We study the sub-Riemannian cut time and cut locus of a given point in a class of step-2 Carnot groups of Reiter–Heisenberg type. Following the Hamiltonian point of view, we write and analyze extremal curves, getting the cut time of any of them, and a precise description of the set of cut points.
MONTANARI, A., Morbidelli, D. (2024). Sub-Riemannian cut time and cut locus in Reiter-Heisenberg groups. ESAIM. COCV, 30, 1-24 [10.1051/cocv/2024058].
Sub-Riemannian cut time and cut locus in Reiter-Heisenberg groups
MONTANARI, ANNAMARIA
;Morbidelli, Daniele
2024
Abstract
We study the sub-Riemannian cut time and cut locus of a given point in a class of step-2 Carnot groups of Reiter–Heisenberg type. Following the Hamiltonian point of view, we write and analyze extremal curves, getting the cut time of any of them, and a precise description of the set of cut points.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
cocv230259.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
684.32 kB
Formato
Adobe PDF
|
684.32 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.