The Copernicus Regional Reanalysis for Europe, CERRA, is a high-resolution regional reanalysis dataset for the European domain. In recent years, it has shown significant utility across various climate-related tasks, ranging from forecasting and climate change research to renewable energy prediction, resource management, air quality risk assessment, and the forecasting of rare events, among others. Unfortunately, the availability of CERRA is lagging 2 years behind the current date, due to constraints in acquiring the requisite external data and the intensive computational demands inherent in its generation. As a solution, this paper introduces a novel method using diffusion models to approximate CERRA downscaling in a data-driven manner, without additional informations. By leveraging the lower resolution ERA5 dataset, which provides boundary conditions for CERRA, we approach this as a super-resolution task. Focusing on wind speed around Italy, our model, trained on existing CERRA data, shows promising results, closely mirroring the original CERRA. Validation with in-situ observations further confirms the model’s accuracy in approximating ground measurements.

Merizzi F., Asperti A., Colamonaco S. (2024). Wind speed super-resolution and validation: from ERA5 to CERRA via diffusion models. NEURAL COMPUTING & APPLICATIONS, n.a., 1-23 [10.1007/s00521-024-10139-9].

Wind speed super-resolution and validation: from ERA5 to CERRA via diffusion models

Merizzi F.
;
Asperti A.;Colamonaco S.
2024

Abstract

The Copernicus Regional Reanalysis for Europe, CERRA, is a high-resolution regional reanalysis dataset for the European domain. In recent years, it has shown significant utility across various climate-related tasks, ranging from forecasting and climate change research to renewable energy prediction, resource management, air quality risk assessment, and the forecasting of rare events, among others. Unfortunately, the availability of CERRA is lagging 2 years behind the current date, due to constraints in acquiring the requisite external data and the intensive computational demands inherent in its generation. As a solution, this paper introduces a novel method using diffusion models to approximate CERRA downscaling in a data-driven manner, without additional informations. By leveraging the lower resolution ERA5 dataset, which provides boundary conditions for CERRA, we approach this as a super-resolution task. Focusing on wind speed around Italy, our model, trained on existing CERRA data, shows promising results, closely mirroring the original CERRA. Validation with in-situ observations further confirms the model’s accuracy in approximating ground measurements.
2024
Merizzi F., Asperti A., Colamonaco S. (2024). Wind speed super-resolution and validation: from ERA5 to CERRA via diffusion models. NEURAL COMPUTING & APPLICATIONS, n.a., 1-23 [10.1007/s00521-024-10139-9].
Merizzi F.; Asperti A.; Colamonaco S.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/989075
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact