r)| � rd0 to conclude the bound

|ki+1 − ki |p|Ai+1,r/4c21
| � |ki+1 − ki |p|Ai,r/4c1 \ Ai+1,r/4c1 |γ (p).

Finally, we cancel the term |ki+1 − ki |p, raise both sides to the 1/γ (p)-th power, sum
from i = 1 to n and bound the left from below by n|An+1,r/4c21

|1/γ (p) in order to get

n|An+1,r/4c21
|γ (p)−1 � |O(x, r/4c1)|.

This completes the proof of (i). In order to show (ii), we perform the same proof as in
(i), using (8.8) instead of (8.7) in (8.10). Here, we also use the assumption k0(u) ≥ 0.

��

Finally, we come to the

Proof of Theorem 8.6. We can assume that oscx,u(R/2) > 0, since otherwise u is equal
to a constant almost everywhere and there is nothing to prove. For oscx,u(R/2) we
divide the proof into two parts.

(1) R/4c1 < dD(x). We define kn = kn(u) as in (8.9) with r = R and write

O(x, R/4c21) ⊇ {u > k0(u)}(x, R/4c21) ∪ {−u > k0(−u)}(x, R/4c21).
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At least one of the disjoint sets on the right has measure at most 1
2 |O(x, R/4c21)|, say

the first one, because otherwise we work with −u. Theorem 8.4 implies that

Mx,u(R/8c21) ≤ kn + c(Mx,u(R/2) − kn)

( |{u ≥ kn}(x, R/4c21)|
Rd

) θ−1
2

,

with θ as in (8.2). Since |{u > k0(u)}(x, R/4c21)| ≤ 1
2 |O(x, R/4c21)|, Lemma 8.9 (i)

yields that there is some n ∈ N depending only on (E), (P)p and the implicit constant
in (8.1) for u such that

c

( |{u ≥ kn}(x, R/4c21)|
Rd

) θ−1
2

<
1

2
. (8.11)

This implies that

Mx,u(R/8c21) ≤ Mx,u(R/2) − 2−(n+2)oscx,u(R/2).

Let σ := 1 − 2−(n+2). We subtract mx,u(R/8c21) and use mx,u(R/2) ≤ mx,u(R/8c21) to
obtain

oscx,u(R/8c21) ≤ σoscx,u(R/2).

Now, let 0 < r ≤ ρ ≤ R/2 and fix k ∈ N with r ∈ ((4c21)
−kρ, (4c21)

−k+1ρ]. The latter
estimate delivers with μ := − ln(σ )/ln(4c21) ∈ (0, 1) that

oscx,u(r) ≤ oscx,u((4c
2
1)

−k+1ρ) ≤ σ k−1oscx,u(ρ) ≤ σ−1
(
r

ρ

)μ

oscx,u(ρ),

(8.12)

where we have used that σ k = ((4c21)
−k)μ ≤ (r/ρ)μ.

Next, let y, z ∈ O(x, R/4). If |y − z| > R/8, then

|u(y) − u(z)|
|y − z|μ ≤ 2Mx,|u|(R/4)

(R/8)μ
� R−μ− d

2 ‖u‖L2(O(x,R/4)),

where the final step is due to Theorem 8.4 with k = 0. Now, let |y − z| ≤ R/8. Then
O(y, R/8) ⊆ O(x, R/2). Hence, (8.12) gives

|u(y) − u(z)| ≤ oscy,u(|y − z|) �
( |y − z|

R/8

)μ

oscy,u (R/8)

�
( |y − z|

R

)μ

2Mx,|u|(R/2)

and we conclude by Theorem 8.4 as before.
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(2) dD(x) ≤ R/4c1. Since k0(−u) = −k0(u) we can assume that k0(u) ≥ 0. Now,
we can argue as before, using Lemma 8.9 (ii) instead of (i) in (8.11) and consequently
replacing c21 by c1 everywhere. ��

9 Property D(�) for complex perturbations

Property D(μ) is stable under small complex perturbations. This observation is due to
Auscher when O = R

d [4, Thm. 4.4] and one of the main reasons to study Gaussian
bounds through property D(μ). Indeed, the former is much harder to perturb.

Theorem 9.1 Assume (Fat) and (LU). Let A, A0 ∈ L∞(O; C
d×d) be uniformly

strongly elliptic such that A0 has ellipticity constant λ > 0 and L0 := − div(A0∇·)
has propertyD(μ). Then for all ν ∈ (0, μ) there is some ε = ε(cD(μ), λ, d, μ, ν) > 0
such that if ‖A − A0‖∞ < ε, then L = − div(A∇·) has property D(ν).

In view of Theorems 1.1 and 1.2 we record:

Corollary 9.2 Under the geometric assumptions (Fat) and (LU) there is some ε > 0
depending on geometry and ellipticity such that if ‖ Im(A)‖∞ < ε, then L has property
D(μ), G(μ) and H(μ) for some μ ∈ (0, 1].
Proof We adapt the argument in [4, Thm. 4.4]. Let x ∈ O , 0 < r ≤ R/4 ≤ r0/4,
u ∈ H1

D(O) with LDu = 0 in O(x, R) and define the function

φ(r) := ‖∇u‖L2(O(x,r)).

By Lemma 4.11 we find ρ ∈ [R/4, R] and v ∈ H1
∂O(x,ρ)\N (x,ρ)(O(x, ρ)) such that

L0,Dv = − div(A0∇u) in O(x, ρ).

Lemma 4.4 (i) allows us to extend v by 0 to an element of H1
D(O). Hence, w :=

u − v ∈ H1
D(O) and L0,Dw = 0 in O(x, ρ). Since L0 has property D(μ), we get

φ(r) ≤ ‖∇v‖L2(O(x,r)) + ‖∇w‖L2(O(x,r))

� ‖∇v‖L2(O(x,r)) +
(
r

ρ

) d
2 −1+μ

‖∇w‖L2(O(x,ρ))

� ‖∇v‖L2(O(x,ρ)) +
( r

R

) d
2 −1+μ

φ(R). (9.1)

Next, we use v as a test function in L0,Dv = − div(A0∇u) and LDu = 0 in O(x, ρ)

to obtain
∫

O(x,ρ)

A0∇v · ∇v =
∫

O(x,ρ)

A0∇u · ∇v =
∫

O(x,ρ)

(A0 − A)∇u · ∇v.
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Thus, ellipticity and Cauchy–Schwarz yield

∫

O(x,ρ)

|∇v|2 � ‖A − A0‖∞φ(R)‖∇v‖L2(O(x,ρ)).

We divide by ‖∇v‖L2(O(x,ρ)) and insert the resulting estimate back into (9.1) to get

φ(r) �
(

‖A − A0‖∞ +
( r

R

) d
2 −1+μ

)
φ(R).

Lemma 5.6 yields for each ν ∈ (0, μ) the claim

φ(r) �
( r

R

) d
2 −1+ν

φ(R),

provided that ‖A − A0‖∞ is small enough (depending only on [cD(μ), λ, d, μ, ν]). ��

10 Property G(�) in dimension d = 2

In this section we prove that in dimension d = 2 every elliptic operator L has property
G(μ) for some μ ∈ (0, 1]. On O = R

d , this is due to [7]. In doing so, we need to
assume that D is a (d − 1)-set:

∃ c > 0 ∀ x ∈ D, r ≤ 1 : crd−1 ≤ Hd−1(D(x, r)) ≤ c−1rd−1. (D)

This geometric requirement implies that D is locally 2-fat, see Lemma B.1 for an
explicit proof.As D ⊆ Oc, also (Fat) is satisfied.Weneed (D) to apply an extrapolation
result from [11].

Theorem 10.1 Let d = 2 and assume (LU) and (D). Then L has property G(μ) for
some μ ∈ (0, 1) depending on geometry and ellipticity.

Proof We are going to use the following two properties of the operator L from [11]
that follow from (LU) and (D): we use the extrapolation result from [11, Prop. 7.1]
with p = 2 to find some q ∈ (2,∞) such that the restriction of the Lax–Milgram
isomorphism

1 + L : W1,2
D (O) → W1,2

D (O)∗, u �→ (u | ·)2 + a(u, ·)

to W1,q
D (O) ∩W1,2

D (O) extends to an isomorphism fromW1,q
D (O) to W1,q ′

D (O)∗ with
inverse that coincides with (1+L)−1 on W1,q ′

D (O)∗ ∩W1,2
D (O)∗. By [11, Cor. 3.5 &

Prop. 3.6] we have the estimate

‖t(1 + L) e−t(1+L) u‖q∗ � ‖u‖q∗ (t > 0, u ∈ Lq∗(O) ∩ L2(O)).
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Now, we can start the actual proof. Set μ := 1 − d/q ∈ (0, 1). Due to (E) we have

the Sobolev embeddings W1,q
D (O) ⊆ Cμ(O) and W1,q ′

D (O) ⊆ L(q∗)′(O). By duality,

the second embedding entails that Lq∗(O) ⊆ W1,q ′
D (O)∗. Using these embeddings

and the fact that (1 + L)−1 maps W1,q ′
D (O)∗ ∩ W1,2(O)∗ boundedly into W1,q

D (O)

for the q-norms, we conclude that

[(1 + L)−1u](μ)
O + ‖(1 + L)−1u‖∞ � ‖u‖q∗ (u ∈ Lq∗(O) ∩ L2(O)).

Let t > 0 and u ∈ Lq∗(O) ∩ L2(O). Using (1 + L)|L2(O) = 1 + L , we get

[e−t L u](μ)
O = [(1 + L)−1(1 + L) et e−t(1+L) u](μ)

O � et ‖(1 + L) e−t(1+L) u‖q∗

� et t−
μ
2 − d

2q∗ ‖u‖q∗ .

Replacing [ · ](μ)
O by ‖ · ‖∞ and setting t = δ2/16 in the latter estimates, we deduce in

the same manner

‖ e− δ2
16 L u‖∞ � ‖u‖q∗ .

The last two estimates allow us to repeat the proof of Theorem 5.1 with L2 sys-
tematically replaced by Lq∗ , see also Remark 5.12. The outcome is property (i) of
Corollary 5.11 and hence, L has property G(μ). ��

Appendix A: Remarks on capacities

For the reader’s convenience, we include some results related to capacities that we
could not find in the literature.

Capacities and p-fatness have been introduced in Sect. 3.1.

Remark A.1 We can change the parameters in Definition 3.1 of local p-fatness.

(i) It is possible to replace 2B := B(x, 2r) by κB for each κ > 1 in (3.1). The
interesting direction is when fatness is formulated with a reference ball κB
and we want to switch to a larger radius called 2 > κ for simplicity. We pick
u ∈ C∞

c (2B) such that u ≥ 1 on B ∩C . Let η ∈ C∞
c (κB) be [0, 1]-valued with

η = 1 on B and ‖∇η‖∞ �κ r−1. Poincaré’s inequality yields

capp(B ∩ C; κB) ≤ ‖∇(uη)‖p
Lp(κB) �κ,d,p ‖∇u‖p

Lp(2B),

and thus

capp(B ∩ C; κB) � capp(B ∩ C; 2B).

(ii) We can replace the condition r ≤ 1 by r ≤ r0 for any r0 > 0 in (3.1). This follows
from the first remark and the monotonicity of capacities in the first argument.
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(iii) Wecan replace the requirementu ≥ 1on B∩C byu = 1 in anopenneighborhood
of B ∩ C and 0 ≤ u ≤ 1 everywhere. Indeed, for the interesting direction we
pick u ∈ C∞

c (2B; R) with u ≥ 1 on B ∩ C . Let ε ∈ (0, 1) and put vε :=
((1 − ε)−1u ∧ 1) ∨ 0. Note that vε is continuous with

vε =

⎧⎪⎨
⎪⎩
1 (u ≥ 1 − ε),

(1 − ε)−1u (0 ≤ u ≤ 1 − ε),

0 (u ≤ 0).

In particular, as B ∩ C is compact and u is continuous, there is some δ > 0
such that vε = 1 on (B ∩ C)δ . We set vn := ηn ∗ vε for all n ∈ N, where
ηn(x) = ndη(nx) is a standard mollifier. Note that vn is smooth, [0, 1]-valued
and there is some N ∈ N with vn = 1 on (B ∩ C)δ/2 and vn has compact
support in 2B for all n ≥ N . Next, using Young’s inequality for convolutions
and ∇vε = (1 − ε)−11[0≤u≤1−ε]∇u, we get

‖∇vn‖p
Lp(2B) ≤ ‖∇vε‖p

Lp(2B) ≤ (1 − ε)−p‖∇u‖p
Lp(2B).

Hence, we derive

inf
w

‖∇w‖p
Lp(2B) ≤ (1 − ε)−p‖∇u‖p

Lp(2B),

where the infimum is taken over all [0, 1]-valued w ∈ C∞
c (2B) that are 1 in an

open neighborhood of B ∩ C . We conclude by letting ε → 0.

Appendix B: Relation between fatness and thickness

For the reader’s convenience, we also include a proof of the following result that
compares p-fatness and thickness relative to the Hausdorff measure.

Lemma B.1 Let δ > 0, p ∈ (1, d] and s ∈ (d − p, d]. Let C ⊆ R
d be closed and

Ĉ ⊆ R
d . If C satisfies

Hs(C(x, r)) � rs (r ≤ δ, x ∈ C ∩ Ĉ2δ),

then C is locally p-fat in C ∩ Ĉδ .

We will use the notion of s-dimensional Hausdorff content, denoted by Hs∞, and
refer to [45, Chap. 7] for further background.

Proof In view of [37, Thm. 3.1] applied with h(r) = rs , it suffices to prove the lower
bound

Hs∞(C(x, r)) � rs (r ≤ δ, x ∈ C ∩ Ĉδ). (Appendix B:.1)

We adapt an argument in [5, Lem. 6.6] to our needs.
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Fix x ∈ C ∩ Ĉδ , r ≤ δ and let {Bn}n = {B(xn, rn)}n be a covering of C(x, r) with
open balls centered in C(x, r). The assumption yields

rs � Hs(C(x, r)) = Hs
(
C(x, r) ∩

⋃
n

Bn

)
≤

∑
n

Hs(C(x, r) ∩ Bn).

If rn > δ, then we use the other part of the assumption in the form

Hs(C(x, r) ∩ Bn) ≤ Hs(C(x, r)) � rs ≤ rsn .

If rn ≤ δ, then we note that C(x, r) ∩ Bn ⊆ C(xn, rn) and xn ∈ C ∩ Ĉ2δ in order to
deduce the same bound Hs(C(x, r) ∩ Bn) � rsn . In total, we obtain

rs �
∑
n

rsn .

By definition, Hs∞(C(x, r)) is the infimum over all expressions as on the right-hand
side. Thus, (Appendix B:.1) follows. ��
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