Cyberspace is a dynamic ecosystem consisting of interconnected data, devices, and individuals, with multiple network layers com-prising identifiable nodes. Location-based information can significantly improve cyber resilience decision-making and facilitatethe development of innovative cyber risk pricing tools. This article is based on a methodology that uses company geospatial data toaccurately estimate the number of expected losses arising from cyberattacks. Our approach aims to build and compare statisticalspatial models that allow pricing cyber policies more effectively than traditional non-spatial methods by incorporating all availabledata. By accounting for spatial dependence, we can assess the risk of data breaches and contribute to the design of more efficientcyber risk policies for the insurance market.

Ballestra, L.V., D'Amato, V., Fersini, P., Forte, S., Greco, F. (In stampa/Attività in corso). Pricing Cyber Insurance: A Geospatial Statistical Approach. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, In press, 1-12 [10.1002/asmb.2891].

Pricing Cyber Insurance: A Geospatial Statistical Approach

Ballestra, L. V.;Greco, F.
In corso di stampa

Abstract

Cyberspace is a dynamic ecosystem consisting of interconnected data, devices, and individuals, with multiple network layers com-prising identifiable nodes. Location-based information can significantly improve cyber resilience decision-making and facilitatethe development of innovative cyber risk pricing tools. This article is based on a methodology that uses company geospatial data toaccurately estimate the number of expected losses arising from cyberattacks. Our approach aims to build and compare statisticalspatial models that allow pricing cyber policies more effectively than traditional non-spatial methods by incorporating all availabledata. By accounting for spatial dependence, we can assess the risk of data breaches and contribute to the design of more efficientcyber risk policies for the insurance market.
In corso di stampa
Ballestra, L.V., D'Amato, V., Fersini, P., Forte, S., Greco, F. (In stampa/Attività in corso). Pricing Cyber Insurance: A Geospatial Statistical Approach. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, In press, 1-12 [10.1002/asmb.2891].
Ballestra, L. V.; D'Amato, V.; Fersini, P.; Forte, S.; Greco, F.
File in questo prodotto:
File Dimensione Formato  
Appl Stoch Models Bus Ind - 2024 - Ballestra - Pricing Cyber Insurance A Geospatial Statistical Approach (1).pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.61 MB
Formato Adobe PDF
1.61 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/986594
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact