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SUB-RIEMANNIAN CUT TIME AND CUT LOCUS

IN REITER–HEISENBERG GROUPS

Annamaria Montanari* and Daniele Morbidelli

Abstract. We study the sub-Riemannian cut time and cut locus of a given point in a class of
step-2 Carnot groups of Reiter–Heisenberg type. Following the Hamiltonian point of view, we write
and analyze extremal curves, getting the cut time of any of them, and a precise description of the set
of cut points.
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1. Introduction

In this paper we study the sub-Riemannian cut time and cut locus (of the origin) in a class of step-2 Carnot
groups of Reiter–Heisenberg type. Following a Hamiltonian point of view, we will write extremal curves, and
we will identify cut points as either points reached by two different minimizing geodesics, or conjugate points.
In spite of the apparent similarity with the well known Heisenberg group, we will see that these more general
models display several different features.

In order to state our results, let us describe briefly Reiter–Heisenberg groups. Let V1 = Rq×p × Rp×1 and
V2 = Rq×1. On V1 × V2 define the operation

(x, y, t) · (ξ, η, τ) :=
(
x+ ξ, y + η, t+ τ +Q((x, y), (ξ, η))

)
:=

(
x+ ξ, y + η, t+ τ +

1

2
(xη − ξy)

)
.

(1.1)

It turns out that Gqp = (V1 ×V2, ·) is a step-2 nilpotent Carnot group (see [1], [2]). Following the terminology in
[3, 4] and [5], we call it a Reiter–Heisenberg group. These models are a significant generalization of the familiar
Heisenberg group which involves nontrivial interesting issues. For example, we will see that for any q ≥ 2, the
group Gqp contains abnormal geodesics, while for q = 1, G1p is the standard Heisenberg group, where minimizers
are always strictly normal.

To equip (Gqp, ·) with a sub-Riemannian structure, we introduce on V1 the inner product ⟨(x, y), (ξ, η)⟩ :=
tracexT ξ + trace yT η = tracexT ξ + yT η. On matrix spaces, we shall always use the Hilbert–Schmidt inner
product ⟨a, b⟩ := trace aT b for all a, b ∈ Rµ×ν and for all µ, ν ∈ N.

Keywords and phrases: Carnot groups, cut locus, sub-Riemannian geodesic.

Dipartimento di Matematica, Alma Mater Studiorum Università di Bologna, Italy.

* Corresponding author: annamaria.montanari@unibo.it

© The authors. Published by EDP Sciences, SMAI 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/cocv/2024058
https://www.esaim-cocv.org
https://orcid.org/0000-0001-8019-7840
https://orcid.org/0000-0001-5018-7254
mailto:annamaria.montanari@unibo.it
https://creativecommons.org/licenses/by/4.0


2 A. MONTANARI AND D. MORBIDELLI

In order to write length-minimizing curves, we will adopt the Hamiltonian point of view (see [2], see Sect. 2.2).
Denote by H((x, y, t), (ξ, η, τ)) the quadratic Hamiltonian for normal extremals (which will be written in
Sect. 2.2). Extremal curves are smooth and are parametrized by (ξ, η, τ) ∈ T ∗

0 (V1 × V2) ≃ V1 × V2. We denote
them by γ(·, ξ, η, τ) : R → V1 × V2. We always assume γ(0, ξ, η, τ) = (0, 0, 0) (different starting points can be
easily managed by group translations, see [1]). The (constant) horizontal speed of such path is by definition
|(ξ, η)| =

√
|ξ|2 + |η|2. We denote by tcut ∈ ]0,+∞] the related cut time

tcut = tcut(ξ, η, τ) := sup{s̄ > 0 : γ(·, ξ, η, τ) minimizes length on [0, s̄] }.

To state our first result, for τ ∈ Rq \ {0}, introduce the notation Pτ = ττT

|τ |2 ∈ Rq×q to denote the orthogonal

projection on span{τ} ⊂ Rq. Let also P⊥
τ := Iq − Pτ be the orthogonal projection along τ⊥. On a matrix

x = [x1, . . . , xp] ∈ Rq×p, where xk ∈ Rq×1 ≃ Rq for k = 1, . . . , p are the columns of x, the operators Pτx and
P⊥
τ x project separately each column of x.
Then we have the following theorem.

Theorem 1.1 (Cut-time). Consider (ξ, η) ∈ V1 \ {0} and τ ∈ Rq \ {0}. Assume also that |η|+ |Pτξ| > 0. Then,
the length-extremal s 7→ γ(s, ξ, η, τ) such that γ(0, ξ, η, τ) = (0, 0, 0) minimizes length up to

tcut(ξ, η, τ) =
2π

|τ |
. (1.2)

Cut points of the origin can be consequently described as points of the form γ( 2π|τ | , ξ, η, τ) with (ξ, η, τ) satisfying

the previous requirements.

If one of the assumptions τ ̸= 0 and |η| + |Pτξ| > 0 is violated, then we have an extremal of the form
γ(s, ξ, η, 0) = (sξ, sη, 0) which minimizes length globally (see Rem. 2.2). Some of these lines are normal
minimizers, some other are abnormal (abnormal extremal curves will be identified in Prop.2.3).

To comment on Theorem 1.1, let us look at the “horizontal speed vector” (ẋ, ẏ) of a given extremal γ(·, ξ, η, τ).
We have , (ẋ(s), ẏ(s)) = a(ξ, η) cos(|τ |s) + b(ξ, η) sin(|τ |s) + z(ξ, η), for suitable functions a, b, z of the variables
ξ, η (see Sect. 2). The cut time corresponds to a complete period of the circular functions. This agrees with the
standard Heisenberg group and with Heisenberg-type groups [6]. There is however a constant part z(ξ, τ) which,
if nonzero, makes the “horizontal part” (x, y) of a cut point nonzero. Previous results with similar features on
cut times for Carnot groups of step two were proved in [7, 8] for structures of low corank (at most two). The
case of free, step-2 Carnot groups is dealt in [9–11]. Here, working in model (1.1), we have no bounds on the
corank dim(V2). The comprehensive survey paper [12] should be consulted to have a complete account on the
mentioned models and on sub-Riemannian manifolds outside the setting of Carnot groups. In the recent papers
[13] and [14], the authors analyze the cut-time in a rather large class of step-two Carnot groups, including the
limiting case Gq1 of the family of models Gqp object of the present paper.

Our second result involves the description of the cut locus as a set. It turns out from Theorem 1.1 and from
the form of extremals written in Section 3, that cut points have the form

x
(2π
|τ |
, ξ, η, τ

)
=

2π

|τ |
P⊥
τ ξ

y
(2π
|τ |
, ξ, η, τ

)
= 0

t
(2π
|τ |
, ξ, η, τ

)
=

π

|τ |2
(
|Pτξ|2 + |η|2

) τ

|τ |
− 2π

|τ |2
P⊥
τ ξ

ξT τ

|τ |

where τ ̸= 0 and |η|2 + |Pτξ|2 > 0. Note first that if q = 1 and τ ∈ R1 \ {0}, trivially we have τ⊥ = {0} and
P⊥
τ = 0. Then cut points have the form (0, 0, t), i.e. they are contained in the t-axis. This is the familiar case of the
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Heisenberg groupHp (see [2], Chap. 13). If instead q > 1, then P⊥
τ is always nonzero and we have points (x, 0, t) ∈

Cut(Gqp) with x ̸= 0. The natural question is now whether or not we may have Cut(Gqp) = {(x, 0, t) ∈ V1×V2},
for some choices of q and p. The answer is not, by the following theorem. To state it, given x ∈ Rq×p, introduce
PIm x and P⊥

Im x : Rq → Rq to denote respectively the orthogonal projection on Imx := {xy : y ∈ Rp} ⊂ Rq and
on its orthogonal. The linear map x† ∈ Rp×q denotes instead the Moore-Penrose inverse of x (see below).

Theorem 1.2 (Identification of the cut locus). Let q, p ∈ N and let Gqp be the associated Carnot group. Then
1. We have

Cut(Gqp) =
{
(x, 0, t) ∈ Gqp : t /∈ Imx and |P⊥

Im xt| ≥ π|x†t|2
}
. (1.3)

2. If p ≥ 2, then all cut points are conjugate points.
3. A cut point (x, 0, t) is reached by a unique unit-speed length-minimizing curve if and only if equality

|P⊥
Im xt| = π|x†t|2 holds.

4. Finally, the distance from the origin of a cut point (x, 0, t) has the form

d(x, 0, t) =
√
|x|2 + 4π|P⊥

Im xt|. (1.4)

If p = 1, item 2 is drastically different. Note that for p = 1 we have x†t = ⟨x,t⟩
|x|2 .

Theorem 1.3. If p = 1 and q ≥ 2, a cut point (x, 0, t) is conjugate if and only if

|x|
(
|P⊥

Im xt| − π|x†t|2
)
= 0. (1.5)

In the statement above, for the notion of conjugate point, see Definition 2.4. The conjugate point (x, 0, t) is
necessarily a first conjugate point, see Remark 2.5. For the Moore-Penrose inverse x† ∈ Rp×q of x, see e.g. [15].
Precisely, given t ∈ Rq, x†t is uniquely defined by xx†t = PIm xt and x

†t ⊥ kerx. If kerx = {0}, then x†t is the
unique solution y ∈ Rp of the system xy = PIm xt. Otherwise, x†t is the smallest-norm element of the set of
solutions {y = x†t+η : η ∈ kerx} of xy = PIm xt. In other words, |x†t| = |x†PIm xt| = min{|y| : y ∈ Rp and xy =
PIm xt}. Note that we do not include (0, 0, 0) in our definition of cut-locus. Observe that (1.3) implies that
Imx ̸= Rq for any point (x, 0, t) ∈ Cut(Gqp). Furthermore, since given x = 0 ∈ Rq×p, we have 0† = 0 ∈ Rp×q, all
points of the form (0, 0, t) with t ̸= 0 belong to the cut locus as expected. Finally, for all r > 0 the set in (1.3)
is dilation invariant with respect to the standard Carnot homogeneous dilation (x, y, t) 7→ (rx, ry, r2t).

Remark 1.4. Some remarks on Theorems 1.1 and 1.2 are now in order.
1. In Theorem 1.2, we describe precisely all cut points reached by a unique length-minimizer. Such kind of

minimizers are absent in p-dimensional Heisenberg groups G1p (case (q = 1)), and in the free step-2, rank-
three model (not included in our class Gqp). They appear, but they remained unnoticed in [8]. Points of
such kind appear classically on Riemannian equatorial geodesics in oblate revolution ellipsoids (see [16]).
In Remark 5.1 we prove that points in Cut(Gqp) reached by more than one unit-speed length-minimizer
are dense in Cut(Gqp). See [17], for the Riemannian analogous.

2. The set Cut(Gqp) ∪ {(0, 0, 0)} is not closed for any q ≥ 2 and p ∈ N. Indeed, consider a family (x, 0, εt)
with x ̸= 0, t ̸= 0 and t ⊥ Imx (this forces q ≥ 2). We have (x, 0, εt) ∈ Cut(Gqp) for all ε > 0, but (x, 0, 0)
is not a cut point for any x ∈ Rq×p. In Proposition 2.3, we prove that these points (x, 0, 0) ̸= 0 belonging to
Cut(Gqp) \Cut(Gqp) are always abnormal points. Recall that, in absence of abnormal minimizers, Rifford
and Trélat proved in [18], Lemma 2.11 that in a sub-Riemannian Carnot group G the set Cut(G) ∪ {0} is
closed.

3. At abnormal points appearing in item 2, the function tcut : T ∗
0Gqp → ]0,+∞], defined as (ξ, η, τ) 7→

tcut(ξ, η, τ) has a discountinuous behaviour (upper semicontinuous, unbounded), as a function of the dual
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variables (ξ, η, τ). See Example 3.6. The function (s, ξ, η, τ) 7→ γ(s, ξ, η, τ) is instead smooth in all its
arguments, by standard ODE theory.

4. Observe that Cut(Gqp) can be a quite large set. Namely, if p = 1, it turns out that Cut(Gq1) contains
the set {(x, 0, t) ∈ Gq1 : |P⊥

Im xt| ≩ π|x†t|2 and rankx is maximal}, which is an open1 dilation invariant
subset of the codimension-one hyperplane of equation y = 0. Note that in free step-2 Carnot groups Fk of
rank k = 2 and k = 3, the cut-locus is a smooth manifold of dimension dim(Cut(Fk)) = dim(Fk)− 2 (for
the case k = 3, see [9], Rem. 4.3). The conjectured dimension of Cut(Fk) is again dim(Fk)− 2 in rank-k,
step-2 groups Fk with k ≥ 3. See [11]. Observe finally that in the limiting case p = 1 our set (1.5) agrees
with the one found by [14], Section 10 with completely different methods.

5. Finally, note that in the model Gq1, all points (x, 0, t) ∈ Cut such that (1.5) is violated give examples
of extremals whose cut time is strictly less than the first conjugate time. See [8] for previous different
examples.

Since the cut locus appearing in (1.3) is not easy to visualize for general values of q, p, in Section 5.1 we
discuss in some details the group Gq1. In that case, the cut locus turns out to be defined as a sublevel set of an
explicit scalar polynomial function. Its regularity properties are analyzed in Proposition 5.3.

Let us describe now the structure of the paper. In Section 2, after providing general notation and known
facts, we write the length-extremals of our sub-Riemannian problem and we characterize abnormal ones. To
prove Theorem 1.1, starting from the candidate cut time 2π

|τ | appearing in (1.2), we show in Section 3 the upper

estimate tcut ≤ 2π
|τ | for extremals which are not Euclidean lines. This is achieved by the analysis of conjugate

points (Props. 3.1 and 3.2). We also characterize points reached by a unique minimizer (see Prop. 3.4). In
Section 4, we prove the lower bound tcut ≥ 2π

|τ | by using a geometric-control argument in part inspired to the

paper [8]. Finally, in Section 5, we conclude the proof of Theorem 1.2. In Section 5.1, we also explicitly describe
Cut(Gq1) and we analyze its regularity. In Section 6, we prove Theorem 1.3.

2. Reiter–Heisenberg groups and their length-extremals

In this section we briefly recall the notion of sub-Riemannian length and distance in Reiter–Heisenberg
groups. Then we write the explicit form of extremals and, among them, we characterize the abnormal ones.

2.1. General facts

Let (Gqp, ·) be the Reiter–Heisenberg group defined in (1.1). A horizontal curve is a Lipschitz-continuous
solution γ = (x, y, t) : [0, T ] → V1 × V2 of the ODE

(ẋ, ẏ) = (u, v) and ṫ = Q((x, y), (u, v)), a.e. on [0, T ], (2.1)

where (u, v) : [0, T ] → V1 is an L∞ control. The horizontal speed of γ is |γ̇|hor :=
√
|u|2 + |v|2 :=√

(traceuTu)2 + |v|2. The length of γ is
∫ T

0
|γ̇|hor(s)ds. Since we have Hörmander’s rank condition

span{Q((x, y), (ξ, η)) : (x, y), (ξ, η) ∈ V1} = V2, it turns out that any pairs of points can be connected by a
horizontal curve (this follows from Chow–Rashevskii theorem). Minimizing such length we obtain the well
known sub-Riemannian distance.

Let us introduce some notation in Gqp. We sometimes identify Rp with Rp×1 and the same for Rq. As we
declared, we use the Hilbert–Schmidt inner product in Rq×p, i.e. ⟨x, ξ⟩ := trace(ξTx). Then, in Rq×p × Rp

we define ⟨(x, y), (ξ, η)⟩ := ⟨x, ξ⟩ + ⟨y, η⟩, so that eαe
T
k as α ∈ {1, . . . , q} and k ∈ {1, . . . , p} is an orthonormal

basis of Rq×p, where eα and ej , with α ∈ {1, . . . , q} and j ∈ {1, . . . p} denote the canonical basis of Rq and Rp.
Introduce, for τ ∈ Rq, the linear map Aτ : V1 → V1

Aτ (ξ, η) = (τηT ,−ξT τ).
1By [19], the map x 7→ x† is continuous on the open set {x ∈ Rq×p : rank(x) is maximal}.
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Since the map is also linear in τ , we have Aτ =
∑q

α=1 ταAeα , with Aeα(ξ, η) = (eαη
T ,−ξT eα) for all (ξ, η) ∈ V1.

Thus, we have

⟨(x, y), Aeα(ξ, η)⟩ = ⟨(x, y), (eαηT ,−ξT eα)⟩ = ⟨x, eαηT ⟩ − ⟨y, ξT eα⟩ = ⟨xη − ξy, eα⟩.

Each map Aeα is skew-symmetric and we have Q((x, y), (ξ, η)) = 1
2

∑q
α=1⟨(x, y), Aeα(ξ, η)⟩eα.

2.2. Extremal curves

We are interested in writing length-minimizing curves. In order to write them, we follow [2], Section 13.1.
Note that in step-2 Carnot groups it is known that all extremals are normal (see [2], Cor. 12.14). We first write
a frame of left-invariant horizontal orthonormal vector fields. For α ∈ {1, . . . , q} and k, j ∈ {1, . . . , p} we have

Xαk(x, y, t) =
d

ds

∣∣∣
s=0

(x, y, t) · (seαeTk , 0, 0) =
(
eαe

T
k , 0,−

1

2
ykeα

)
Yj(x, y, t) =

d

ds

∣∣∣
s=0

(x, y, t) · (0, sej , 0) =
(
0, ej ,

1

2
xej) =

(
0, ej ,

1

2
xj),

(2.2)

where we wrote x = [x1, . . . , xp] with xj ∈ Rq for all j ∈ {1, . . . , p}. Introducing the functions
uαk(x, y, t, ξ, η, τ) := ⟨(ξ, η, τ), Xαk(x, y, t)⟩ and vj(x, y, t, ξ, η, τ) = ⟨(ξ, η, τ), Yj(x, y, t)⟩, extremals are furnished
by the Hamiltonian

H((x, y, t), (ξ, η, τ)) =
1

2

∑
α,k

uαk(x, y, t, ξ, η, τ)
2 +

1

2

∑
j

vj(x, y, t, ξ, η, τ)
2.

Namely, to obtain all minimizers from (0, 0, 0), one integrates the Hamiltonian system (ẋ, ẏ, ṫ) = ∇(ξ,η,τ)H and

(ξ̇, η̇, τ̇) = −∇(x,y,t)H with initial data (x(0), y(0), t(0)) = (0, 0, 0) and (ξ(0), η(0), τ(0)) = (ξ, η, τ) ∈ T ∗
0Gqp ≃

V1 × V2.
2 It turns out that extremals from the origin are horizontal curves

s 7→ γ(s) = γ(s, ξ, η, τ) ∈ V1 × V2 (2.3)

parametrized by (ξ, η, τ) ∈ V1 × V2. Furthermore, again, by [2], Section 13.1, given (ξ, η, τ), the extremal curve
γ(·, ξ, η, τ) is the solution of (2.1), with

(u(s), v(s)) = e−sAτ (ξ, η) ∈ V1 × V2. (2.4)

Next we give the form of extremal curves in terms of the three functions

T (φ) =
sinφ

φ
, U(φ) =

φ− sinφ cosφ

4φ2
and V (φ) =

sinφ− φ cosφ

2φ2

defined for φ > 0.

2Since we are taking global coordinates ((x, y, t), (ξ, η, τ)) ∈ (V1 × V2) × (V1 × V2) on T ∗(V1 × V2), we identify covectors in
T ∗
(0,0,0)

(V1 × V2) with (ξ, η, τ) ∈ V1 × V2.
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Proposition 2.1. For all (ξ, η, τ) ∈ T ∗(V1 × V2) ≃ V1 × V2 with τ ̸= 0, the curve γ(·, ξ, η, τ) =
(x(·, ξ, η, τ), y(·, ξ, η, τ), t(·, ξ, η, τ)) in (2.3) has the form

x(s, ξ, η, τ) = sT
( |τ |s

2

){
Pτξ cos

( |τ |s
2

)
− τηT

|τ |
sin

( |τ |s
2

)}
+ sP⊥

τ ξ

y(s, ξ, η, τ) = sT
( |τ |s

2

){
η cos

( |τ |s
2

)
+
ξT τ

|τ |
sin

( |τ |s
2

)}
t(s, ξ, η, τ) = s2U

( |τ |s
2

){
|Pτξ|2 + |η2|

} τ

|τ |

+ s2V
( |τ |s

2

)
P⊥
τ ξ

{
− η sin

( |τ |s
2

)
+
ξT τ

|τ |
cos

( |τ |s
2

)}
.

(2.5)

In formula (2.5), recall that Pτ := ττT

|τ |2 ∈ Rq×q and P⊥
τ = Iq − Pτ . Note also that |Pτξ|2 = |ξT τ |2

|τ |2 . Observe

the known property

γ(λs, ξ, η, τ) = γ(s, λξ, λη, λτ), for all λ > 0, (ξ, η, τ) ∈ V1 × V2. (2.6)

Proof. Since

A2
τ (ξ, η) = (−ττT ξ,−|τ |2η) and A3

τ (ξ, η) = −|τ |2(τηT ,−ξT τ) = −|τ |2Aτ (ξ, η), (2.7)

summing up the series we get

(u(s), v(s)) = (ξ, η)− sin(|τ |s)
|τ |

(τηT ,−ξT τ)− 1− cos(|τ |s)
|τ |2

(ττT ξ, |τ |2η).

Let now

a = a(ξ, η) := (Pτξ, η), b = b(ξ, η) :=
(
− τηT

|τ |
,
ξT τ

|τ |

)
, z = z(ξ, η) := (P⊥

τ ξ, 0).

Then, we can write (u(s), v(s)) = a cos(|τ |s) + b sin(|τ |s) + z. Using the function T (φ) := sinφ
φ and by

trigonometry we get

(x(s), y(s)) =
sin(|τ |s)

|τ |
a+

1− cos(|τ |s)
|τ |

b+ sz

= sT
( |τ |s

2

){
a cos

( |τ |s
2

)
+ b sin

( |τ |s
2

)}
+ sz

= sT
( |τ |s

2

){
(Pτξ, η) cos

( |τ |s
2

)
+

(
− τηT

|τ |
,
ξT τ

|τ |

)
sin

( |τ |s
2

)}
+ s(P⊥

τ ξ, 0).
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To calculate t(s) =
∫ s

0
Q((x, y), (u, v)), integrating and by bilinearity we get

t(s) =

∫ s

0

Q

(
sin(|τ |σ)

|τ |
a+

1− cos(|τ |σ)
|τ |

b+ σz, a cos(|τ |σ) + b sin(|τ |σ) + z

)
dσ

=
|τ |s− sin(|τ |s)

|τ |2
Q(a, b) +

2(1− cos(|τ |s))− |τ |s sin(|τ |s)
|τ |2

Q(a, z)

+
|τ |s(1 + cos(|τ |s))− 2 sin(|τ |s)

|τ |2
Q(b, z).

(2.8)

The form of t has a structure analogous to [9], equation (2.6). By the definition Q((x, y), (x̄, ȳ)) := 1
2 (xȳ − x̄y)

and |ξT τ |2
|τ |2 = |Pτξ|2, an easy calculation gives

Q(a, b) =
1

2

{ |ξT τ |2

|τ |2
+ |η|2

} τ

|τ |
=

1

2
(|Pτξ|2 + |η|2) τ

|τ |

Q(a, z) = −1

2
P⊥
τ ξ η ∈ Rq×1 and Q(b, z) = −1

2
P⊥
τ ξ

ξT τ

|τ |
.

Therefore, starting from (2.8), we obtain

t(s) =
|τ |s− sin(|τ |s)

2|τ |2
(|Pτξ|2 + |η|2) τ

|τ |
− 2(1− cos(|τ |s))− |τ |s sin(|τ |s)

2|τ |2
P⊥
τ ξ η

− |τ |s(1 + cos(|τ |s))− 2 sin(|τ |s)
2|τ |2

P⊥
τ ξ

ξT τ

|τ |
.

(2.9)

Writing trigonometric functions in terms of |τ |s
2 instead of |τ |s, we get

t(s, ξ, η, τ) = s2U( |τ |s2 )(|Pτξ|2 + |η|2) τ
|τ |

+ s2V ( |τ |s2 )
(
− sin( |τ |s2 )P⊥

τ ξ η + cos( |τ |s2 )P⊥
τ ξ

ξT τ

|τ |

)
,

(2.10)

as desired. The proof is finished.

Remark 2.2. It is easy to check that constant-speed Euclidean lines of the form (x(s), y(s), t(s)) = (su, sv, 0)
for some (u, v) ∈ V1 \{(0, 0)} are always globally minimizing. Furthermore, an extremal of the form (u(s), v(s)) =
e−sAτ (ξ, η) gives rise to an Euclidean line of that form if and only if{

τ = 0

|ξ|2 + |η|2 > 0
or

{
|τ | |P⊥

τ ξ| > 0

|η|2 + |Pτξ|2 = 0.

In the first case, γ̇(s) = (ξ, η, 0) and we have γ(s) = (sξ, sη, 0). In the second case we have instead ξT τ = 0
and (2.5) implies that γ(s) = (sP⊥

τ ξ, 0, 0) = (s[P⊥
τ ξ1, . . . , P

⊥
τ ξp], 0, 0). Note that in both cases we have Aτ (ξ, η) =

(τηT ,−ξT τ) = 0, getting e−sAτ (ξ, η) = (ξ, η) trivially.

We conclude this section with a characterization of abnormal extremal curves. Recall that, by definition,
given a L2 control (u, v) : (0, T ) → V1, the curve γ(u,v) : [0, T ] → Gqp is abnormal if d(u,v)E : L2((0, T ) → G ∼
TE(u,v)G) is not onto. Here E : L2(0, T ) → Gqp is the end point map, i.e. E(u, v) := γ(u,v)(T ), where γ(u,v) is
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the curve corresponding to (u, v) and with γ(0) = (0, 0, 0). We say instead that γ(u,v) is strictly normal when it
is not abnormal in any subsegment of [0, T ].

Proposition 2.3. Let q ≥ 2 and let (ξ, η, τ) ∈ Gqp ≃ T ∗
(0,0,0)Gqp and assume that |ξ|2 + |η|2 > 0. The curve

γ(·, ξ, η, τ) is abnormal if and only if it has the form γ(s) = (sξ, 0, 0) with Im ξ ̸= Rq.

If q = 1, all extremals are strictly normal. Recall also that it is known from second-order analysis that in
step-2 Carnot groups all abnormal curves are also normal. See [2], Corollary 12.14 and [20], Section 20.5.

Proof. By [21], Section 3, we know that an extremal curve γ(ξ,η,τ) = (x(ξ,η,τ), y(ξ,η,τ), t(ξ,η,τ)) corresponding to
a given control (u(s), v(s)) = e−sAτ (ξ, η) is abnormal if and only of there is σ ∈ Rq \ {0} such that

Aσe
−sAτ (ξ, η) = (0, 0) for all s ∈ R. (2.11)

In order to show the “if” part, consider (u(s), v(s)) = (ξ, 0) for all s ∈ [0, T ], where Im ξ ̸= Rq. Take σ ∈
(Im ξ)⊥ \ {0}. We have Aσ(ξ, 0) = (0,−ξTσ) = (0, 0) and (2.11) follows.

To show the “only if” part, let us look first at case τ = 0. In this case (u(s), v(s)) = (ξ, η) and condition (2.11)
furnishes Aσ(ξ, η) = (σηT ,−ξTσ) = (0, 0). Since σ ∈ Rq must be nontrivial, first coordinate gives η = 0. The
second is equivalent to Pσξ = 0. Thus, it must be P⊥

σ ξ ̸= 0. Existence of such a σ ̸= 0 is equivalent to condition
Im ξ ̸= Rq.

Let finally (u(s), v(s)) = e−sAτ (ξ, η) be abnormal with τ ̸= 0. From the discussion above, given σ ∈ Rq \ {0},
we have kerAσ = {(ξ, 0) : Im ξ ⊂ σ⊥}. Evaluating (2.11) and its s-derivative at s = 0, we get Aσ(ξ, η) = (0, 0)
and AσAτ (ξ, η) = Aσ(τη

T ,−ξT τ) = (0, 0). Therefore, we get

η = 0, Im ξ ⊂ σ⊥, ξT τ = 0, Im(τηT ) ⊂ σ⊥.

Requirements η = 0 and ξT τ = 0 already imply that Aτ (ξ, 0) = (0, 0) and Im ξ ⊂ τ⊥, which is a nontrivial
subspace. Therefore e−sAτ (ξ, 0) = (ξ, 0) for all s, and Im ξ ̸= Rq, as we wished.

We briefly recall the notion of conjugate point.

Definition 2.4. Recall that, given an extremal γ(·, ξ̄, η̄, τ̄) with |(ξ̄, η̄)| > 0 and a time s̄ > 0, we say that s̄ is
a conjugate time for γ(·, ξ̄, η̄, τ̄) if the differential of the map (ξ, η, τ) ∈ Gqp 7→ γ(s̄, ξ, η, τ) ∈ Gqp is singular at
(ξ̄, η̄, τ̄).

Remark 2.5. If γ(·, ξ, η, τ) is abnormal, then all times s̄ > 0 are trivially conjugate times (see [2], Rem. 8.46). If
instead γ(·, ξ, η, τ) is not abnormal in any subsegment [0, s], it is known that there is a strictly positive smallest
conjugate time tconj. Furthermore, we have tconj ≥ tcut. The time tconj is usually called first conjugate time. The
corresponding point γ(tconj, ξ̄, η̄, τ̄) is called first conjugate point. All these facts are proved in [2], Section 8.8.

3. Upper estimate tcut ≤ 2π/|τ |
In this section we consider extremal curves γ(·, ξ, η, τ) which are not Euclidean lines (in particular strictly

normal, see Prop. 2.3 and Rem. 2.5). We show that if p ≥ 2, then all points of the form γ( 2π|τ | , ξ, η, τ) with

τ ̸= 0 and |η|+ |Pτξ| > 0 are conjugate points. See Definition 2.4. Among them, we characterize those that are
reached by at least two different (unit-speed) minimizing geodesics exiting from the origin (see Prop. 3.4). The
remaining points are reached by a unique unit-speed minimizing curve. In Gq1, i.e. p = 1 and q ≥ 2, it is not
true that all points γ( 2π|τ | , ξ, η, τ) are conjugate points. Conjugate points in this limiting case are described in

Proposition 3.2 for the sufficient part and in the separate Section 6, Theorem 6.1 for the necessary part, which
is slightly more technical.
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Starting from the form of extremals established in Proposition 2.1, we get

x
(2π
|τ |
, ξ, η, τ

)
=

2π

|τ |
P⊥
τ ξ

y
(2π
|τ |
, ξ, η, τ

)
= 0

t
(2π
|τ |
, ξ, η, τ

)
=

π

|τ |2
(|Pτξ|2 + |η|2) τ

|τ |
− 2π

|τ |2
P⊥
τ ξ

ξT τ

|τ |
.

(3.1)

Proposition 3.1 (Conjugate points for p ≥ 2). Let q ∈ N and p ≥ 2. Given (ξ, η, τ) ∈ V1 × V2, assume that
τ ̸= 0 and |η|2 + |Pτξ|2 > 0 and consider the extremal γ(·, ξ, η, τ). Then, the time s̄ := 2π

|τ | is conjugate.

As we already observed, if τ = 0 or τ ̸= 0 and |η| + |Pτξ| = 0, then γ has the form γ(s) = (sξ, 0, 0). If
Im ξ = Rq, then it must be τ = 0, because there is no τ ̸= 0 such that Pτξ = 0. In this case, γ is strictly normal
and it has no conjugate points. If Im ξ ̸= Rq, then γ is abnormal and all its points are trivially conjugate (see
Prop. 2.3).

Proof. Let (ξ̄, η̄, τ̄) ∈ V1 × V2 ≃ T ∗
0Gqp with |τ̄ |(|Pτ̄ ξ̄|+ |η̄|) > 0. Consider the cylinder Λ = {(ξ, η, τ) ∈ V1 × V2 :

|ξ|2+ |η|2 = |ξ̄|2+ |η̄|2} ⊂ Gqp ≃ T ∗
0Gqp. Consider the map (s, ξ, η, τ) ∈ R×Λ 7→ γ(s, ξ, η, τ) ∈ V1×V2. To prove

the proposition, it suffices to show that det[∂sγ, dΛγ]|(s,ξ,η,τ)=( 2π
|τ̄| ,ξ̄,η̄,τ̄)

= 0. Here dΛγ ∈ RN×(N−1) denotes any

family of independent derivatives in T(ξ̄,η̄,τ̄)Λ with N := dimGqp = qp + p + q. If η̄ ̸= 0, choose v ∈ Rp \ {0}
such that ⟨v, η̄⟩ = 0 and consider the derivative Dv := v · ∇η (note that existence of such a direction v needs
p ≥ 2). Since (3.1) is radial in η, it turns out easily that Dvγ(

2π
|τ̄ | , ξ̄, η̄, τ̄) = 0. This implies that the determinant

above vanishes. If instead η = 0, we have

γ
(2π
|τ̄ |
, ξ̄, 0, τ̄

)
= lim

ε→0
γ
(2π
|τ̄ |
, ξ̄, εη0, τ̄

)
where η0 ∈ Rp is a fixed nonzero vector. Thus, the point with η̄ = 0 is conjugate, being a limit of a family of
conjugate points (recall that γ is a smooth map).

Proposition 3.2 (Conjugate points for q ≥ 2 and p = 1, sufficient condition). Let q ≥ 2 and consider the model
Gq1. Given (ξ, η, τ) ∈ V1 × V2, assume that τ ̸= 0 and |η|2 + |Pτξ|2 > 0 and consider the extremal γ(·, ξ, η, τ). If

ηP⊥
τ ξ = 0, (3.2)

then the time s̄ := 2π
|τ | is conjugate.

Note that assumption (3.2) does not appear in Proposition 3.1, where p ≥ 2. We shall prove in Theorem 6.1
that condition (3.2) is also necessary to have 2π

|τ | as a conjugate time. We do not discuss the case p = q = 1:

this is the familiar Heisenberg group H1, and in this case, using rotation invariance around t-axis, it is easy to
see that all cut points are conjugate. Extremals in the Heisenberg group G11 can be read in plenty of papers,
e.g. [22–24]. See also the general discussions in Section 13.2, 13.3 of [2].

Proof. Let (ξ̄, η̄, τ̄) ∈ V1×V2 ≃ T ∗
0Gqp with |τ̄ |(|Pτ̄ ξ̄|+ |η̄|) > 0. As in the proof of Proposition 3.1 above, consider

the cylinder Λ = {(ξ, η, τ) ∈ V1 × V2 : |ξ|2 + η2 = |ξ̄|2 + η̄2} ⊂ Gq1 ≃ T ∗
0Gq1. Consider the map (s, ξ, η, τ) ∈ R×

Λ 7→ γ(s, ξ, η, τ) ∈ V1×V2. To prove the proposition, it suffices to show that det[∂sγ, dΛγ]|(s,ξ,η,τ)=(2π/|τ̄ |,ξ̄,η̄,τ̄) =

0. Here dΛγ ∈ RN×(N−1) denotes any family of independent derivatives in T(ξ̄,η̄,τ̄)Λ with N := dimGq1 = 2q+1.
Consider the vector field Z := −⟨ξ, τ⟩∂η + ηDτ , where Dτ = ⟨τ,∇ξ⟩. Note that Z is tangent to Λ and Z ̸= 0,
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because η2 + |Pτξ|2 ̸= 0. Taking the form (3.1) of γ( 2π|τ | , ξ, η, τ) into account, after a computation we get

Zx
(2π
|τ̄ |
, ξ̄, η̄, τ̄

)
= (−⟨ξ̄, τ̄⟩∂η + η̄Dτ̄ )

2π

|τ̄ |
P⊥
τ̄ ξ̄ =

2π

|τ̄ |
P⊥
τ̄ τ̄ = 0 (3.3)

and Zy( 2π|τ̄ | , ξ̄, η̄, τ̄) = 0. Also,

Zt
(2π
|τ̄ |
, ξ̄, η̄, τ̄

)
=

π

|τ̄ |3
(−⟨ξ̄, τ̄⟩∂η + η̄Dτ̄ )

(
(|Pτ̄ ξ̄|2 + η̄2)τ̄ − 2P⊥

τ̄ ξ̄ξ̄
T τ̄

)
=

π

|τ̄ |3
{
− 2η̄⟨ξ̄, τ̄⟩τ̄ + 2η̄⟨Pτ̄ ξ̄, Dτ̄Pτ̄ ξ̄⟩τ̄ − 2η̄P⊥

τ̄ ξ̄Dτ̄ ⟨ξ̄, τ̄⟩
}

= −2πη̄

|τ̄ |
P⊥
τ̄ ξ̄,

(3.4)

because Dτ̄P
⊥
τ̄ ξ̄ = P⊥

τ̄ τ̄ = 0 and terms along τ cancel. From these computation, we see that assumption η̄P⊥
τ̄ ξ̄ =

0 implies that det[∂sγ, dΛγ]|(s,ξ,η,τ)=( 2π
|τ̄| ,ξ̄,η̄,τ̄)

= 0.

Propositions 3.1 and 3.2 imply estimate tcut ≤ 2π/|τ | if p ≥ 2. If q ≥ 2 and p = 1, the upper estimate follows
only if ηP⊥

τ ξ = 0.

Remark 3.3. The upper estimate in case q ≥ 2, p = 1 and ηP⊥
τ ξ ̸= 0 can be obtained easily from the fact

that if η ̸= 0, then γ( 2π|τ | , ξ, η, τ) = γ( 2π|τ | , ξ,−η, τ). Thus there are two different extremals reaching the point

γ( 2π|τ | , ξ, η, τ) with length 2π
|τ | |(ξ, η)|.

The remark above concludes the proof of the upper estimate in all cases. In Section 4 we shall prove the
opposite estimate tcut ≥ 2π/|τ |.

In next proposition, we find for all p, q, all points γ( 2π|τ | , ξ, η, τ) ∈ Gqp reached by more than one extremal of

length 2π
|τ | |(ξ, η)|.

In the statement of the following proposition, to have a clean exposition, we take for granted equality
tcut = 2π/|τ | for all extremals different from Euclidean lines. (Note that arguments in Prop. 3.4 and in Sect. 4
are independent of each other.)

It is easy to show that for an extremal of the form γ(s, ξ, η, τ) with τ ̸= 0 and η ̸= 0, we have γ( 2π|τ | , ξ, η, τ) =

γ( 2π|τ | , ξ, Rη, τ) for all R ∈ O(p). Therefore the point is reached by more than one minimizer of equal speed.

There are also cut points with η = 0 reached by at least two minimizers of equal speed, and we now characterize
them. All other cut points are reached by a unique minimizer.

Proposition 3.4 (Cut points reached by at least two different arclength minimizers). Let τ ∈ Rq \ {0}. Let
|ξ|2 + |η|2 = 1 and assume also that |η|2 + |Pτξ|2 > 0. Then there is (ξ′, η′, τ ′) ̸= (ξ, η, τ) such that{

|ξ′|2 + |η′|2 = |ξ|2 + |η|2 = 1, |τ ′| = |τ | and

γ( 2π
|τ ′| , ξ

′, η′, τ ′) = γ( 2π|τ | , ξ, η, τ)
(3.5)

if and only if either η ̸= 0, or

η = 0 and ξT τ is not orthogonal to kerP⊥
τ ξ. (3.6)

Remark 3.5. 1. Assumption τ ̸= 0 and |η|2 + |Pτξ|2 > 0 ensure that the curve γ(s, ξ, η, τ) is not an
Euclidean line contained in the plane t = 0. See Remark 2.2.



SUB-RIEMANNIAN CUT TIME AND CUT LOCUS IN REITER–HEISENBERG GROUPS 11

2. The second assumption in (3.6) implicitely implies that the columns P⊥
τ ξ1, . . . , P

⊥
τ ξp of P⊥

τ ξ are linearly
dependent in Rq (i.e., rankP⊥

τ ξ < p) and that ξT τ ̸= 0 ∈ Rp. If p = 1, this means P⊥
τ ξ = 0 and Pτξ ̸= 0.

3. In terms of coordinates (x, y, t) on V1 × V2, points reached by a unique unit-speed length-minimizer will
be characterized in Section 5.

4. If q = 1, the group G1p = Hp is the familiar p-dimensional Heisenberg group, and it is easy to see that
if τ ̸= 0 and η = 0 ∈ Rp×1, condition (3.6) is satisfied by any ξ ∈ R1×p \ {0}. In case q = 1, P⊥

τ ξ ∈ R1

vanishes trivially.

Proof of Proposition 3.4. Let (ξ, η, τ) ∈ T ∗
0 (V1×V2) ≃ V1×V2 be such that |ξ|2+ |η|2 = 1. We first characterize

all (ξ′, η′, τ ′) satisfying (3.5). By (3.1), condition x( 2π
|τ ′| , ξ

′, η′, τ ′) = x( 2π|τ | , ξ, η, τ) and |τ | = |τ ′| give

P⊥
τ ξ = P⊥

τ ′ ξ′, (3.7)

while assumption t( 2π
|τ ′| , ξ

′, η′, τ ′) = t( 2π|τ | , ξ, η, τ) gives

(|Pτξ|2 + |η|2)τ − 2P⊥
τ ξ ξ

T τ = (|Pτ ′ξ′|2 + |η′|2
)
τ ′ − 2P⊥

τ ′ ξ′ξ′T τ ′. (3.8)

Now we write P⊥
τ ξ = P⊥

τ ′ ξ′ =: v = [v1, . . . , vp], where the column space of v satisfies Im v ⊂ span{τ, τ ′}⊥. We
have then

|ξ|2 + |η|2 = 1 = |η|2 + |Pτξ|2 + |v|2 and |ξ′|2 + |η′|2 = 1 = |η′|2 + |Pτ ′ξ′|2 + |v|2.

Thus |η′|2 + |P⊥
τ ′ ξ′|2 = |η|2 + |Pτξ|2. Projecting orthogonally (3.8) along span{τ, τ ′}, we get then (|η|2 +

|Pτξ|2)(τ − τ ′) = 0. The parenthesis can not vanish by assumption. This forces τ ′ = τ . Thus, (3.8) becomes

P⊥
τ ξ ξ

T τ = P⊥
τ ξ

′ ξ′T τ . Passing to a shorter notation write α := ξT τ
|τ | and α′ := ξ′T τ

|τ | ∈ Rp (keep in mind that

|Pτξ|2 = |ξT τ |2
|τ |2 ). Thus, (ξ′, η′, τ ′) satisfies all conditions (3.5) if and only if τ ′ = τ , P⊥

τ ξ
′ = P⊥

τ ξ =: v and there

are α′ and η′ ∈ Rp such that {
vα′ = vα

|η′|2 + |α′|2 = |η|2 + |α|2 = 1− |v|2,
(3.9)

where v = [v1 . . . , vp] ∈ Rq×p. In order to conclude the proof, we need to understand for which given η, α ∈ Rp

the pair η′, α′ ∈ Rp satisfying (3.9) must be chosen uniquely in the form η′ = η and α′ = α. Note first that if
η ̸= 0, any choice η′ = Rη with R ∈ O(p), R ̸= Ip gives a solution η′ = Rη and α′ = α different from η, α (if
p = 1, just choose η′ = −η). Therefore, to have uniqueness it must be η = 0. If η = 0, then (3.9) becomes

vα′ = vα and |η′|2 + |α′|2 = |α|2 = 1− |v|2.

If ker v = 0, then it must be α′ = α, η′ = η, and we have uniqueness (if p = 1, this occurs when P⊥
τ ξ ̸= 0 ∈ Rq).

Let now ker v be nontrivial. If α ∈ (ker v)⊥, then α = αLS, the least-squares solution of the system vβ = vα with
unknown β ∈ Rp. Then, |α′| ≩ |α| for all α′ ̸= α solving vα′ = vα. Then, it must be α′ = α = αLS and we have
again uniqueness in the choice of η′, α′. Finally, if α /∈ (ker v)⊥, we can choose η′ = 0 and α′ = 2αLS −α ̸= 0. In
this case α′ ̸= α, |α′| = |α| and vα′ = vα as required. If p = 1 and q ≥ 2, ker v ̸= 0 means v = 0. Then, αLS = 0
and the non uniqueness choice becomes α′ = −α.

To resume, if η ̸= 0, we can choose η′ = −η, α′ = α and we have found a choice of (ξ′, η′, τ ′) ̸= (ξ, η, τ). If
η = 0, by assumption (3.6), given η = 0, v = [v1, . . . , vp] ∈ Rq×p and α ̸= 0, there is a second solution η′ = 0,
α′ = 2αLS − α ̸= α, where αLS solves vαLS = vα and αLS ⊥ ker v.
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We have ultimately proved that there is nonuniqueness if and only if either η ̸= 0, or η = 0 and α /∈ (ker v)⊥.
The proof is concluded.

A careful inspection of the proof above shows that, if p ≥ 2, when the choice of (ξ′, η′, τ ′) is not unique, then
we have an infinite, continuous family of choices. If instead p = 1 and q ≥ 2, then in case of non uniqueness
there are either two or infinitely many minimizers.

We conclude this section with an example showing that the function (ξ, η, τ) ∈ Gqp 7→ tcut(ξ, η, τ) is
discontinuous for q ≥ 2.

Example 3.6. Let q ≥ 2, let ξ ∈ Rq×p \ {0} with Im ξ ⊊ Rq and τ ∈ (Im ξ)⊥ \ {0} (i.e. ξ = P⊥
τ ξ). Assume that

|τ | = 1 and consider η ∈ Rp \ {0}. Then for any ε > 0 we have the family of cut points

γ(2π, ξ, εη, τ) = (2πξ, 0, e2π|η|2τ) → (2πξ, 0, 0) = γ(2π, ξ, 0, τ).

The corresponding cut-times are tcut(ξ, εη, τ) = 2π for all ε > 0. However, tcut(ξ, 0, τ) = +∞. Note that the
point (2πξ, 0, 0) in this example is abnormal.

4. Lower bound tcut ≥ 2π
|τ |

Here we prove the following lower bound for the cut-time.

Proposition 4.1. Let ū = u(·, ξ̄, η̄, τ̄) be a given extremal control with τ̄ ̸= 0 and |η̄|+ |Pτ̄ ξ̄| > 0. Then the cut
time of γū satisfies tcut ≥ 2π

|τ̄ |

Proof. We work following the argument of [8], Section 2.3.2, which is in turn based on [20], Chapter 12.4. Let
ξ̄, η̄, τ̄ be given and let

(ū(s), v̄(s)) = (u, v)(s, ξ̄, η̄, τ̄) = e−sAτ̄ (ξ̄, η̄) (4.1)

and γ̄(s) = γ(s, ξ̄, η̄, τ̄) be a given extremal path which we assume to be parametrized by arclength, i.e. |ξ̄|2 +
|η̄|2 = 1. Fix a positive time ŝ < 2π

|τ̄ | . We want to show that γ̄ minimizes length between (0, 0, 0) and (x̄, ȳ, t̄) :=

γ̄(ŝ).
Consider a control (u, v) ∈ L2((0, ŝ),Rq×p×Rp) and the corresponding path γ(u,v) as defined in (2.1). Denote

γ(u,v)(s) = (x(u,v)(s), y(u,v)(s), t(u,v)(s)) for all s. On the control (u, v) we require the following three properties.

(1) |(u, v)| = 1 a.e. on [0, ŝ] (i.e. γ(u,v) is arclength).
(2) We have (x(ŝ), y(ŝ)) = (x̄, ȳ).

(3) (u, v) maximizes the cost J(u, v) := ⟨τ̄ , t(u,v)(ŝ)⟩ =:
∫ ŝ

0
φ((x, y, t), (u, v)).

We claim first that the three statements (i), (ii), and (iii) of Lemma 21 in [8] hold in our setting too.
Statement (i) claims that there is (u, v) ∈ L2 such that (1), (2), and (3) hold. This is a standard compactness

argument. Roughly speaking, it suffices to take a minimizing sequence {(un, vn)}n∈N ∈ L∞([0, ŝ], V1). Using
(1) and the ODE (2.1) one can easily check that the sequence {(xn, yn, tn)} is equicontinuous and uniformly
bounded. Passing to a subsequence, we may assume that (xn, yn, tn) converges uniformly to a Lipschitz function
(x, y, t) on [0, ŝ]. This ensures (2). To check that the limit (x, y, t) satisfies (2.1), we use the weak compactness of
the sequence {(un, vn)} which by (1) has a subsequence converging to a limit (u, v) satisfying |(u(s), v(s))| ≤ 1
for a. e. s ∈ [0, ŝ]. Observe that the set {(u, v) ∈ V1 : |(u, v)| ≤ 1} is convex.

Statement (ii) claims that γ(u,v) is a length-minimizer on [0, ŝ]. To show this property, assume by contradiction
that there is ε > 0 and an arclength control (u′, v′) on [0, ŝ−ε] such that γ(u′,v′)(0) = (0, 0, 0) and γ(u′,v′)(ŝ−ε) =
γ(u,v)(ŝ) = (x̄, ȳ, t(u,v)(ŝ)). Since the sub-Riemannian ε-ball is open, we can extend (u′, v′) on [ŝ− ε, ŝ] to achieve
a final point (x̄, ȳ, t(u′,v′)(ŝ)) such that ⟨τ̄ , t(u′,v′)(ŝ)⟩ > ⟨τ̄ , t(u,v)(ŝ)⟩ contradicting (3).
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Claim (iii) asserts that the solution γ(u,v) discussed in (i) and (ii) has the precise form γ(u,v) = γ(·, ξ, η, λτ̄)
for a suitable (ξ, η) of unit norm and λ > 0. To accomplish this step, observe that the cost function ⟨τ̄ , t(u,v)ŝ⟩
is the integral on [0, ŝ] of

d

ds
⟨τ̄ , t⟩ = ⟨τ̄ , ṫ⟩ = 1

2
⟨τ̄ , xv − uy⟩

=
1

2

(
⟨x, τ̄vT ⟩ − ⟨y, uT τ̄⟩

)
=

1

2
⟨(x, y), Aτ̄ (u, v)⟩ =: φ((x, y, t), (u, v)).

Therefore, by [20], Theorem 12.13, the Hamiltonian to study problem (1), (2) and (3) is

H(u,v)((x, y, t), (ξ, η, τ)) =
∑

α=1,...,q
k=1,...,p

uαk⟨Xαk(x, y, t), (ξ, η, τ)⟩+
∑

j=1,...,p

vj⟨Yj(x, y, t), (ξ, η, τ)⟩

+ 2νφ((x, y, t), (u, v))

= ⟨u, ξ⟩+ ⟨v, η⟩ − 1

2
⟨u, τyT ⟩+ 1

2
⟨v, xT τ⟩+ ν

(
⟨x, τ̄vT ⟩ − ⟨y, uT τ̄⟩

)
where we used (2.2). Since we are maximizing

∫ ŝ

0
φ, we have ν ≥ 0. An optimal control for our problem should

satisfy the related Hamilton equations for suitable ν. Furthermore it must satisfy the transversality condition,
with target manifold N1 := {(x, y, t) ∈ V1 × V2 : (x, y) = (x̄, ȳ)}. Thus, (ξ, η, τ)(ŝ) ⊥ N1, which becomes τ(ŝ) =
0. Since τ̇ = −∇tH = 0, we have τ(s) = 0 on [0, ŝ] for the requested solution. Therefore (along an optimal
control) we can write the Hamiltonian in the form

H(u,v)((x, y, t), (ξ, η, τ)) = ⟨u, ξ⟩+ ⟨v, η⟩+ ν
(
⟨x, τ̄vT ⟩ − ⟨y, uT τ̄⟩

)
=

〈
(u, v), (ξ, η)− νAτ̄ (x, y)

〉
.

The remaining Hamilton equations are

ξ̇ = −∇xH = −ντ̄vT and η̇ = −∇yH = νuT τ̄ , i.e. (ξ̇, η̇) = −νAτ̄ (u, v). (4.2)

The maximality condition [20], Theorem 12.13, equation (12.31) and Remark 12.2 states that along the optimal
control (u(s), v(s)) we have for almost all s ∈ [0, ŝ]〈

(u(s), v(s)),(ξ(s), η(s))− νAτ̄ (x(s), y(s))
〉

= max
|(u,v)|=1

〈
(u, v), (ξ(s), η(s))− νAτ̄ (x(s), y(s))

〉
=

∥∥∥(ξ(s), η(s))− νAτ̄ (x(s), y(s))
∥∥∥ = 1.

Therefore, the unit-norm control (u(s), v(s)) has the form (u(s), v(s)) = (ξ(s), η(s)) − νAτ̄ (x(s), y(s)). This
shows first that (u(0), v(0)) = (ξ(0), η(0)). Furthermore, since (ẋ, ẏ) = (u, v), differentiating the latter formula
we get (u̇, v̇) = (ξ̇, η̇) − νAτ̄ (u, v) = −2νAτ̄ (u, v) = −A2ντ̄ (u, v), where we also used (4.2). Thus the solution
has the form

(u(s), v(s)) = e−sA2ντ̄ (ξ, η) (4.3)

where ν > 0 and (ξ, η) is a unit vector. This shows (iii) and completes the analogous of [8], Lemma 21.
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We are left with the proof that the control (ū, v̄) in (4.1) and (u, v) in (4.3) are the same, i.e. that ν = 1
2 .

Precisely, we prove the following claim (see again [8]).
Claim. Let (ū, v̄) : R → Rq×p × Rp be the control in (4.1). Let (ξ, η) ∈ V1 be of unit norm, let ŝ ∈

]
0, 2π|τ̄ |

[
and let ν > 0. Let (u, v)(s) = e−sA2ντ̄ (ξ, η) and put (x, y)(s) =

∫ s

0
(u, v). Then, if (x(ŝ), y(ŝ)) = (x̄, ȳ) and γ(u,v)

minimizes length at least until ŝ, we have ν = 1
2 and (ξ, η) = (ξ̄, η̄).

To prove the claim note first that, since γ(u,v) minimizes length at least until ŝ it must be ŝ ≤ 2π
2ν|τ̄ | , which

gives the upper bound on ν ≤ π
ŝ|τ̄ | . Write now ξ = Pτ̄ξ+P⊥

τ̄ ξ =
τ̄
|τ̄ |λ

T + v where v = P⊥
τ̄ ξ and λ = ξT τ̄

|τ̄ | . In view

of (2.5), assumption (x(ŝ), y(ŝ)) = (x̄, ȳ) reads

ŝT (ŝν|τ̄ |) τ̄
|τ̄ |

{
λT cos(ŝν|τ̄ |)− ηT sin(ŝν|τ̄ |)

}
+ ŝP⊥

τ̄ ξ = x̄

ŝT (ŝν|τ̄ |)
{
η cos(ŝν|τ̄ |) + λ sin(ŝν|τ̄ |)

}
= ȳ

Recall that τ̄ is given. Then we can project the system along τ̄⊥ and τ̄ , obtaining P⊥
τ̄ ξ =

1
ŝP

⊥
τ̄ x̄ and


ŝT (ŝν|τ̄ |)

{
λ cos(ŝν|τ̄ |)− η sin(ŝν|τ̄ |)

}
=
x̄T τ̄

|τ̄ |

ŝT (ŝν|τ̄ |)
{
η cos(ŝν|τ̄ |) + λ sin(ŝν|τ̄ |)

}
= ȳ.

(4.4)

Taking the norm and summing up we find ŝ2T (ŝν|τ̄ |)2
(
|λ|2 + |η|2

)
= |x̄T τ̄ |2

|τ̄ |2 + |ȳ|2. Since |λ|2 + |η|2 = |Pτ̄ξ|2 +

|η|2 = 1− |P⊥
τ̄ ξ|2 = 1− |P⊥

τ̄ x̄|2
ŝ2 , we find

ŝ2
( sin(νŝ|τ̄ |)

νŝ|τ̄ |

)2(
1− |P⊥

τ̄ x̄|2

ŝ2

)
=

|x̄T τ̄ |2

|τ̄ |2
+ |ȳ|2. (4.5)

Since ŝ, x̄, ȳ and τ̄ are known, the only unknown here is ν ∈ ]0, π/(ŝ|τ̄ |)]. We already know that ν = 1
2 belongs

to that interval and is a solution of the equation (4.5). Since the function ν 7→ (sin(νŝ|τ̄ |)/(νŝ|τ̄ |))2 is strictly
decreasing on ]0, π/(ŝ|τ̄ |)], the solution ν = 1

2 is unique. Letting then ν = 1
2 we go to the Cramer system (4.4)

and we find uniquely η = η̄ and λ = ξ̄T τ̄
|τ̄ | . The proof is finished.

Remark 4.2. We give an idea of our choice of the cost (3) in the proof of Proposition 4.1. Our choice is
suggested by the form of the cost in problem (P) at page 570 of [8], which is actually a control problem in
a corank-1 quotient of the general corank-2 group the authors are working with. In our case, to get corank-
1 quotients, we can take any unit vector ω ∈ Rq×1 and we can consider the quotient Gω defined as follows.
Gω = {(x, y, ωωT t) ∈ Gqp : (x, y, t) ∈ Gqp}. As a set, Gω = V1 × span{ω}. It can be equipped with the operation

(x, y, λω) · (ξ, η, µω) =
(
x+ ξ, y+ η, ω(λ+ µ+ 1

2ω
T (xη− ξy))

)
. This turns out to be a sub-Riemannian Carnot

group of corank-1. Now, taking the extremal control (ū, v̄) in (4.1) and the corresponding extremal γ̄(·, ξ̄, η̄, τ̄) =
(x, y, t)(·, ξ̄, η̄, τ̄), if we project such extremal on a quotient Gω, it can be checked that this gives an extremal
control inGω if and only if ω = τ̄

|τ̄ | ∈ span{τ̄}. In such case, the vertical coordinate inGω = Gτ̄/|τ̄ | is proportional

to the cost appearing in (3).

5. Description of the cut locus

In this section we identify precisely the cut-locus and in a significant example we discuss some of its regularity
properties. Some of the results of this section will be used in the proof of Theorem 6.1 in Section 6.
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Item 2 of Theorem 1.2 has been proved in Proposition 3.1. Next we prove the remaining ones.

Proof of Theorem 1.2, items 1, and 3 and 4. Let γ(·, ξ, η, τ) be the extremal appearing in Proposition 2.1. We
know that

Cut(Gqp) =
{
γ
(2π
|τ |
, ξ, η, τ

)
: (ξ, η, τ) ∈ V1 × V2, τ ̸= 0 and |η|2 + |Pτξ|2 > 0

}
= {γ(2π, ξ, η, τ) : (ξ, η, τ) ∈ V1 × V2, |τ | = 1 and |η|2 + |Pτξ|2 > 0},

(5.1)

by (2.6).
Step 1. We show first that the set (5.1) is contained in the set (1.3). By (3.1), a point (x, 0, t) in (5.1) has

the form x = 2π P⊥
τ ξ

t = π
(
|η|2 + |Pτξ|2

)
τ − 2πP⊥

τ ξ ξ
T τ.

The first line tells immediately that τ ⊥ Imx. Furthermore, it must be |η|2 + |Pτξ|2 > 0, see (5.1). Eliminating

P⊥
τ ξ we get t = π

(
|η|2 + |Pτξ|2

)
τ − x ξT τ . Thus

π
(
|η|2 + |Pτξ|2

)
τ = P⊥

Im xt and − x ξT τ = PIm xt.

Letting β = ξT τ ∈ Rp×1, we get π
(
|η|2 + |β|2

)
τ = P⊥

Im xt and −xβ = PIm xt. From last formula we get

immediately

|P⊥
Im xt| = π(|η|2 + |β|2) ≥ π|β|2 ≥ πmin{|β′|2 : −xβ′ = PIm xt}

=: π|x†PIm xt|2 = π|x†t|2.
(5.2)

The inclusion is proved.
Step 2. Now we show the opposite inclusion and we characterize which cut points are reached by a unique

minimizer.
Let (x, 0, t) be in the set in the right-hand side of (1.3). We must find (ξ, η) ∈ V1 and τ ∈ V2 such that

2π P⊥
τ ξ = x

π
(
|η|2 + |Pτξ|2

)
τ − 2πP⊥

τ ξ ξ
T τ = t

|τ | = 1 and |η|2 + |Pτξ|2 > 0.

(5.3)

Since τ is a unit vector and from the first line, we can write ξ = Pτξ + P⊥
τ ξ = ττT ξ + x

2π =: −τλT + x
2π , where

we put λ = −ξT τ ∈ Rp×1. Thus, to find ξ, it suffices to know the vector λ = −ξT τ ∈ Rp. Concerning the vector
τ we are looking for, it must be orthogonal to Imx. Then, projecting the second line of (5.3) along (Imx)⊥, we
get

π
(
|η|2 + |Pτξ|2

)
τ = P⊥

Im xt ̸= 0. (5.4)

Note that P⊥
Im xt ̸= 0 by assumption. Therefore, since τ is unit-norm, it must be first |η|2 + |Pτξ|2 > 0 and

furthermore τ =
P⊥

Im xt

|P⊥
Im xt|

. Next project the second line of (5.3) along Imx. We get the equation xλ = PIm xt. If
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the columns x1, . . . , xp of x are independent, then xTx is nonsingular and we find a unique λ = (xTx)−1xT t = x†t
solving the problem. If instead x1, . . . , xp are dependent, the solutions λ ∈ Rp of xλ = PIm xt form an affine space
of the form {x†t+ µ : µ ∈ kerx}, where x†t satisfies xx†t = PIm xt and has the further property x†t ⊥ kerx, i.e.
x†t it is the minimal-norm solution: |x†t| ≤ |x†t + µ| for all µ ∈ kerx. More precisely, since x†t ⊥ µ, we have
|x†t+ µ|2 = |x†t|2 + |µ|2. Fix now any µ ∈ kerx and choose then λ = x†t+ µ. Multiply the second line of (5.3)
scalarly by τ (taking into account that −ξT τ = λ = x†t+ µ). This gives

π(|η|2 + |x†t+ µ|2) = ⟨t, τ⟩ =
〈
t,
P⊥
Im xt

|P⊥
Im xt|

〉
= |P⊥

Im xt|.

Again by orthogonality µ ⊥ x†t we get

π(|η|2 + |µ|2) = |P⊥
Im xt| − π|x†t|2. (5.5)

The right-hand side is nonnegative by assumption. Therefore, any choice of η ∈ Rp and µ ∈ kerx such that (5.5)
is fulfilled, will provide a solution fulfilling (5.3). This finishes the proof of the inclusion.

To prove item 3 of Theorem 1.2, observe that, given (x, 0, t) ∈ Cut(Gqp), uniqueness of the choice of (ξ, η, τ)
holds if and only if the choice of η and µ ∈ Rp satisfying (5.5) is unique. This happens if and only if the
right-hand side of (5.5) vanishes, i.e. |P⊥

Im xt| = π|x†t|2.
Step 3. We finally check formula (1.4). Let (x, 0, t) = γ(2π, ξ, η, τ) ∈ Cut(Gqp), where |τ | = 1. The horizontal

speed of the minimizer γ(·, ξ, η, τ) : [0, 2π] 7→ V1×V2 is
√

|η|2 + |ξ|2 . We have |η|2+ |ξ|2 = |η|2+ |Pτξ|2+ |P⊥
τ ξ|2.

From the first line of (5.3) we have |P⊥
τ ξ|2 = |x|2

4π2 . From (5.4) we find |η|2+ |Pτξ|2 =
|P⊥

Im xt|
π . Collecting formulas,

we conclude that

d(x, 0, t)2 = 4π2(|ξ|2 + |η|2) = |x|2 + 4π|P⊥
Im xt|,

as required. Note that the component PIm xt does not appear in the distance.

Remark 5.1. Observe that the set of points (x, 0, t) ∈ Cut(Gqp) reached by more than one unit-speed length-
minimizer is dense in Cut(Gqp). To see that, it suffices to take a point (x, 0, t) = (x, 0, PIm xt+P⊥

Im xt) such that
P⊥
Im xt ̸= 0 and satisfying |P⊥

Im xt| = π|x†t|2. This point can be reached by a unique unit-speed minimizer. Next
consider the family of approximating points (xε, 0, tε) := (x, 0, PIm xt + (1 + ε)P⊥

Im xt), where ε > 0. We have
easily |P⊥

Im xε
tε| = (1 + ε)|P⊥

Im xt|. Furthermore, note that x†εtε only depends on PIm xε
tε = PIm xt and not on

P⊥
Im xε

tε which changes with ε. Thus x†εtε = x†t for all ε > 0. Thus the approximating point satisfies the strict

inequality |PIm xε
tε| > π|x†εtε|2. Consequently, it can be reached by more than one length-minimizer.

Remark 5.2. As a byproduct of Step 2 of the proof above, and for future reference, observe that, if (x, 0, t) ∈
Cut(Gqp) and if kerx is trivial, then we can write (x, 0, t) = γ(2π, ξ, η, τ), where τ =

P⊥
Im xt

|P⊥
Im xt|

, ξ = τ(x†t)T + x
2π

and η satisfies

π|η|2 = |P⊥
Im xt| − π|x†t|2. (5.6)

5.1. The group Gq1

Here (x, 0, t) ∈ Rq ×R×Rq. All points of the form (0, 0, t) ∈ Gq1 with t ̸= 0 belong to Cut(Gq1). Let (x, 0, t) ∈
Gq1 be such that x ̸= 0 and t ̸= 0. The equation xβ = PIm xt has a unique real solution x†(PIm xt) =

⟨x,t⟩
|x|2 . Then
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|x†t|2 = |x†PIm xt|2 = ⟨x,t⟩2
|x|4 = |PIm xt|2

|x|2 . Thus we have

Cut(Gq1) =
{
(x, 0, t) ∈ Gq1 : t ̸= 0 and |x|2 |P⊥

Im xt| ≥ π|PIm xt|2
}

= {(x, 0, t) : t ̸= 0 and |x|8|t|2 − |x|6⟨t, x⟩2 ≥ π2⟨t, x⟩4},

where, passing from the first to the second line, we used the Pythagorean theorem |P⊥
Im xt|2 = |t|2 − |PIm xt|2 =

|t|2 − ⟨t,x⟩2
|x|2 .

In the next proposition, we analyze the regularity of the set of cut points where equality holds. Namely, of

Σ := {(x, 0, t) : t ̸= 0 and |x|8|t|2 − |x|6⟨t, x⟩2 = π2⟨t, x⟩4}. (5.7)

Proposition 5.3. Let Σ ⊂ Cut(Gq1) be the set in (5.7). Let Σ0 := {(x, 0, t) ∈ Σ : x ̸= 0} ⊂ Σ. Then Σ0 is a
smooth codimension-one embedded submanifold of {(x, 0, t) : (x, t) ∈ Rq ×Rq}. Furthermore, the whole Σ is not
a manifold.

Observe that Σ0 has codimension 2 in Gq1. The surface Σ0 contains all points (x, 0, t) ∈ Cut(Gqp) which are
reached by a unique length- minimizing unit-speed curve.

Proof. To check this statement, it suffices to observe that Σ0 is the zero-level set of the function ψ : (Rq \ {0})×
(Rq \ {0}) → R

ψ(x, t) = |t|2 − ⟨x, t⟩2

|x|2
− π2 ⟨x, t⟩4

|x|8
. (5.8)

A short computation gives


∇tψ = 2t− 2

|x|2
⟨x, t⟩

{
1 + 2π2 ⟨t, x⟩2

|x|6
}
x

∇xψ = − 2

|x|2
⟨x, t⟩

{
1 + 2π2 ⟨t, x⟩2

|x|6
}
t+

2

|x|4
⟨x, t⟩2

{
1 +

4π2

|x|6
⟨x, t⟩2

}
x.

Observe now that at all point of Σ0, we have ⟨x, t⟩ ≠ 0 (see (5.8)). Furthermore, x and t are independent
(otherwise, again (5.8) fails). Denoting ∇tψ =: at+ bx and ∇xψ =: bt+ cx, we see that the Jacobian of ψ has
full rank if and only if ac− b2 ̸= 0. A computation gives

ac− b2 = −16π4

|x|16
⟨x, t⟩6 ̸= 0

for any (x, t) ∈ Σ0. Thus, Σ0 is a smooth manifold.
To show that the whole Σ is not a manifold, we argue by contradiction. Without loss of generality, consider

q = 2 and take the point (x, t) = (0, e2) = (0, 0, 0, 1). Assume that Σ is a smooth embedded manifold in a
neighborhood of (0, e2).

Step 1. If Σ is a smooth surface containing, (0, e2), a tangent vector (ξ, τ) ∈ T(0,e2)Σ, would have the form
(ξ, τ) = (x′(0), t′(0)), where s 7→ (x(s), t(s)) is a curve belonging to Σ for s ∈ (−1, 1), (x(0), t(0)) = (0, e2) and
(x′(0), t′(0)) = (ξ, τ). We claim that all such vectors satisfy ξ ⊥ e2. This implies that T(0,e2)Σ = {(ξ1, 0, τ1, τ2) :
ξ1, τ1, τ2 ∈ R}. To prove the claim, take a curve (x(s), t(s)) as above and expand at the first order x(s) =

x′s+ o(s) and t(s) = e2 + t′s+ o(s) = e2 + o(1), where (x′, t′) = (x′(0), t′(0)), o(1) → 0 and o(s)
s → 0 as s→ 0.
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Then |x(s)|2 = |x′|2s2 + o(s2), |t(s)|2 = 1 + o(1), while ⟨x(s), t(s)⟩ = ⟨x′, e2⟩s + o(s) = x′2s + o(s). Inserting
into (5.7), we get

(|x′|8s8 + o(s8))(1 + o(1))− (|x′|6s6 + o(s6))((x′2)
2s2 + o(s2))− π2((x′2)

4s4 + o(s4)) = 0.

Comparing powers of s, we get x′2 = ⟨x′(0), e2⟩ = 0, as desired.
Step 2. Being T(0,e2)Σ = {(ξ1, 0, τ1, τ2) : ξ1, τ1, τ2 ∈ R}, the manifold Σ can be written as a graph of a function

F of the variables x1, t1, t2. Namely, there are neighborhoods V := {(x1, t1, t2) ∈ R3 : |(x1, t1, t2)− (0, 0, 1)| < ε}
and W = {x2 ∈ R : |x2| < δ} such that we have

(V ×W ) ∩ Σ = {(x1, F (x1, t1, t2), t1, t2) : (x1, t1, t2) ∈ V }.

Precisely, for all (x1, t1, t2) ∈ V there is a unique F = F (x1, t1, t2) ∈ ]−δ, δ[ such that ψ(x1, F, t1, t2) = 0.
Let us test such property on points of the form (x1, 0, t2) ∈ V . Letting F = F (x1, 0, t2), we have after some
simpifications

ψ(x1, F, 0, t2) = t22 −
(t2F )

2

x21 + F 2
− π2 (t2F )

4

(x21 + F 2)4
= 0. (5.9)

Since F appears quadratically, its uniqueness gives F (x1, 0, t2) = 0 as soon as x1t2 ̸= 0. However, inserting
F = 0 into (5.9), we get t22 = 0 for all (x1, 0, t2) ∈ V , which gives a contradiction.

6. Lower estimate of conjugate time for p = 1

In this section we show that for q ≥ 2 and p = 1, in the model Gq1 there are minimizers such that the
tcut is strictly smaller than the first conjugate time. The following statement completes Proposition 3.2. Such
phenomenon has already been encountered in [8].

Theorem 6.1 (Conjugate points, q ≥ 2, p = 1, necessary condition). Let q ≥ 2 and consider the model Gq1.
Given (ξ, η, τ) ∈ V1 × V2, assume that τ ̸= 0 and |η|2 + |Pτξ|2 > 0 and consider the extremal γ(·, ξ, η, τ). Then,
if s̄ := 2π

|τ | is a conjugate time of γ(·, ξ, η, τ), it must be

ηP⊥
τ ξ = 0. (6.1)

We do not discuss the case p = q = 1, the lower dimensional Heisenberg group, where it is known that cut
time and first conjugate times are always the same.

Proof. Consider Gq1 and a point (ξ, η, τ) ∈ T ∗
(0,0,0)Gq1. Define Λ = {(ξ′, η′, τ ′) ∈ T ∗

(0,0,0)Gq1 : |ξ′|2 + η′
2
= |ξ|2 +

η2} ⊂ T ∗
(0,0,0)Gq1. It suffices to show that η|P⊥

τ ξ| ̸= 0 implies that s = 2π
|τ | is not conjugate. Fix an orthogonal

frame in T ∗
0Gq1 ≃ Rq choosing

τ, ωq−1 := P⊥
τ ξ, and ω1, . . . , ωq−2 ∈ span{τ, P⊥

τ ξ}⊥. (6.2)

Note that if q = 2, the frame will be formed by ω1 = P⊥
τ ξ and τ only and the discussion will be easier (see

below). Fix also the frame of vector fields

Z = −⟨ξ, τ⟩∂η + ηDτ Vk = −⟨ξ, ωk⟩∂η + ηDωk
where k ≤ q − 1
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and Dωk
:= ⟨ωk,∇ξ⟩ and Dτ = ⟨τ,∇ξ⟩. Observe that the frame is tangent to Λ.3 Furthermore, the frame in

independent, because η ̸= 0 and ω1, . . . , ωq−1, τ are independent. We need to show that the following determinant
is nonzero.

detM := dx1 ∧ · · · ∧ dxq ∧ dy ∧ dt1 ∧ · · · ∧ dtq(∂sγ, Zγ, V1γ, . . . , Vq−1γ, dτγ) ̸= 0

Let ℓ := ξ · dx+ ηdy + τ · dt be the Liouville form. Since |τ | ≠ 0, up to a nonzero factor we change dx ∧ dy ∧
dt1 ∧ ·∧ dtq with dx∧ dy ∧ ℓ∧µ1 ∧ · · · ∧µq−1, where µk := ωk · dt. By Lemma A.1, we have ℓ(Zγ) = ℓ(Vkγ) = 0,
for all k = 1, . . . , q − 1, while ℓ(∂sγ) = 1.

detM ∼ ℓ(∂sγ)(dx ∧ dy ∧ µ1 ∧ · · · ∧ µq−1)(Zγ,Wγ, Vq−1γ, dτγ)

∼ det


Zx Wx Vq−1x dτx
Zy Wy Vq−1y dτy

µ1(Zt) µ1(Wt) µ1(Vq−1t) µ1(dτ t)
...

...
...

µq−1(Zt) µq−1(Wt) µq−1(Vq−1t) µq−1(dτ t)

 .

where ∼means that the left-hand side vanishes if and only if the right-hand side vanishes. Here x = [x1, . . . , xq]
T ,

while W stands for [V1, . . . , Vq−2] and dτ = [∂τ1 , . . . , ∂τq ].
We already calculated the Z-derivatives in (3.3) and (3.4). Namely Zx( 2π|τ | , ξ, η, τ) = 0, Zy( 2π|τ | , ξ, η, τ) =

0 and Zt( 2π|τ | , ξ, η, τ) = − 2πη
|τ | P

⊥
τ ξ. By (6.2) we have then µj(Zt) = 0, for j ≤ q − 2 and µq−1(Zt) =

(P⊥
τ ξ)

T (− 2πη
|τ | P

⊥
τ ξ) = − 2πη

|τ | |P
⊥
τ ξ|2 ̸= 0, by our assumptions. Therefore, if q ≥ 3,

detM ∼ det


Wx Vq−1x dτx
Wy Vq−1y dτy

µ1(Wt) µ1(Vq−1t) µ1dτ t
...

...
...

µq−2(Wt) µq−2(Vq−1t) µq−2(dτ t)

 . (6.3)

If q = 2, we have instead the simpler form

detM
q=2∼ = det

[
V1x dτx
V1y dτy

]
.

Next, for k ≤ q − 1 we have Vkx = (−⟨ωk, ξ⟩ + ηDωk
) 2π|τ |P

⊥
τ ξ = 2πη

|τ | P
⊥
τ ωk = 2πη

|τ | ωk, because ωk ⊥ τ for all

k ≤ q − 1. Easily, Vky = 0 and finally

Vkt =
π

|τ |3
(−⟨ξ, ωk⟩∂η + ηDωk

)
(
(|Pτξ|2 + η2)τ − 2P⊥

τ ξξ
T τ

)
=

π

|τ |3
(
− 2η⟨ξ, ωk⟩τ + 2η⟨Pτξ, Pτωk⟩τ − 2ηP⊥

τ ωkξ
T τ − 2ηP⊥

τ ξω
T
k τ

)
= −2πη

|τ |3
{
⟨ξ, ωk⟩τ + ⟨ξ, τ⟩ωk

}
3This comes from the fact the set Λ is defined by the equation F (ξ, η, τ) := |ξ|2 + η2 = constant, and we have ZF = VkF = 0

identically.
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where we used ωk ∈ τ⊥. Therefore, for j, k ≤ q − 2 we have µj(Vkt) = ωT
j (Vkt) = − 2πη

|τ |3 ⟨ξ, τ⟩ω
T
j ωk. Introducing

the matrix Ω = [ω1, . . . , ωq−2] ∈ Rq×(q−2), if q ≥ 3, we can write the first q− 2 columns of the matrix in (6.3) as


2πη
|τ | Ω

0

− 2πη
|τ |3 ⟨ξ, τ⟩Ω

TΩ

 ∈ R(2q−1)×(q−2).

Passing to the (q − 1)-th column, since we let ωq−1 = P⊥
τ ξ, computations above give Vq−1x = 2πη

|τ | P
⊥
τ ωq−1 =

2πη
|τ | P

⊥
τ ξ. Furthermore, Vq−1y = 0 and

Vq−1t = −2πη

|τ |3
(
⟨ξ, P⊥

τ ξ⟩τ + ⟨ξ, τ⟩P⊥
τ ξ

)
⇒ µj(Vq−1t) = 0 ∀ j ≤ q − 2.

Ultimately, the (q − 1)-th column becomes

[
|τ |−12πηP⊥

τ ξ
0
0

]
∈ R2q−1.

Let us pass to the columns involving ∂τα . In all differentiations below, we omit all terms that vanish when
s = 2π/|τ |. The calculations of ∂ταγ(s, ξ, η, τ) for s ̸= 2π

|τ | would be much longer.

∂ταx
∣∣∣
s= 2π

|τ|

= ∂τα

(
2
|τ | sin

( |τ |s
2

){
Pτξ cos

( |τ |s
2

)
− τηT

|τ |
sin

( |τ |s
2

)}
+ sP⊥

τ ξ

)∣∣∣
s= 2π

|τ|

=
2

|τ |
cos( |τ |s2 )

s

2

τα
|τ |

(−Pτξ) +
2π

|τ |
∂τα

(
ξ − ττT

|τ |2
ξ
)∣∣∣

s= 2π
|τ|

=
2π

|τ |3
ταPτξ +

2π

|τ |

( 2

|τ |3
τα
|τ |
ττT ξ − eατ

T

|τ |2
ξ − τeTα

|τ |2
ξ
)

=
2π

|τ |3
(
3ταPτξ − eα⟨ξ, τ⟩ − τξα

)
.

So, the q× q north east block is dτx|s= 2π
|τ|

= 2π
|τ |3

(
3⟨ξ, τ⟩Pτ − ⟨ξ, τ⟩Iq − τξT

)
∈ Rq×q. An analogous computation

furnishes ∂ταy|s=2π/|τ | =
2π
|τ |3 ητα for α = 1, . . . , q. To conclude, for q ≥ 3, we have to calculate derivatives

∂ταt|s=2π/|τ |. Keeping into account that we need only to know µj(∂ταt) = ωT
j ∂ταt with j ≤ q − 2, since

span{ω1, . . . , ωq−2} = {τ, P⊥
τ ξ}⊥, below we work ignoring terms in span{τ, P⊥

τ ξ} writing below u ≃ u′ when
u− u′ ∈ span{τ, P⊥

τ ξ} ⊂ Rq.

∂ταt|s=2π/|τ | = ∂τα

(
s2U

( |τ |s
2

){
|Pτξ|2 + |η2|

} τ

|τ |

+ s2V
( |τ |s

2

){
− P⊥

τ ξ η sin
( |τ |s

2

)
+ P⊥

τ ξ
ξT τ

|τ |
cos

( |τ |s
2

)})
≃

(2π
|τ |

)2

U(π)(|Pτξ|2 + η2)
1

|τ |
∂τατ +

(2π
|τ |

)2

V (π)∂ταP
⊥
τ ξ

(ξT τ
|τ |

cosπ
)

=
π

|τ |2
(|Pτξ|2 + η2)

eα
|τ |

+
2π

|t|2
eατ

T ξ

|τ |2
ξT τ

|τ |
=

π

|τ |3
(
η2 + 3|Pτξ|2

)
eα.



SUB-RIEMANNIAN CUT TIME AND CUT LOCUS IN REITER–HEISENBERG GROUPS 21

The south east (q−2)×q-block has elements (µj(∂ταt)) = ωT
j (dταt)), with j ≤ q−2 and α = 1, . . . , q. Ultimately,

the matrix in (6.3) takes the form

M =


2πη
|τ | Ω

2πη
|τ | P

⊥
τ ξ

2π
|τ |3

(
3⟨ξ, τ⟩Pτ − ⟨ξ, τ⟩Iq − τξT

)
0 0 2πη

|τ |3 τ
T

− 2πη
|τ |3 ⟨ξ, τ⟩Ω

TΩ 0 π
|τ |3

(
η2 + 3|Pτξ|2

)
ΩT


where Ω = [ω1, . . . , ωq−2] ∈ Rq×(q−2). By linear algebra,4 M has full rank if and only if

M̂ :=

 Ω P⊥
τ ξ −2

(
⟨ξ, τ⟩Iq + τξT

)
0 0 τT

− ⟨ξ,τ⟩
|τ |2 ΩTΩ 0

(
η2 + 3|Pτξ|2

)
ΩT

 ∈ R(2q−1)×(2q−1)

has full rank. If q = 2, we have the simpler matrix

M̂
q=2
=

[
P⊥
τ ξ −2

(
⟨ξ, τ⟩I2 + τξT

)
0 τT

]
∈ R3×3. (6.4)

To conclude the proof we prove the following claim.

Claim. The matrix M̂ has trivial kernel.
Proof of the claim for q ≥ 3 and ⟨ξ, τ⟩ = 0. We show that M̃ has trivial kernel. Let a ∈ Rq−2, b ∈ R and

c ∈ Rq. If ⟨ξ, τ⟩ = 0, the system M̂
[
a
b
c

]
= 0 becomes


Ωa+ P⊥

τ ξb− 2τ⟨ξ, c⟩ = 0

⟨τ, c⟩ = 0(
η2 + 3|Pτξ|2

)
ΩT c = 0.

(6.5)

By (6.2), Ωa ∈ span{τ, P⊥
τ ξ}. Then, the first line gives three separate conditions and we get

Ωa = 0, b = 0, ⟨ξ, c⟩ = 0

⟨τ, c⟩ = 0(
η2 + 3|Pτξ|2

)
ΩT c = 0

(6.6)

Furthermore, since Ω = [ω1, . . . , ωq−2] has no kernel, we get a = 0. Concerning c, we see that it is orthogonal
both to τ and to span{ω1, . . . , ωq−2}, by the third line of (6.6). Then, c = λP⊥

τ ξ for suitable λ ∈ R. Again from
the first line, we get 0 = ⟨ξ, c⟩ = ⟨ξ, λP⊥

τ ξ⟩ = λ|P⊥
τ ξ|2, which implies c = 0 as we wished.

Proof of the claim, q ≥ 3 and ⟨ξ, τ⟩ ≠ 0. The system becomes
Ωa+ P⊥

τ ξb− 2⟨ξ, τ⟩c− 2τ⟨ξ, c⟩ = 0

⟨τ, c⟩ = 0

− ⟨ξ, τ⟩
|τ |2

ΩTΩa+
(
η2 + 3|Pτξ|2

)
ΩT c = 0.

4Note that the north east-term containing the factor Pτ = τ
|τ |2 τ

T can be eliminated by subtracting to each of its rows a suitable

multiple of the (q + 1)-th row. All other simplifications are multiplications of some row/columns for nonzero scalars.
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Multiply from the left the first line of (6.5) by ⟨ξ,τ⟩
|τ |2 ΩT and add to the third. After elementary simplifications

based on property ΩT τ = ΩTP⊥
τ ξ = 0, this gives (η2 + |Pτξ|2)ΩT c = 0. Thus, ΩT c = 0 which implies c ∈

span{τ, P⊥
τ ξ}. Arguing as above, we write c = λP⊥

τ ξ and projecting orthogonally the first line along τ , we get
c = 0. The third line gives also ΩTΩa = 0, which implies a = 0 (independence of ω1, . . . , ωq−2 in Rq implies that
ΩTΩ is nonsingular). The first line gives now b = 0 and the proof is finished.

Proof of the claim, q = 2. The system M̂ [ bc ] with b ∈ R and c ∈ R2 becomes

{
P⊥
τ ξb− 2⟨ξ, τ⟩c− 2τ⟨ξ, c⟩ = 0

τT c = 0.

Here R2 = span{τ, P⊥
τ ξ} and the second line gives c = λP⊥

τ ξ for some λ. Then the first becomes P⊥
τ ξ(b −

2⟨ξ, τ⟩c)− 2τλ|P⊥
τ ξ|2 = 0, which by independence of τ and P⊥

τ ξ provides λ = b = 0. This concludes the proof
of the Theorem 6.1.

We are ready to prove Theorem 1.3.

Proof. Let q ≥ 2 and p = 1 and let (x, 0, t) ∈ Cut(Gq1). Write (x, 0, t) = γ(2π, ξ, η, τ) with |τ | = 1 and η2 +
|P⊥

τ ξ|2 ̸= 0. We know by Proposition 3.2 and Theorem 6.1 that this point is conjugate if and only if η|P⊥
τ ξ| = 0.

Condition P⊥
τ ξ = 0 is equivalent to x = 0, by the first line of (3.1). If x ̸= 0, then kerx is trivial, and Remark 5.2

holds. In particular, by (5.6), condition η = 0 holds if and only if |P⊥
Im xt| − π|x†t|2 = 0, as required. Note that

here we have |x†t|2 = ⟨x,t⟩2
|x|4 .

Appendix A.

The following lemma on quadratic Hamiltonian systems has been used in the proof of Theorem 6.1. We
include it for completeness. This lemma is general and we use then standard Hamiltonian notation.

Lemma A.1. Let (x, p) ∈ RN × RN ≃ T ∗(RN ) and consider the Hamiltonian

H(x, p) =
1

2
⟨M(x)p, p⟩ (A.1)

where M(x) ∈ RN×N is symmetric, positive semidefinite and depends smoothly on x. Denote by Λ = {p ∈ Rn =
T ∗
0RN : H(0, p) = 1

2}. Given p ∈ Λ, denote by t ∈ I 7→ (X(t, p), P (t, p)) the solution of the Hamiltonian system
with initial data (X(0, p), P (0, p)) = (0, p), where I ⊂ R is an interval containing 0. Let σ ∈ R 7→ p(σ) ∈ Λ be a
smooth path. Then we have

∑
j

Pj(t, p(σ))
∂

∂σ
Xj(t, p(σ)) =

∑
j

Pj(0, p(σ))
∂

∂σ
Xj(0, p(σ)) = 0 ∀ t, σ.

In other words, the Liouville form ℓ :=
∑

j pjdxj satisfies ℓ( ∂
∂σX(t, pσ)) = 0, for all t, σ.

Proof. Write briefly Xj = Xj(t, p(σ)) and Pj = Pj(t, p(σ)) and omit summation on index j ∈ {1, . . . , N}. We
must see that the following is zero:

(∗) := ∂t(Pj∂σXj) = ∂tPj∂σXj + Pj∂t∂σXj
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Since the Hamiltonian is constant along flow, we getH(X,P ) = H(0, p(σ)) = 1
2 identically in t, σ. Differentiating

with respect to σ gives

0 = ∂xj
H(X,P )∂σXj + ∂pj

H(X,P )∂σPj = −∂tPj∂σXj + ∂tXj∂σPj .

Thus we may rewrite (∗) as

(∗) = ∂tXj∂σPj + Pj∂t∂σXj = ∂tXj∂σPj + Pj∂σ∂tXj = ∂σ(Pj∂tXj) = ∂σ(Pj∂pjH)

(†)
= ∂σH(X,P ) = ∂σH(0, p(σ)) = 0.

In
(†)
= we used the form (A.1) of the Hamiltonian.
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