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SUB-RIEMANNIAN CUT TIME AND CUT LOCUS
IN REITER-HEISENBERG GROUPS

ANNAMARIA MONTANARI'® AND DANIELE MORBIDELLI

Abstract. We study the sub-Riemannian cut time and cut locus of a given point in a class of
step-2 Carnot groups of Reiter—Heisenberg type. Following the Hamiltonian point of view, we write
and analyze extremal curves, getting the cut time of any of them, and a precise description of the set
of cut points.
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1. INTRODUCTION

In this paper we study the sub-Riemannian cut time and cut locus (of the origin) in a class of step-2 Carnot
groups of Reiter—Heisenberg type. Following a Hamiltonian point of view, we will write extremal curves, and
we will identify cut points as either points reached by two different minimizing geodesics, or conjugate points.
In spite of the apparent similarity with the well known Heisenberg group, we will see that these more general
models display several different features.

In order to state our results, let us describe briefly Reiter-Heisenberg groups. Let V; = RZ*P x RP*! and
Vo = R9%!. On V; x V4 define the operation

(29,6) - (€, 7) i= (w0 + &y + 1t + 7+ Q). (€m) .
1.1

:z(w+§7y+n7t+7+%(m—&y))-

It turns out that Gg, = (Vi x Vs, -) is a step-2 nilpotent Carnot group (see [1], [2]). Following the terminology in
[3, 4] and [5], we call it a Reiter—Heisenberg group. These models are a significant generalization of the familiar
Heisenberg group which involves nontrivial interesting issues. For example, we will see that for any ¢ > 2, the
group G, contains abnormal geodesics, while for ¢ = 1, Gy, is the standard Heisenberg group, where minimizers
are always strictly normal.

To equip (Ggp, ) with a sub-Riemannian structure, we introduce on V; the inner product ((z,y), (£, 7)) :=
tracez”¢ + tracey’n = tracex”¢ + yTn. On matrix spaces, we shall always use the Hilbert-Schmidt inner
product {(a,b) := tracea®b for all a,b € R**¥ and for all u,v € N.
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2 A. MONTANARI AND D. MORBIDELLI

In order to write length-minimizing curves, we will adopt the Hamiltonian point of view (see [2], see Sect. 2.2).
Denote by H((z,y,t),(&,n,7)) the quadratic Hamiltonian for normal extremals (which will be written in
Sect. 2.2). Extremal curves are smooth and are parametrized by (&,n,7) € T (Vi x Vo) >~ Vi x Va. We denote
them by v(-,&,n,7) : R = V4 x V5. We always assume 7(0,&,n,7) = (0,0,0) (different starting points can be
easily managed by group translations, see [1]). The (constant) horizontal speed of such path is by definition

1(&,n)] = /I€]2 + [n]2. We denote by teyu € |0, +00] the related cut time

teus = teut (M, 7) :=sup{s > 0: (-, &, n, 7) minimizes length on [0, 5] }.

To state our first result, for 7 € R?\ {0}, introduce the notation P, = \T:IZ € R?%? to denote the orthogonal
projection on span{r} C R%. Let also P} := I, — P; be the orthogonal projection along 71, On a matrix
x = [z1,...,2,] € RI*P where 7, € R?*! ~R? for k = 1,...,p are the columns of z, the operators P,z and
P project separately each column of z.

Then we have the following theorem.

Theorem 1.1 (Cut-time). Consider (§,n) € V1 \ {0} and 7 € R?\ {0}. Assume also that |n| + |P;&| > 0. Then,
the length-extremal s — ~(s,&,n,7) such that v(0,£,n,7) = (0,0,0) minimizes length up to

2w

tcut (67 m, T) = m

(1.2)

Cut points of the origin can be consequently described as points of the form 7(‘27—”', &,m, ) with (§,n,7) satisfying

the previous requirements.

If one of the assumptions 7 # 0 and |n| + |P-£| > 0 is violated, then we have an extremal of the form
~v(s,&,m,0) = (s, sn,0) which minimizes length globally (see Rem. 2.2). Some of these lines are normal
minimizers, some other are abnormal (abnormal extremal curves will be identified in Prop.2.3).

To comment on Theorem 1.1, let us look at the “horizontal speed vector” (&, 9) of a given extremal v(-, &, 7, 7).
We have , (2(s),9(s)) = a(&, n) cos(|T|s) + b(&, n) sin(|7|s) + z(&, n), for suitable functions a, b, z of the variables
&, n (see Sect. 2). The cut time corresponds to a complete period of the circular functions. This agrees with the
standard Heisenberg group and with Heisenberg-type groups [6]. There is however a constant part z(£, 7) which,
if nonzero, makes the “horizontal part” (x,y) of a cut point nonzero. Previous results with similar features on
cut times for Carnot groups of step two were proved in [7, 8] for structures of low corank (at most two). The
case of free, step-2 Carnot groups is dealt in [9-11]. Here, working in model (1.1), we have no bounds on the
corank dim(V5). The comprehensive survey paper [12] should be consulted to have a complete account on the
mentioned models and on sub-Riemannian manifolds outside the setting of Carnot groups. In the recent papers
[13] and [14], the authors analyze the cut-time in a rather large class of step-two Carnot groups, including the
limiting case G4, of the family of models G, object of the present paper.

Our second result involves the description of the cut locus as a set. It turns out from Theorem 1.1 and from
the form of extremals written in Section 3, that cut points have the form

2 2
2(TEmT) = PR
7] |7

2w
y(*afﬂ]ﬁ) =0
7|

2m T T 2m Tr
t(Femr) = T (1Pl + Inf?) & — PR
7| 7| [ |7 7|

where 7 # 0 and |n|? + |P-£|? > 0. Note first that if ¢ = 1 and 7 € R \ {0}, trivially we have 7+ = {0} and
P2 = 0. Then cut points have the form (0, 0,¢), i.e. they are contained in the ¢-axis. This is the familiar case of the
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Heisenberg group HP (see [2], Chap. 13). If instead ¢ > 1, then P is always nonzero and we have points (z,0,t) €
Cut(Gyp) with & # 0. The natural question is now whether or not we may have Cut(Ggp) = {(,0,t) € V1 x Va},
for some choices of ¢ and p. The answer is not, by the following theorem. To state it, given z € R9*P_ introduce
Pime and Pt :RY — RY to denote respectively the orthogonal projection on Imz := {zy : y € RP} C R? and
on its orthogonal. The linear map x € RP*? denotes instead the Moore-Penrose inverse of = (see below).

Theorem 1.2 (Identification of the cut locus). Let ¢,p € N and let G, be the associated Carnot group. Then
1. We have

Cut(Ggp) = {(2,0,t) € Ggp : t ¢ Imz and | Py

ot > mla Tt} (1.3)

2. If p > 2, then all cut points are conjugate points.

3. A cut point (x,0,t) is reached by a unique unit-speed length-minimizing curve if and only if equality
|PL t| = 7|zTt|? holds.

4. Finally, the distance from the origin of a cut point (x,0,t) has the form

d(x,0,t) = /|22 + 47| P t]. (1.4)

Imz

If p =1, item 2 is drastically different. Note that for p = 1 we have zft = <|Z"Q.

Theorem 1.3. If p=1 and q > 2, a cut point (x,0,t) is conjugate if and only if
|| (| P ot — mla™t[?) = 0. (1.5)

In the statement above, for the notion of conjugate point, see Definition 2.4. The conjugate point (x,0,t) is
necessarily a first conjugate point, see Remark 2.5. For the Moore-Penrose inverse xf € RPX? of z, see e.g. [15].
Precisely, given ¢t € R?, 2t is uniquely defined by zxt = Py, .t and zft 1 kerx. If ker x = {0}, then 27# is the
unique solution y € RP of the system xy = Py, .t. Otherwise, 27t is the smallest-norm element of the set of
solutions {y = 27t +7n : n € kerz} of 2y = Py »t. In other words, |z7t| = |27 Py »t| = min{|y| : y € R? and xy =
Py .t} Note that we do not include (0,0,0) in our definition of cut-locus. Observe that (1.3) implies that
Im x # RY for any point (z,0,t) € Cut(G,,). Furthermore, since given z = 0 € R7P, we have 0T = 0 € RP*9, all
points of the form (0,0,¢) with ¢ # 0 belong to the cut locus as expected. Finally, for all » > 0 the set in (1.3)
is dilation invariant with respect to the standard Carnot homogeneous dilation (x,y,t) — (rz, ry, r’t).

Remark 1.4. Some remarks on Theorems 1.1 and 1.2 are now in order.

1. In Theorem 1.2, we describe precisely all cut points reached by a unique length-minimizer. Such kind of
minimizers are absent in p-dimensional Heisenberg groups G1,, (case (¢ = 1)), and in the free step-2, rank-
three model (not included in our class G,;,). They appear, but they remained unnoticed in [8]. Points of
such kind appear classically on Riemannian equatorial geodesics in oblate revolution ellipsoids (see [16]).
In Remark 5.1 we prove that points in Cut(G,,) reached by more than one unit-speed length-minimizer
are dense in Cut(Gp). See [17], for the Riemannian analogous.

2. The set Cut(Ggyp) U {(0,0,0)} is not closed for any ¢ > 2 and p € N. Indeed, consider a family (z, 0, et)
with  # 0, ¢ # 0 and ¢ L Im x (this forces ¢ > 2). We have (z,0,¢et) € Cut(Gy,) for all € > 0, but (z,0,0)
is not a cut point for any x € R?*P. In Proposition 2.3, we prove that these points (z,0,0) # 0 belonging to
Cut(Ggp) \ Cut(Ggp) are always abnormal points. Recall that, in absence of abnormal minimizers, Rifford
and Trélat proved in [18], Lemma 2.11 that in a sub-Riemannian Carnot group G the set Cut(G) U {0} is
closed.

3. At abnormal points appearing in item 2, the function tcy : T Ggp — |0, +00], defined as (£,7,7) —
teut (€, m, 7) has a discountinuous behaviour (upper semicontinuous, unbounded), as a function of the dual
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variables (£,m,7). See Example 3.6. The function (s,&,n,7) — v(s,&,m,7) is instead smooth in all its
arguments, by standard ODE theory.

4. Observe that Cut(Ggp) can be a quite large set. Namely, if p = 1, it turns out that Cut(G,1) contains
the set {(2,0,t) € Gy : |P; ,t| = 7|2Tt|? and rank 2 is maximal}, which is an open' dilation invariant
subset of the codimension-one hyperplane of equation y = 0. Note that in free step-2 Carnot groups Fy of
rank k£ = 2 and k = 3, the cut-locus is a smooth manifold of dimension dim(Cut(Fy)) = dim(Fy) — 2 (for
the case k = 3, see [9], Rem. 4.3). The conjectured dimension of Cut(Fy) is again dim(F) — 2 in rank-k,
step-2 groups Fy with k£ > 3. See [11]. Observe finally that in the limiting case p = 1 our set (1.5) agrees
with the one found by [14], Section 10 with completely different methods.

5. Finally, note that in the model G, all points (z,0,t) € Cut such that (1.5) is violated give examples
of extremals whose cut time is strictly less than the first conjugate time. See [8] for previous different
examples.

Since the cut locus appearing in (1.3) is not easy to visualize for general values of ¢, p, in Section 5.1 we
discuss in some details the group G4;. In that case, the cut locus turns out to be defined as a sublevel set of an
explicit scalar polynomial function. Its regularity properties are analyzed in Proposition 5.3.

Let us describe now the structure of the paper. In Section 2, after providing general notation and known
facts, we write the length-extremals of our sub-Riemannian problem and we characterize abnormal ones. To
prove Theorem 1.1, starting from the candidate cut time 2% appearing in (1.2), we show in Section 3 the upper

7]
estimate teyy < %’r‘ for extremals which are not Euclidean lines. This is achieved by the analysis of conjugate
points (Props. 3.1 and 3.2). We also characterize points reached by a unique minimizer (see Prop. 3.4). In
Section 4, we prove the lower bound tcu > %’r‘ by using a geometric-control argument in part inspired to the

paper [8]. Finally, in Section 5, we conclude the proof of Theorem 1.2. In Section 5.1, we also explicitly describe
Cut(G41) and we analyze its regularity. In Section 6, we prove Theorem 1.3.

2. REITER—HEISENBERG GROUPS AND THEIR LENGTH-EXTREMALS

In this section we briefly recall the notion of sub-Riemannian length and distance in Reiter—Heisenberg
groups. Then we write the explicit form of extremals and, among them, we characterize the abnormal ones.

2.1. General facts

Let (Ggp,-) be the Reiter—Heisenberg group defined in (1.1). A horizontal curve is a Lipschitz-continuous
solution v = (z,y,t) : [0,7] — V1 x V4 of the ODE

(#,9) = (u,v) and t = Q((z,y), (u,v)), a.e. on [0,T], (2.1)

where (u,v) : [0,7] — V4 is an L*° control. The horizontal speed of ~ is |[J|hor := /|ul? + |[v|? =
V/(traceuTu)? + [v]2. The length of ~ is fOT |9|hor($)ds. Since we have Hormander’s rank condition
span{Q((z,v), (§&,m)) : (x,y),(&,n) € Vi} = Vo, it turns out that any pairs of points can be connected by a
horizontal curve (this follows from Chow-Rashevskii theorem). Minimizing such length we obtain the well
known sub-Riemannian distance.

Let us introduce some notation in G,,. We sometimes identify R with RP*! and the same for R?. As we
declared, we use the Hilbert-Schmidt inner product in R9*P, j.e. (x,&) := trace(¢Tz). Then, in RI*P x RP
we define ((z,y), (&,1)) := (x,€) + (y,n), so that eqel as a € {1,...,q} and k € {1,...,p} is an orthonormal
basis of R9*?, where e, and e;, with o € {1,...,¢} and j € {1,...p} denote the canonical basis of R? and R”.
Introduce, for 7 € R?, the linear map A, : V; — V;

AT(&? 77) = (T7}T, 7§TT)'
BT e

v [19], the map « — ' is continuous on the open set {x € R?*? : rank(z) is maximal}.
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Since the map is also linear in 7, we have A, = Y7 _| 7, A, , with A, (£, ) = (ean”, —ETe,) for all (€,7) € V4.
Thus, we have

(,y), Ac, (&) = ((=,1), (ean”, =" ea)) = (x,ean”) — (1, ea) = (21 — £y, eq).

Each map A, is skew-symmetric and we have Q((z,y), (&,7)) = 332 ((z,y), Ac.. (§,1))ea

2.2. Extremal curves

We are interested in writing length-minimizing curves. In order to write them, we follow [2], Section 13.1.
Note that in step-2 Carnot groups it is known that all extremals are normal (see [2], Cor. 12.14). We first write

a frame of left-invariant horizontal orthonormal vector fields. For o € {1,...,¢} and k,j € {1,...,p} we have
d T T 1
onk(z7y7t) =7 (I7yat) : (56a6k7070) = <e(xek70a77yk’6a)
dsls=0 2
d 1 1 (2:2)
Yj(z,y,t) = d—‘ (x,y,t)-(0,se;,0) = (O,ej7 2:106]) (0 €5, §xj)’
where we wrote z = [z1,...,2,] with z; € R? for all j € {1,...,p}. Introducing the functions

uak(xay7t7€7n77) . <(€ n,T ) ak(l’ Y, )> and vj(x7y7t7§>n7 ) <(£ n,T )7 j(x Y, >>u extremals are furnished
by the Hamiltonian

H((z,y,1),(§n,7) Zuakwy,tﬁn, Zv]xy,tfm )%

Namely, to obtain all minimizers from (0, 0,0), one integrates the Hamiltonian system (&, 3,¢) = V(¢ , - H and
(£,1,7) = =V(a,y.pH with initial data (x(0),5(0),t(0)) = (0,0,0) and (£(0),7(0),7(0)) = (£,7,7) € T3Gyyp ~
Vi x V5.2 Tt turns out that extremals from the origin are horizontal curves

S = ’Y(S) =7(s,§n,7) EVI X V) (2.3)

parametrized by (§,7n,7) € V1 x Va. Furthermore, again, by [2], Section 13.1, given (&, 7, 7), the extremal curve
~v(-,&,m,7) is the solution of (2.1), with

(u(s),v(s)) = e =>4 (&,m) € Vi x Va. (2.4)
Next we give the form of extremal curves in terms of the three functions

__sing _
T(p) = o Ulp) = 17

(p —sinycos and V(p) = sinapgﬁcosgo
12

defined for ¢ > 0.

ZSince we are taking global coordinates ((z,y,t),(&,1,7)) € (Vi x Va) x (V4 x Va) on T*(Vq x V2), we identify covectors in

T00,0,0)(V1 x Vo) with (&7, 7) € Vi x Va.
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Proposition 2.1. For dall (&,n,7) € T*(Vi x Va) =~ Vi x Vo with 7 # 0, the curve v(,&,n,7) =
(z('afﬂ%7')73/('75’7777')’15(',&77,7')) in (23) has the form

T

ol &) = sT(52) { Pt cos (5) = T () | + 5P
T
oo r) =T () fmeos (1) + & Fin ()} s
2.5

t(s,&,m,7) = s2U (L2) (| Pe? + |n2|}ﬁ

T
+ s2V(%)Pf‘§{ — 7nsin (%) + €|T|T

(o)) (%)}

In formula (2.5), recall that P, := \TTTIZ € R and P+ = I, — P,. Note also that |P.¢|? = ‘ﬁirf. Observe
the known property

Y(As,&,m, ) = v(8, A, A, AT), forall A >0, (&,n,7) € V] x Va. (2.6)
Proof. Since
AX(Em) = (=777€, ~|7[*n) and AL(E,n) = —|7[*(rn", —€"7) = —|7[? A (&), (2.7)
summing up the series we get

1 —cos(|7|s)

(u(s),v(s)) = (&) (", —€"7) — (e, |7*m).

sin(|T]s)
|7 |T[?

Let now

TnT §TT

EREl

a=a(§n) = (P&mn), b=>b&n) :=( ) z = z(&,m) = (P7€,0).

Then, we can write (u(s),v(s)) = acos(|t|s) + bsin(|7|s) + z. Using the function T'(p) := mT“” and by
trigonometry we get

sin(|T]s) N 1-— cos(|7'|s)b s

(als) (s)) = = =

= (157 faos (157) + 0sin (15°) } 42

sr() (i (5) o (- T o () s srzon

Il Il
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To calculate t(s) = fos Q((z,y), (u,v)), integrating and by bilinearity we get

t(s) = /OS Q (SinTTT”U) a+ 1= C(l)7S_|(T|0) b+ oz,acos(|t|o) + bsin(|7|o) + z) do

_ |T]s — sin(|T]s) 2(1 — cos(|7]s)) — |7|ssin(|T]|s)

2 Q(a/7b) + 2 Q(avz) (28)
|7 7|
n |7|s(1 + cos(\7|sg) — 28in(|7‘|8)Q(b’ 2).
7]
The form of ¢ has a structure analogous to [9], equation (2.6). By the definition Q((z,v), (Z,7)) := 3(zy — Zy)
and |5;|72‘2 = |P.£|?, an easy calculation gives
1ole"r]? 21 7 1 2 2y T
=4 el i
Qa.t) = 5{ S + P} = S0P+ )
Lo x1 1, &'
Qa.2) = —5PrEn € R and Q(bz) = 3 PrE T
-

Therefore, starting from (2.8), we obtain

_|7]s —sin(|7]s) T 2(1 = cos(|1]s)) — |7|ssin(|7|s)

t S Bl et A 4 P‘r 2 2 o PJ_
|7|s(1 + cos(|7|s)) — 2sin(|7|s) ., &1 T ’
- PT 57
2|7 7|
Writing trigonometric functions in terms of % instead of |7|s, we get
T|S T
ts,6mm) = SUCR) (PP + ) o
ey (2.10)
+ 52V IQS)( - sin(%)Pffn + COS(%)PTLEW),
as desired. The proof is finished. O

Remark 2.2. Tt is easy to check that constant-speed Euclidean lines of the form (x(s),y(s),#(s)) = (su, sv,0)
for some (u,v) € V1\{(0,0)} are always globally minimizing. Furthermore, an extremal of the form (u(s),v(s)) =
e~ %47 (¢£,m) gives rise to an Euclidean line of that form if and only if

r=0 7/ IPAE) > 0
or

€% + [n]* > 0 nl* + |P£f* = 0.
In the first case, ¥(s) = (£,1,0) and we have ~(s) = (s£, sn,0). In the second case we have instead ¢T'7 =0
and (2.5) implies that v(s) = (sP+£,0,0) = (s[PX&y, ..., PF€,),0,0). Note that in both cases we have A, (&,7) =
(0", —€7'T) = 0, getting e~ (&, 1) = (&, 1) trivially.

We conclude this section with a characterization of abnormal extremal curves. Recall that, by definition,

given a L? control (u,v) : (0,T) — Vi, the curve Yeuw) : 10,T] = Ggp is abnormal if dy, ) E L?((0,T) - G ~
Tg(u,»)G) is not onto. Here E : L*(0,T) — Gy, is the end point map, i.e. E(u,v) := Y(u,0)(T), where vy is
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the curve corresponding to (u,v) and with v(0) = (0,0, 0). We say instead that v, ) is strictly normal when it
is not abnormal in any subsegment of [0, 7.

Proposition 2.3. Let ¢ > 2 and let (§,1,7) € Gy =~ T5,0,0/Gap and assume that I€]2 4+ |n|? > 0. The curve
v(-,&,m,7) is abnormal if and only if it has the form ~v(s) = (s£,0,0) with Im & # RY.

If ¢ = 1, all extremals are strictly normal. Recall also that it is known from second-order analysis that in
step-2 Carnot groups all abnormal curves are also normal. See [2], Corollary 12.14 and [20], Section 20.5.

Proof. By [21], Section 3, we know that an extremal curve (e, ) = (T(¢.n,7)> Y(&m.)s t(g,n,7)) corresponding to
a given control (u(s),v(s)) = e547(&,n) is abnormal if and only of there is o € R?\ {0} such that

Ayze A7 (¢,m) = (0,0) for all s € R. (2.11)

In order to show the “if” part, consider (u(s),v(s)) = (£,0) for all s € [0,7T], where Im¢ # R?. Take o €
(Im &)+ \ {0}. We have A, (£,0) = (0,—¢To) = (0,0) and (2.11) follows.

To show the “only if” part, let us look first at case 7 = 0. In this case (u(s), v(s)) = (£,n) and condition (2.11)
furnishes A, (&,71) = (onT, —£To) = (0,0). Since o € R? must be nontrivial, first coordinate gives 7 = 0. The
second is equivalent to P,¢ = 0. Thus, it must be P;-¢ # 0. Existence of such a o # 0 is equivalent to condition
Tmé # RY.

Let finally (u(s),v(s)) = e™*47(&,1) be abnormal with 7 # 0. From the discussion above, given o € R?\ {0},
we have ker A, = {(£,0) : Im¢ C o+ }. Evaluating (2.11) and its s-derivative at s = 0, we get A,(£,7) = (0,0)
and A, A, (&,1) = Ay (T, —€T7) = (0,0). Therefore, we get

n=0, Imécot, &'r=0, Im(m")cot.

Requirements 7 = 0 and ¢77 = 0 already imply that A,(£,0) = (0,0) and Im¢ C 7+, which is a nontrivial
subspace. Therefore e =547 (¢£,0) = (£,0) for all s, and Im ¢ # RY, as we wished. O

We briefly recall the notion of conjugate point.

Definition 2.4. Recall that, given an extremal (-, &,7,7) with |(¢,7)| > 0 and a time § > 0, we say that § is
a conjugate time for (-, £, 7, 7) if the differential of the map (£,7,7) € Ggp = 7(5,£,m,7) € Gy is singular at

(&7,7)-

Remark 2.5. If v(-,&,n, 7) is abnormal, then all times § > 0 are trivially conjugate times (see [2], Rem. 8.46). If
instead (-, &, n, 7) is not abnormal in any subsegment [0, s], it is known that there is a strictly positive smallest
conjugate time tconj. Furthermore, we have tconj > teut. The time teonj is usually called first conjugate time. The
corresponding point y(tconj, &, 7, 7) is called first conjugate point. All these facts are proved in [2], Section 8.8.

3. UPPER ESTIMATE fcy < 27/|7]

In this section we consider extremal curves 7(-,&,7n,7) which are not Euclidean lines (in particular strictly
normal, see Prop. 2.3 and Rem. 2.5). We show that if p > 2, then all points of the form 7(%,5,7],7) with
7 # 0 and |n| + |P-€| > 0 are conjugate points. See Definition 2.4. Among them, we characterize those that are
reached by at least two different (unit-speed) minimizing geodesics exiting from the origin (see Prop. 3.4). The
remaining points are reached by a unique unit-speed minimizing curve. In G4, i.e. p=1 and ¢ > 2, it is not
true that all points 7(%,{,7),7) are conjugate points. Conjugate points in this limiting case are described in
Proposition 3.2 for the sufficient part and in the separate Section 6, Theorem 6.1 for the necessary part, which
is slightly more technical.
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Starting from the form of extremals established in Proposition 2.1, we get

) - i

(| p&mT r)=0 (3.1)

é-T
9 9 P2 T
(7 &mm) = ZplPel + ) g = Py

Proposition 3.1 (Conjugate points for p > 2). Let ¢ € N and p > 2. Given (§,n,7) € Vi x Vi, assume that

™

7 #0 and |n|? + |P-£]? > 0 and consider the extremal v(-,&,1,7). Then, the time 5 := |27‘ is conjugate.

As we already observed, if 7 =0 or 7 # 0 and |n| + |Pr§| = 0, then v has the form ~(s) = (s£,0,0). If
Im & = RY, then it must be 7 = 0, because there is no 7 # 0 such that P = 0. In this case, «y is strictly normal
and it has no conjugate points. If Im & # RY, then + is abnormal and all its points are trivially conjugate (see
Prop. 2.3).

Proof. Let (£,7,7) € Vi x Vo =~ TGy, with |7|(|P-€] +7]) > 0. Consider the cylinder A = {(&,n,7) € Vi x Va :
112+ 0% = €2+ |7]?} C Gyp ~ T Gyp. Consider the map (s,&,m,7) € Rx A y(s,&,n,7) € Vy x Va. To prove
the proposition, it suffices to show that det[0sv, dav](s ¢.p.r V=(22 EnT) = 0. Here dpy € RV*(V=1) denotes any
family of independent derivatives in T(g ; - A with N := dimGg, = qp +p + ¢. If 1) # 0, choose v € RP \ {0}
such that (v,7) = 0 and consider the derlvatlve D, :=v -V, (note that existence of such a direction v needs
p > 2). Since (3.1) is radial in 7, it turns out easily that Dv’y(%ﬂ‘, €,7,7) = 0. This implies that the determinant
above vanishes. If instead n = 0, we have

(\ 60 T) 23%7(%’5’”’0’%)

where 1y € RP is a fixed nonzero vector. Thus, the point with 7 = 0 is conjugate, being a limit of a family of
conjugate points (recall that v is a smooth map). O

Proposition 3.2 (Conjugate points for ¢ > 2 and p = 1, sufficient condition). Let ¢ > 2 and consider the model
Gq1- Given (€,n,7) € Vi x Va, assume that 7 # 0 and |n|? + |Pr£|? > 0 and consider the extremal v(-,&,n, 7). If

nPie =0, (3.2)

then the time 5 := |2TW\ 18 conjugate.

Note that assumption (3.2) does not appear in Proposition 3.1, where p > 2. We shall prove in Theorem 6.1

that condition (3.2) is also necessary to have % as a conjugate time. We do not discuss the case p = ¢ = 1:

this is the familiar Heisenberg group H', and in this case, using rotation invariance around t-axis, it is easy to
see that all cut points are conjugate. Extremals in the Heisenberg group Gi; can be read in plenty of papers,
e.g. [22-24]. See also the general discussions in Section 13.2, 13.3 of [2].

Proof. Let (£,7,7) € Vi x Vo =~ TGy, with |7|(|P-€| +7]) > 0. As in the proof of Proposition 3.1 above, consider
the cylinder A = {(&,m,7) € Vi x Vo i [€]2+1? = [£]2 + 7%} C Gy1 ~ TGy Consider the map (s,€,n,7) € R x
A v(s,&,m,7) € Vi x Va. To prove the proposition, it suffices to show that det[0sy, daY]l(s ¢ n.7)=(2x/171.€,5.7) =
0. Here dpy € RV*(V=1) denotes any family of independent derivatives in T 57-A with N :=dimGg = 29+ 1.
Consider the vector field Z := —(¢,7)0, + nD,, where D, = (1, V¢). Note that Z is tangent to A and Z # 0,
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because 12 + | P,£|? # 0. Taking the form (3.1) of 7(%”', &,m,7) into account, after a computation we get

"ple= Plf =0 (3.3)

T

Za(Z6m.7) = (~(E7)0,+ D)

2(5E0.7) = Za(—(E 710, + 7D (1P + )7 — 2PEEET)

3

= W{ — 2(&,7)7 + 2 PrE, D Pré)T — 21P-ED- (€, 7) | (3.4)

because D> P& = P27 = 0 and terms along 7 cancel. From these computation, we see that assumption 7P+¢ =
0 implies that det[asv, A (s,6.m,7)= (25 &,7) = =0. O

Propositions 3.1 and 3.2 imply estimate teyy < 27/|7] if p > 2. If ¢ > 2 and p = 1, the upper estimate follows
only if nP+¢ = 0.

Remark 3.3. The upper estimate in case ¢ > 2, p = 1 and nP-¢ # 0 can be obtained easily from the fact
that if 7 # 0, then ’y(‘Tl,é n,7T) = (‘27—”',5, —n,7). Thus there are two different extremals reaching the point

(m7£77’7 )Wlth length s ‘(57 )|

The remark above concludes the proof of the upper estimate in all cases. In Section 4 we shall prove the
opposite estimate tcuy > 27/|7].
In next proposition, we find for all p, g, all points 7(%, &,n,7) € Ggp reached by more than one extremal of

length 22|(¢, )]

In the statement of the following proposition, to have a clean exposition, we take for granted equality
teus = 27/|7| for all extremals different from Euclidean lines. (Note that arguments in Prop. 3.4 and in Sect. 4
are independent of each other.)

It is easy to show that for an extremal of the form (s, &, n, 7) with 7 # 0 and n # 0, we have 7(%, &n,T) =

7(%,5 ,Rn,7) for all R € O(p). Therefore the point is reached by more than one minimizer of equal speed.

There are also cut points with 7 = 0 reached by at least two minimizers of equal speed, and we now characterize
them. All other cut points are reached by a unique minimizer.

Proposition 3.4 (Cut points reached by at least two different arclength minimizers). Let 7 € R?\ {0}. Let
I€]2 + [n|* = 1 and assume also that |n|? + |Pr&|> > 0. Then there is (€',1',7") # (£,m,7) such that

E7 + [P =1+ =1, |7|=Ir| and (3.5)
( /‘75 77 T) (mvfaﬁﬁ) .
if and only if either n # 0, or
n=0 and 7T is not orthogonal to ker P-¢. (3.6)

Remark 3.5. 1. Assumption 7 # 0 and |n|? + |P-£|?> > 0 ensure that the curve 7(s,&,n,7) is not an
Fuclidean line contained in the plane ¢ = 0. See Remark 2.2.
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2. The second assumption in (3.6) implicitely implies that the columns P&y, ..., PE, of PA¢ are linearly
dependent in R? (i.e., rank P1¢ < p) and that £7'7 # 0 € RP. If p = 1, this means P+¢ = 0 and P& # 0.

3. In terms of coordinates (z,y,t) on V4 x Va, points reached by a unique unit-speed length-minimizer will
be characterized in Section 5.

4. If ¢ = 1, the group Gy, = H? is the familiar p-dimensional Heisenberg group, and it is easy to see that
if 7 # 0 and = 0 € RP*! condition (3.6) is satisfied by any ¢ € R1*P \ {0}. In case ¢ = 1, P+¢ € R!
vanishes trivially.

Proof of Proposition 3.4. Let (£,n,7) € Ty (Vi x Va) =~ Vi x Vi be such that |£]? +|n|> = 1. We first characterize
all (¢/,n',7") satisfying (3.5). By (3.1), condition x(ﬁ—’fl,ﬁ’,n’ﬁ’) = x(IQT—”l,ﬁ,n,T) and |7| = || give

Pr¢ = Pie, (3.7)

while assumption t(ﬁ—’fl,ﬁ’m’ﬂ") = t(%,f,nﬁ) gives
(PE2 + IP)r — 2PH6€Tr = (Pog? + ol 1P) o — 2P5EE T (38)

Now we write P& = PL¢' =: v = [vy,...,v,], where the column space of v satisfies Imv C span{r,7'}+. We
have then

€17+ nf* =1 =[nf* + |Pr&* + o]* and &7+ [P = 1= [0']* + [Prg'[* + o],

Thus [n|? + |PZE|> = |n]? + |Pr£|?. Projecting orthogonally (3.8) along span{r,7’}, we get then (|n|® +
|P-£]?)(7 — 7') = 0. The parenthesis can not vanish by assumption. This forces 7/ = 7. Thus, (3.8) becomes

PreeTr = PR¢/ ¢'Tr. Passing to a shorter notation write a := ﬁTT‘T and o = 5‘/;7 € R? (keep in mind that

|P£]? = |£|:|T2‘2 ). Thus, (&',1,7') satisfies all conditions (3.5) if and only if 7/ = 7, PX¢’ = P1¢ =: v and there
are o’ and n’ € RP such that

{vo/ = v (3.9)

' + 1o’ = [nf* + |af* = 1 = [vl?,

where v = [v1 ..., vp] € R?*P. In order to conclude the proof, we need to understand for which given 7, a € R?
the pair 7/, o’ € RP satisfying (3.9) must be chosen uniquely in the form " = n and o/ = «. Note first that if
n # 0, any choice 7 = Rn with R € O(p), R # I, gives a solution ' = Rn and o = « different from 7, o (if
p =1, just choose ' = —n). Therefore, to have uniqueness it must be n = 0. If n = 0, then (3.9) becomes

va/ =vaand [ |> + /]2 = |a]* =1 - |v|*

If ker v = 0, then it must be o/ = a, 1’ = 7, and we have uniqueness (if p = 1, this occurs when P+¢ # 0 € R?).
Let now ker v be nontrivial. If o« € (kerv)*, then a = ayg, the least-squares solution of the system v3 = va with
unknown 5 € RP. Then, |o/| 2 |« for all &’ # « solving va’ = ve. Then, it must be &’ = a = ar,g and we have
again uniqueness in the choice of 7/, /. Finally, if a ¢ (ker v)*, we can choose = 0 and o/ = 2ars — a # 0. In
this case o’ # a, |o/| = |a| and va/ = va as required. If p = 1 and g > 2, kerv # 0 means v = 0. Then, ar,s =0

and the non uniqueness choice becomes o/ = —a.
To resume, if n # 0, we can choose 7’ = —1), &’ = @ and we have found a choice of (¢',7',7") # (&, n, 7). If
n = 0, by assumption (3.6), given n =0, v = [v1,...,v,] € R?*? and a # 0, there is a second solution 1’ = 0,

o =2ars — a # a, where arg solves vars = va and aps 1 kerv.



12 A. MONTANARI AND D. MORBIDELLI

We have ultimately proved that there is nonuniqueness if and only if either 7 # 0, or n = 0 and a ¢ (kerv)*.
The proof is concluded. O

A careful inspection of the proof above shows that, if p > 2, when the choice of (¢, 7', 7') is not unique, then
we have an infinite, continuous family of choices. If instead p = 1 and g > 2, then in case of non uniqueness
there are either two or infinitely many minimizers.

We conclude this section with an example showing that the function (&,1,7) € Ggp — tew(§,m,7) is
discontinuous for ¢ > 2.

Example 3.6. Let ¢ > 2, let £ € R?*P\ {0} with Im¢ C R? and 7 € (Im &)+ \ {0} (i.e. £ = P¢). Assume that
|7] = 1 and consider n € RP \ {0}. Then for any € > 0 we have the family of cut points

The corresponding cut-times are t.ut(€,en,7) = 27 for all € > 0. However, t¢yu;(€,0,7) = +00. Note that the
point (27€,0,0) in this example is abnormal.

4. LOWER BOUND toy > 2%

I7|

Here we prove the following lower bound for the cut-time.

Proposition 4.1. Let @ = u(-,&,7,7) be a given extremal control with 7 # 0 and |f| + |P:£| > 0. Then the cut
time of vy satisfies teus > %

Proof. We work following the argument of [8], Section 2.3.2, which is in turn based on [20], Chapter 12.4. Let
&, 1,7 be given and let

(a(s), 0(s)) = (u,0)(5,€,7,7) = ™47 (€,7) (4.1)

and (s) = (s, &,7,7) be a given extremal path which we assume to be parametrized by arclength, i.e. |£]? +
|7|?> = 1. Fix a positive time § < ‘2%' We want to show that 4 minimizes length between (0,0,0) and (z,3,1) :=

7(3).
Consider a control (u,v) € L*((0, §), R?”*? x R?) and the corresponding path 7, . as defined in (2.1). Denote
Yuy) (8) = (T (u,0)(8)s Y(u,w) (8); t(u,v) () for all s. On the control (u,v) we require the following three properties.

(1) [(u,v)| =1 a.e. on [0, 3] (i.e. Y(y,0) is arclength).
(2) We have (z(38),y(38)) = (Z,7). )
(3) (u,v) maximizes the cost J(u,v) := (7, t(.0)(8)) = [5 ©((,y,1), (u,v)).

We claim first that the three statements (i), (ii), and (iii) of Lemma 21 in [8] hold in our setting too.

Statement (i) claims that there is (u,v) € L? such that (1), (2), and (3) hold. This is a standard compactness
argument. Roughly speaking, it suffices to take a minimizing sequence {(up,vp)}nen € L™([0, 5], V7). Using
(1) and the ODE (2.1) one can easily check that the sequence {(2y,yn,tn)} is equicontinuous and uniformly
bounded. Passing to a subsequence, we may assume that (2, Yn, t,) converges uniformly to a Lipschitz function
(z,y,t) on [0, §]. This ensures (2). To check that the limit (x,y, t) satisfies (2.1), we use the weak compactness of
the sequence {(un,v,)} which by (1) has a subsequence converging to a limit (u,v) satisfying |(u(s),v(s))] <1
for a. e. s € [0, 5]. Observe that the set {(u,v) € Vi : |(u,v)|] < 1} is convex.

Statement (ii) claims that 7y, is a length-minimizer on [0, 5]. To show this property, assume by contradiction
that there is € > 0 and an arclength control (u',v") on [0, 5 —¢] such that v,/ ) (0) = (0,0, 0) and v ) (§ —€) =
Yeuw)(8) = (T, 7, t(u,0)(5)). Since the sub-Riemannian e-ball is open, we can extend (u’,v’) on [ — ¢, 8] to achieve
a final point (Z, ¥, t(w )(8)) such that (7, ¢, )(8)) > (T, t(u,)(8)) contradicting (3).
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Claim (iii) asserts that the solution 7, . discussed in (i) and (ii) has the precise form 7, ,y = v(-, &, 7, AT)
for a suitable (£,7) of unit norm and A > 0. To accomplish this step, observe that the cost function (7,%(,.4)83)
is the integral on [0, §] of

= 5(7", v — uy)
(G, 707) — (g uTR)) = 3 (), Ar(,0)) = 9((a, ), (w,0).

Therefore, by [20], Theorem 12.13, the Hamiltonian to study problem (1), (2) and (3) is

H(u,v)(('r’yat)’(gvnaT)) = Z uak<Xak(xay7t)a(£’an)> U‘<Yrj(l‘7y’t)7(§7n’7—)>
o Tl
+2v9((w,y,t), (u,v))
= (0, €) + (0,1) — = (0, 7y7) + = (0,57 7) + ({2, 70T) — (y,uTT))

2 2

where we used (2.2). Since we are maximizing fos o, we have v > 0. An optimal control for our problem should
satisfy the related Hamilton equations for suitable v. Furthermore it must satisfy the transversality condition,
with target manifold Ny := {(z,y,t) € V1 x Vo : (z,y) = (Z,9)}. Thus, (§,n,7)(5) L Ny, which becomes 7(5) =
0. Since 7 = =V, H = 0, we have 7(s) = 0 on [0, §] for the requested solution. Therefore (along an optimal
control) we can write the Hamiltonian in the form

H(u;u)((x,y,t), (5,7],7')) = <U,£> + <’U,7’]> + V(<3§‘,77"UT> _ (y,uTﬂ)
= ((u,0), (&) = vAz(2,9)).

The remaining Hamilton equations are
£=-V,H=—vrvl andn=-V,H=vul7 e (£n)=—-vAs(u,v). (4.2)

The maximality condition [20], Theorem 12.13, equation (12.31) and Remark 12.2 states that along the optimal
control (u(s),v(s)) we have for almost all s € [0, §]

((u(s), v()),(E(5),n(s)) = vA(2(5), y(5)))
— max <<u,v>, (6(s),m(s)) = vAs(2(5), y(5)) )

[(u,v)|=1

= || €1, m()) = vAs((s) w3 | = 1.

Therefore, the unit-norm control (u(s),v(s)) has the form (u(s),v(s)) = (£(s),n(s)) — vAz(xz(s),y(s)). This
shows first that (u(0), ( )) (£(0),71(0)). Furthermore, since (&,9) = (u,v), differentiating the latter formula
we get (0,0) = (£,7) — vAz(u,v) = —20A=(u,v) = —Ag,=(u,v), where we also used (4.2). Thus the solution
has the form

(u(s),v(s)) = e~ (1) (4.3)

where v > 0 and (&, 7) is a unit vector. This shows (iii) and completes the analogous of [8], Lemma 21.
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We are left with the proof that the control (%, ) in (4.1) and (u,v) in (4.3) are the same, i.e. that v = 3.
Precisely, we prove the following claim (see again [8]).

Claim. Let (@,?) : R — R9*P x RP be the control in ( 1). Let (¢,m) € Vi be of unit norm, let § € |0, ‘27] [
and let v > 0. Let (u,v)(s) = e™*427(£,7) and put (z,9)( fo u,v). Then, if (2(5),y(3)) = (Z,7) and v(y,v)
minimizes length at least until §, we have v = 3 and (&, 77) (€,7).

To prove the claim note first that, since 7(,,,) minimizes length at least until § it must be § < 22? £ which
gives the upper bound on v < ‘ Write now ¢ = P-¢{ + P& = T )\T +v where v = PA¢ and \ = ‘ . In view

of (2.5), assumption (x(s),y(é)) (z,7) reads
ST (sv|7|)— {/\T cos(sv|7|) — n” sin(§y|f|)} + 4Pt =%
8T (3v7)) {ncos(§u|f|) + )\sin(§u|%|)} -

Recall that 7 is given. Then we can project the system along 7+ and 7, obtaining P-¢ = Pz and

§T(§1/|7"|){>\cos(§1/|7_'|) - nsm(gum)} - :CITIT )
§T(§V|7"|){ncos(§y|7_'|) n )\sin(éu\ﬂ)} =7
Taking the norm and summing up we find 8*T'(sv|7|)2(|A]* + |n]?) = i‘ Ty |y|2. Since [N\ + |n]? = |P-¢* +
> =1 [Prel2 =1 P20 we find
9 sin(y§|7‘-|)>2< |P$:E|2> |zT7 2
—= ) 1= = : 4.5
#( Vi 2 EEad (4.5)

Since §,Z,7 and T are known, the only unknown here is v € ]0,7/(|7|)]. We already know that v = 1 belongs

to that interval and is a solution of the equation (4.5). Since the function v ~ (sin(v3|7|)/(v5|7]))? is strictly
decreasing on |0, 7/(8|7])], the solution v = 1 is unique. Letting then v = £ we go to the Cramer system (4.4)

and we find uniquely n =7 and A = W The proof is finished. O
Remark 4.2. We give an idea of our choice of the cost (3) in the proof of Proposition 4.1. Our choice is
suggested by the form of the cost in problem (P) at page 570 of [8], which is actually a control problem in
a corank-1 quotient of the general corank-2 group the authors are working with. In our case, to get corank-
1 quotients, we can take any unit vector w € R?*! and we can consider the quotient G,, defined as follows.

= {(z,y,wwTt) € Gyp : (z,y,t) € G,p}. As aset, G, = V7 x span{w}. It can be equipped with the operation

(1:, Y, \w) - (&, 1, pw) = (x +&y+n,wA+p+ %wT(xn — §y))> This turns out to be a sub-Riemannian Carnot

group of corank-1. Now, taking the extremal control (@, ) in (4.1) and the corresponding extremal (-, £, 7, 7) =
(a:,y,t)(-,f, 7,7), if we project such extremal on a quotient G,,, it can be checked that this gives an extremal
control in G, if and only if w = % € span{7}. In such case, the vertical coordinate in G, = G 7| is proportional
to the cost appearing in (3).

5. DESCRIPTION OF THE CUT LOCUS

In this section we identify precisely the cut-locus and in a significant example we discuss some of its regularity
properties. Some of the results of this section will be used in the proof of Theorem 6.1 in Section 6.
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Item 2 of Theorem 1.2 has been proved in Proposition 3.1. Next we prove the remaining ones.

Proof of Theorem 1.2, items 1, and 3 and 4. Let v(-,&,n,7) be the extremal appearing in Proposition 2.1. We
know that

Cut(Gyp) = {5 (| BEnT) (EmT) € Vix Vo, 7 £ 0 and of? + |Pef? > 0}

= {v(2m, &,n,7) : (&n,7) € Vi x Vo, || =1 and |n* + |P-£> > 0},

(5.1)

by (2.6).
Step 1. We show first that the set (5.1) is contained in the set (1.3). By (3.1), a point (z,0,¢) in (5.1) has
the form

x =21 PX¢
t= 7r(|77|2 + |PT§|2)T - 271'PTL§§TT.

The first line tells immediately that 7 | Im x. Furthermore, it must be |n|? + |P.£|? > 0, see (5.1). Eliminating
P& we get t = 7r(|77\2 + ‘Pff‘z)T —x&T7. Thus

ﬂ(\77|2 + | P¢] )’/" =Pt t and — 277 = Pyt
Letting 8 = ¢T7 € RP*! we get 71'(|7)|2 + 182 )7’ = Pl t and —z8 = Piy.t. From last formula we get
immediately

|Pisotl = 7([n* + 18%) = #|8° > 7 min{|8']* : —2f" = Pun ot} (5.2)
=: 7|z’ Poy ot|* = 7|zTt|? .
The inclusion is proved.
Step 2. Now we show the opposite inclusion and we characterize which cut points are reached by a unique
minimizer.
Let (2,0,t) be in the set in the right-hand side of (1.3). We must find (£,7) € V1 and 7 € V5 such that

2nPré=u
m ([l + Prel?)r —2mPreeTr =1 (5.3)
I7/=1 and |n*+|P:£]* > 0.

Since 7 is a unit vector and from the first line, we can write & = P.¢ + P& = 777¢ + 5 =t —7AT 4 + 5, where

we put A = —£77 € RPXL, Thus, to find &, it suffices to know the vector A = —£77 € RP. Concerning the vector
7 we are looking for, it must be orthogonal to Im 2. Then, projecting the second line of (5.3) along (Im )=+, we

get
m (1l + |Pre )7 = Pl ot #0. (5.4)

Note that Pj. .t # 0 by assumption. Therefore, since 7 is unit-norm, it must be first |n|? + |P-£|> > 0 and
furthermore 7 = P‘"”” Next project the second line of (5.3) along Im 2. We get the equation 2\ = Py, »t. If

1Py, ot
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the columns 1, .. ., x, of x are independent, then 27z is nonsingular and we find a unique A = (z7z) 12Tt = xtt
solving the problem. If instead z1, . .., z, are dependent, the solutions A € R? of x\ = Py, ¢ form an affine space
of the form {xt + yu : u € ker 2}, where 't satisfies zxt = Py, .t and has the further property ¢t L kerz, i.e.
2Tt it is the minimal-norm solution: |x't| < |27t + u| for all u € ker x. More precisely, since zt L u, we have
|21t + p|? = |27¢|? + |pu|?. Fix now any p € ker x and choose then A = x7¢ + y. Multiply the second line of (5.3)
scalarly by 7 (taking into account that —¢77 = X\ = 't + ). This gives

2 + 2 PIJﬁmt 1
w(inf? +latt+ p?) = (6.7) = (8 222 ) = [Pt

|Im:c|

Again by orthogonality p L 2t we get
7(In* + 1ul?) = [P ot] — 7lzlt]. (5-5)

The right-hand side is nonnegative by assumption. Therefore, any choice of € RP and p € ker z such that (5.5)
is fulfilled, will provide a solution fulfilling (5.3). This finishes the proof of the inclusion.

To prove item 3 of Theorem 1.2, observe that, given (z,0,t) € Cut(G,,), uniqueness of the choice of (€,7,7)
holds if and only if the choice of n and u € RP satisfying (5.5) is unique. This happens if and only if the
right-hand side of (5.5) vanishes, i.e. |PL t| = |z Tt|2.

Step 3. We finally check formula (1.4). Let (z,0,t) = (27, §,n, 7) € Cut(Ggp), where |7| = 1. The horizontal
speed of the minimizer v(-,&,n,7) : [0,27] — Vi x Vo is y/|n|? + [£]? . We have |77|2+ €12 = n]? +|P£I1* + | Pe2

From the first line of (5.3) we have |P+¢|? = |w| . From (5.4) we find |n|? + |P£]? = lP““lt‘ . Collecting formulas,
we conclude that

d(z,0,1)? = 4m* (€] + [n]?) = |=[* + 4x| Py, ,t],
as required. Note that the component Py, .t does not appear in the distance. O

Remark 5.1. Observe that the set of points (z,0,t) € Cut(Gy,) reached by more than one unit-speed length-
minimizer is dense in Cut(G,,). To see that, it suffices to take a point (z,0,t) = (x,0, Pim »t + P ,t) such that

PL .t #0 and satisfying | P t| = 7|z7t|2. This point can be reached by a unique unit-speed minimizer. Next
consider the family of approximating points (z.,0,t.) := (2,0, Pt + (1 + €)Pi- t), where € > 0. We have
easily \Pﬁnmgt5| = (1 + ¢)| P, ,t|. Furthermore, note that zt. only depends on Py s, t: = Pt and not on
Pﬁn . te which changes with e. Thus xlt. = 27t for all € > 0. Thus the approximating point satisfies the strict

inequality |Pim o te| > 7w|zit.|?. Consequently, it can be reached by more than one length-minimizer.

Remark 5.2. As a byproduct of Step 2 of the proof above, and for future reference, observe that, if (z,0,t) €

Cut(Ggp) and if ker z is trivial, then we can write (x,0,t) = v(2m,&,n, 7), where 7 = \Ilzlfut\’ E=1(a)T+ £

and 7 satisfies

mlnf? = | Py, pt] = wlalt)?. (5.6)

5.1. The group G41

Here (z,0,t) € R? x R x R?. All points of the form (0,0,t) € G4 with ¢ # 0 belong to Cut(Gy1). Let (x,0,t) €
(

Gq1 be such that z # 0 and ¢ # 0. The equation 28 = Py, »t has a unique real solution z'(Ppy, »t) = |I ‘t> Then
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[21t|* = [T P ot = <TJ;T<>12 = [Pmst Phyg we have

Cut(Gyy) = {(m 0,£) € Ggy : t £ 0 and |z|? |PE 1] > 7r|P1mmt|2}
= {(2,0,8) : t # 0 and [x[*|t|* — |2[°(t, x)* > 7*(t, )"},

where, passing from the first to the second line, we used the Pythagorean theorem |PiL t? = [t|? — | P ot]? =
2
|t‘2 _ {tx)

Bl
In the next proposition, we analyze the regularity of the set of cut points where equality holds. Namely, of

¥ :={(z,0,t) : t #0 and |:E|8|t|2 — \x|6<t,x>2 = 7r2<t,x>4}. (5.7)

Proposition 5.3. Let ¥ C Cut(Gq1) be the set in (5.7). Let ¥g := {(2,0,t) € L : 2 # 0} C X. Then X is a
smooth codimension-one embedded submanifold of {(x,0,t) : (z,t) € R? x R?}. Furthermore, the whole ¥ is not
a manifold.

Observe that 3¢ has codimension 2 in G4;. The surface 3¢ contains all points (z,0,t) € Cut(Gp) which are
reached by a unique length- minimizing unit-speed curve.

Proof. To check this statement, it suffices to observe that X is the zero-level set of the function ¢ : (R?\ {0}) x

(R7\{0}) = R

X 2 X 4
Bl t) = |1 <;=f2> 2! mtg . (5.8)

A short computation gives

vthzt—;‘ (z, >{1+2 2<| |22}x

vw:_';<x,t>{1+2w2<t|:|”6> }t+W( t)” {H%@ H?}a.

Observe now that at all point of 3¢, we have (x,t) # 0 (see (5.8)). Furthermore, z and t are independent
(otherwise, again (5.8) fails). Denoting Vi) =: at + bx and V¢ =: bt 4+ cx, we see that the Jacobian of ¢ has
full rank if and only if ac — b? # 0. A computation gives

1674
W<$at>6 #0

ac—b* = —
for any (z,t) € ¥¢. Thus, X is a smooth manifold.

To show that the whole X is not a manifold, we argue by contradiction. Without loss of generality, consider
g = 2 and take the point (z,t) = (0,e3) = (0,0,0,1). Assume that ¥ is a smooth embedded manifold in a
neighborhood of (0, ez).

Step 1. If ¥ is a smooth surface containing, (0,e2), a tangent vector (§,7) € T{q,e,)%, would have the form
(&,7) = (2/(0),t'(0)), where s — (x(s),t(s)) is a curve belonging to X for s € (—1,1), (x(0),¢(0)) = (0,e2) and
(2'(0),'(0)) = (&, 7). We claim that all such vectors satisfy £ L ep. This implies that T{g )% = {(£1,0,71,72) :
&,7,72 € R}. To prove the claim, take a curve (x(s),t(s)) as above and expand at the first order z(s) =

z's+ o(s) and t(s) = ea +t's + o(s) = ea + o(1), where (z/,t") = (2/(0),t'(0)), o(1) — 0 and O(S —0ass—0.
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Then |x(s)|? = |2/|?s% + o(s?), [t(s)|? = 1 + o(1), while (x(s),t(s)) = (2',e2)s + o(s) = zhs + o(s). Inserting
into (5.7), we get

(J2']s® + 0(s") (1 + 0(1)) — (J'|°s° + o(s)) ((w5)*s* + 0(5?)) — 7*((x5)"s" + o(s")) = 0.

Comparing powers of s, we get 25 = (2/(0), e3) = 0, as desired.

Step 2. Being T(g,e,)> = {(£1,0,71,72) : &1, 71, 72 € R}, the manifold ¥ can be written as a graph of a function
F of the variables z1, t1, t2. Namely, there are neighborhoods V' := {(z1,t1,t2) € R3 : |(z1,t1,t2) — (0,0,1)| < &}
and W = {z3 € R : 3| < ¢} such that we have

(V X W) nYy = {(.131,F(Z‘1,t1,t2),t1,t2) : (.131,251,752) € V}

Precisely, for all (z1,t1,t2) € V there is a unique F = F(z1,t1,t2) € ]—6,0[ such that ¥(zq, F,t1,t2) = 0.
Let us test such property on points of the form (x1,0,t3) € V. Letting F' = F(x1,0,t2), we have after some
simpifications

toF)? (to F)*
F0,t :t2—( — =0. 5.9
w(l‘h y Uy 2) 2 l’% +F2 m (ZE%+F2)4 ( )

Since F appears quadratically, its uniqueness gives F'(x1,0,t3) = 0 as soon as x1ty # 0. However, inserting
F =0 into (5.9), we get t3 = 0 for all (z1,0,t3) € V, which gives a contradiction. O

6. LOWER ESTIMATE OF CONJUGATE TIME FOR p = 1

In this section we show that for ¢ > 2 and p = 1, in the model G4; there are minimizers such that the
teut 1s strictly smaller than the first conjugate time. The following statement completes Proposition 3.2. Such
phenomenon has already been encountered in [8].

Theorem 6.1 (Conjugate points, ¢ > 2, p = 1, necessary condition). Let ¢ > 2 and consider the model G .

Given (&,m,7) € Vi x Va, assume that 7 # 0 and |n|? + | P> > 0 and consider the extremal ¥(-,&,m, 7). Then,

if 5:= % is a conjugate time of y(-,&,m,T), it must be

nPe=0. (6.1)

We do not discuss the case p = ¢ = 1, the lower dimensional Heisenberg group, where it is known that cut
time and first conjugate times are always the same.

Proof. Consider Gq1 and a point (&§,7,7) € T o 0)Gq1- Define A = {(¢',n',7") € T(; o )G : 1E12 4+ 7% = |2 +
n?} C T5,0,0)Gqr- It suffices to show that n|P+¢| # 0 implies that s = |277T| is not conjugate. Fix an orthogonal
frame in T{ G4 ~ R? choosing

T, Wq—1 = Pr¢, and wy,... ,Wg—2 € span{T, Pre}t. (6.2)

Note that if ¢ = 2, the frame will be formed by w; = P*¢ and 7 only and the discussion will be easier (see
below). Fix also the frame of vector fields

Z =—{(£, 10, +nD- Vie = —(§,wg)0y + 1Dy, where k<g-—1
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and Dy, := (wg, V¢) and D, = (7, V¢). Observe that the frame is tangent to A.> Furthermore, the frame in
independent, because 7 # 0 and wy, . .. ,wq—1, 7 are independent. We need to show that the following determinant
is nonzero.

det M :=dxi A--- Adag Ady Adtr A+ Adtg(0s, Zv, Viy, ..., Vg1, d-y) # 0

Let £ := ¢ - dx + ndy + 7 - dt be the Liouville form. Since |7| # 0, up to a nonzero factor we change daz A dy A
dt1 A-Adtg with de Ady ALA p A+ -+ A pg—1, where pg, = wy - dt. By Lemma A.1, we have {(Zv) = {(Vy) =0,
forall k=1,...,q— 1, while £(9s7y) = 1.

det M ~ £(0sy)(dz Ady A pia A=+ A pg—1)(Zy, Wy, Va1, dry)

Zx Wa Vo—17 d-x
Zy Wy Va—1y dry
~det | #1(Zt) i (Wt) (Vo) pa(drt)

,Uqfl’(Zt) :uqfl.(Wt) qul(i/:zflt) fig—1(d-t)

where ~ means that the left-hand side vanishes if and only if the right-hand side vanishes. Here © = [z1, ... ,xq]T
while W stands for [Vi,...,V, ] and d; = [07,,..., 0]

We already calculated the Z-derivatives in (3.3) and (3.4). Namely Zx(i—”l,é“,nm) =0, Zy(‘QT—”l,f,n?T) =
0 and Zt(IQT’Tl,é“,n,T) = —%Pﬁf. By (6.2) we have then pu;(Zt) =0, for j < ¢ —2 and pg—1(2t) =

(PLo)T (2T ple) = —2M0| PLg|2 #£ 0, by our assumptions. Therefore, if ¢ > 3,

7] G

i

Wax Vo—12 drx
Wy Vi—1y d+y
det M ~det | ta(Wt)  pu(Vgrt)  det | (6.3)

tg—2(Wt)  pg—2(Vg—1t)  pg—2(d-t)
If ¢ = 2, we have instead the simpler form

det M ‘=% = det [Vl“ dﬂ .

Vly d'ry

Next, for k < g — 1 we have Vyz = (—(wg, &) + ank)%Pj-g = %Pf—wk = ﬁ%wk, because wy L 7 for all
k < q— 1. Easily, Vyy = 0 and finally

Vit = 5 (=600, + nDu) (P& + o) — 2P ¢€")

= IT% ( —20(&, wi)T + 20(P-€, Prwg)T — 2nPrwp T — 277PTJ'5W1:<F7')
2
= — T L6 + (6 T

3This comes from the fact the set A is defined by the equation F(€,7n,7) := |€|? + n? = constant, and we have ZF = V,F = 0
identically.



20 A. MONTANARI AND D. MORBIDELLI

where we used wy € 7. Therefore, for j, k < g — 2 we have p;(Vit) = wj T(Vit) = |2T7r|27 <§,7’>ijwk. Introducing
the matrix Q = [w1,...,wq—2] € R9*(4=2) 'if ¢ > 3, we can write the first ¢ — 2 columns of the matrix in (6.3) as
210
0 c R2a-Dx(a-2)
|7.‘3 <§7 >QTQ

Passing to the (¢ — 1)-th column, since we let w,—; = PX¢, computations above give V,_jz = %ijq_l =
2m1 pL¢. Furthermore, V, 1y = 0 and

I

vq_ltz—QITZ(<5,P$5>T+<5,T>P$5> = (V) =0 Vji<g—2.

|T|*12gnPi£

Ultimately, the (¢ — 1)-th column becomes { € R%2a-1,

0
Let us pass to the columns involving 0, . In all diﬁerentiations below, we omit all terms that vanish when
s = 271 /|7|. The calculations of 0, v(s,&,n, 7) for s # 2= 77 would be much longer.

T
Oy, x =0, <|E| sin (%){P@ cos (172) — ™ in (%)} + stf)‘
_ 2 lrls\STa, 2n
= eGP + o (6 7 |2£) .
2 2 2 Ta T eaT
a T T 777—7—
|\3 P+ T (pr e e |T|2€>

| E (STan <§,T>—T§a).

So, the ¢ x ¢ north east block is d x|s_l = |27( (& 7)Pr — (&, 7)1, — 7€) € R94. An analogous computation
furnishes Or,y|s—2r /7| = |T|3 NTe for a = 1,...,q. To conclude, for ¢ > 3, we have to calculate derivatives
8Tat\5227r/‘7|. Keeping into account that we need only to know pu,;(0-.t) = ijaTat with 7 < ¢ — 2, since

span{wi, ...,wy—2} = {7, PX£}+, below we work ignoring terms in span{r, P-¢} writing below u ~ u/ when
u —u' € span{t, PX£(} C R

a-r,,t|s:27r/|‘r\ = a‘r,, (SQU(lTQQ)“PTﬂQ + |772|}|T7|

20 (rls\ [ plep i (17ls) 4 plebiT g (Il
+3V(2){ PT§7781n(2)+P§ 005(2)}

|
]

= (5) VPR +7) omr + () Vi )&f&f(&cosw)

7| |7
T 21 eq Tl EETT T

= —(|P:£)? — 4+ — 3| P,
PO T oy = (7 3P
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The south east (¢ —2) x g-block has elements (11, (0-,t)) = ij(dTa t)),withj < g—2and @ = 1,...,q. Ultimately,
the matrix in (6.3) takes the form

2m10) BPLE (36, 7) P — (6,7, — 7ET)
M = 0 0 AT
~ZEmHaTe 0 2 (n? + 3| PrE?) QT

where Q = [wy,...,w, 2] € R7*(@=2) By linear algebra,® M has full rank if and only if

QP 26, +7ET)
M = 0 O 7_T c R(qul)X(qul)
(572) QTQ 0 (772 + 3|PT§|2)QT

7]

has full rank. If ¢ = 2, we have the simpler matrix

Pre —2((¢, )+ 7T
0 7T

V= € R33, (6.4)

To conclude the proof we prove the following claim.

Claim. The matrix M has trivial kernel. -
Proof of the claim for ¢ > 3 and (£, 7) = 0. We show that M has trivial kernel. Let a € R?772, b € R and

c € RI.If (¢, 7) = 0, the system M\{(é} = 0 becomes

Qa + Preéb—21(€,¢) =0
(t,¢) =0 (6.5)
(n* +3|P£?)Q e = 0.
By (6.2), Qa € span{r, P-¢}. Then, the first line gives three separate conditions and we get
Qa=0, b=0, (,c)=0
(r,0)=0 (6.6)
(n* +3|Pr¢[*)Q"c =0
Furthermore, since Q = [wy,...,w,—2] has no kernel, we get a = 0. Concerning ¢, we see that it is orthogonal
both to 7 and to span{wi, . ..,w,—2}, by the third line of (6.6). Then, ¢ = AP-¢ for suitable A € R. Again from

the first line, we get 0 = (£, ¢) = (£, \PL¢) = A PA¢|?, which implies ¢ = 0 as we wished.
Proof of the claim, ¢ > 3 and (£, 7) # 0. The system becomes

Qa + Péb —2(¢,7)c —27(€,¢) =0

<7_a C> =0
(& 7)1 2 2\ T
BRTE Q" Qa+ (n* + 3|P¢) e = 0.
INote that the north east-term containing the factor Py = #TT can be eliminated by subtracting to each of its rows a suitable

multiple of the (¢ + 1)-th row. All other simplifications are multiplications of some row/columns for nonzero scalars.



22 A. MONTANARI AND D. MORBIDELLI

Multiply from the left the first line of (6.5) by ‘£2L0T and add to the third. After elementary simplifications
based on property Q77 = QT PL¢ = 0, this gives (n? + |P-£[2)Q%¢ = 0. Thus, Q¢ = 0 which implies ¢ €
span{t, PX¢}. Arguing as above, we write ¢ = AP+¢ and projecting orthogonally the first line along 7, we get
¢ = 0. The third line gives also Q7' Qa = 0, which implies a = 0 (independence of wy, . ..,w,_o in RY implies that
OTQ is nonsingular). The first line gives now b = 0 and the proof is finished.

Proof of the claim, ¢ = 2. The system J\/f[lc’] with b € R and ¢ € R? becomes

Te=0.

{P$@—2@Jk—2ﬂ&®=0

Here R? = span{r, P1¢} and the second line gives ¢ = AP¢ for some A. Then the first becomes P1¢(b —
2(¢,7)c) — 27 A|P£|? = 0, which by independence of 7 and P-¢ provides A = b = 0. This concludes the proof
of the Theorem 6.1. O

We are ready to prove Theorem 1.3.

Proof. Let ¢ > 2 and p =1 and let (,0,t) € Cut(Gy). Write (z,0,t) = v(2m,&,m,7) with |7] = 1 and n? +
|P-€|2 # 0. We know by Proposition 3.2 and Theorem 6.1 that this point is conjugate if and only if 5| P-¢| = 0.
Condition P+¢ = 0 is equivalent to x = 0, by the first line of (3.1). If x # 0, then ker z is trivial, and Remark 5.2
holds. In particular, by (5.6), condition n = 0 holds if and only if | P t| — 7|zTt|? = 0, as required. Note that

2
here we have |zft|? = % O

APPENDIX A.

The following lemma on quadratic Hamiltonian systems has been used in the proof of Theorem 6.1. We
include it for completeness. This lemma is general and we use then standard Hamiltonian notation.

Lemma A.1. Let (z,p) € RY x RY ~ T*(RY) and consider the Hamiltonian

H(w,p) = 5 (M(@)p.p) (A1)

where M (z) € RV*N s symmetric, positive semidefinite and depends smoothly on x. Denote by A = {p € R" =
T;RN : H(0,p) = %} Given p € A, denote by t € I — (X(t,p), P(t,p)) the solution of the Hamiltonian system
with initial data (X (0,p), P(0,p)) = (0,p), where I C R is an interval containing 0. Let 0 € R — p(o) € A be a
smooth path. Then we have

ZPj(t,p(U))g%Xj(t,p(U)) = ZPj(O,p(U))(,%Xj(O,p(U)) =0 Vt,o.

In other words, the Liouville form £ := Zj pjdx; satisfies E((%X(t,pg)) =0, forallt,o.

Proof. Write briefly X; = X;(¢,p(0)) and P; = P;(t,p(c)) and omit summation on index j € {1,...,N}. We
must see that the following is zero:

(*) = 8t(Pj80Xj) = 8tPj80Xj + Pj8t80Xj
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Since the Hamiltonian is constant along flow, we get H (X, P) = H(0,p(c)) = 1 identically in ¢, 0. Differentiating
with respect to o gives

0=0,,H(X,P)0;X;+ 0p, H(X, P)0, Pj = —0;Pj0, X; + 0; X0, P;.
Thus we may rewrite (%) as

() = 0. X;05 P + Pj010,Xj = 0, X;05P; + Pj0,0, X = 05(P;0,X;) = 05(P;0p,H)
D 9, H(X, P) = 0,H(0, p(c)) = 0.

In L we used the form (A.1) of the Hamiltonian. O
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