We study the sub-Riemannian cut time and cut locus of a given point in a class of step-2 Carnot groups of Reiter–Heisenberg type. Following the Hamiltonian point of view, we write and analyze extremal curves, getting the cut time of any of them, and a precise description of the set of cut points.

MONTANARI, A., Morbidelli, D. (2024). Sub-Riemannian cut time and cut locus in Reiter-Heisenberg groups. ESAIM. COCV, 30, 1-24 [10.1051/cocv/2024058].

Sub-Riemannian cut time and cut locus in Reiter-Heisenberg groups

MONTANARI, ANNAMARIA
;
Morbidelli, Daniele
2024

Abstract

We study the sub-Riemannian cut time and cut locus of a given point in a class of step-2 Carnot groups of Reiter–Heisenberg type. Following the Hamiltonian point of view, we write and analyze extremal curves, getting the cut time of any of them, and a precise description of the set of cut points.
2024
MONTANARI, A., Morbidelli, D. (2024). Sub-Riemannian cut time and cut locus in Reiter-Heisenberg groups. ESAIM. COCV, 30, 1-24 [10.1051/cocv/2024058].
MONTANARI, ANNAMARIA; Morbidelli, Daniele
File in questo prodotto:
File Dimensione Formato  
cocv230259.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 684.32 kB
Formato Adobe PDF
684.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/990162
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact