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ABSTRACT
Cyberspace is a dynamic ecosystem consisting of interconnected data, devices, and individuals, with multiple network layers com-
prising identifiable nodes. Location-based information can significantly improve cyber resilience decision-making and facilitate
the development of innovative cyber risk pricing tools. This article is based on a methodology that uses company geospatial data to
accurately estimate the number of expected losses arising from cyberattacks. Our approach aims to build and compare statistical
spatial models that allow pricing cyber policies more effectively than traditional non-spatial methods by incorporating all available
data. By accounting for spatial dependence, we can assess the risk of data breaches and contribute to the design of more efficient
cyber risk policies for the insurance market.

1 | Introduction

Recent years have seen a significant increase in the frequency and
impact of cyber incidents. According to a report by the European
Systemic Risk Board [1], cyber risk now poses a systemic threat
to the financial system, with potentially severe negative conse-
quences for the real economy. The report cites industry estimates
ranging from USD 45 billion to USD 654 billion for the global
economy in 2018, highlighting the difficulty of accurately esti-
mating the total cost of cyber incidents.

The National Institute of Standards and Technology (NIST)
defines cyber risk as the “risk of financial loss, operational
disruption, or damage resulting from the failure of digital
technologies employed for informational and/or operational
functions introduced to a manufacturing system via electronic
means from unauthorized access, use, disclosure, disruption,
modification, or destruction of the manufacturing system” [2].
Cyber risk can be classified as an operational risk, although
it differs from more traditional sources of operational risk in
several material ways.
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The speed and scale of propagation, the potential for a major
cyber incident to have a more widespread impact than many
other shocks, the fact that it is not constrained by geographic
boundaries, and the degree of disruption experienced by orga-
nizations all contribute to the specificity of cyber risk compared
to operational risk. Companies and institutions can no longer
ignore cyber threats. To protect business operations from both
external and internal threats, cyber defense must be integrated
into traditional security activities by aligning cybersecurity with
strategic business activities. Organizations must quickly priori-
tize cyber threats to improve cyber resilience and quantify the
impact of cyberattacks on business systems.

The European Systemic Risk Board [1] points out that cyber risk
has the potential to trigger serious and systemic financial reper-
cussions, highlighting that the materialization of cyber risk can
trigger a systemic financial crisis. Thus, it is imperative to move
away from the common approach of treating cyber risk as a purely
information technology problem. Rather than relying on qualita-
tive metrics and operational terms that treat cyber risk as solely
an information technology problem, it is essential to quantify
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financial measures to inform investment decisions. Therefore,
cyber risk must be viewed as a source of uncertainty that has a
financial impact on the organization’s business. This approach
allows for a better understanding of the true significance of the
risk as a critical part of enterprise risk management [3]. Caran-
nante et al. [4] explore dependence among different cyber risk
classes adopting vine copulas to capture dependence; Ruan [5]
explains the need to establish data schemes such as International
Digital Asset Classification (IDAC) and International Classifica-
tion of Cyber Incidents (ICCI); Mukhopadhyay et al. [6] discuss
cyber risk insurance products to minimize the impact of financial
loss of security breach, while Aldasoro et al. [7] provide an inter-
esting discussion concerning the drivers of cyber risk. For a com-
prehensive review on modeling and pricing of cyber insurance,
the interested reader is referred to the work by Awiszus et al. [8].

This article proposes the spatial mapping of cyberattacks, leverag-
ing the increasing volume and availability of location-based data
to build statistical models that can improve the description and
understanding of the complex cyberspace that includes layers of
data and networks with strong interdependent structures.

The growing interest in geospatial data in the real economy
stems from its ability to provide information about the location
of objects, events, or phenomena, whether static or dynamic,
throughout the world. This information can greatly enhance
insight into the relationship between variables, revealing pat-
terns and trends across all activities. The use of spatial modeling
allows us to effectively quantify the impact and likelihood of risky
scenarios in cyberspace, which can be used to design insurance
policies that protect against cyber risk. In this regard, it is worth
mentioning that Veerasamy, Moolla, and Dawood [9] have identi-
fied ten possible applications of geospatial data in cyber-security,
namely, tracking, data analysis, visualization, situational aware-
ness, cyber intelligence, collaboration, improved response to
cyber threats, decision-making, cyber threat prioritization and
protect cyber infrastructure.

To model the complex nature of cyber risk and its geographic
patterns, we propose and compare five statistical models under
a Bayesian inference paradigm. The simplest model assumes
homogeneous risk, while the most complex model allows
for both unstructured and spatially structured heterogeneity
through the inclusion of random effects. By accounting for the
spatial distribution of cyber risk, these models provide insights
into the vulnerability of different areas and the potential impact
of cyberattacks. This enables the development of more targeted
risk management strategies, so as to better price cyber-risk.

We conduct an empirical analysis focusing on 49 states in the
US, which shows that models able to exploit spatial correlation
provide better fit performance and are thus more suitable for
risk management. Specifically, based on widely accepted model
comparison criteria and probability integral transform (PIT) his-
tograms, we show that models incorporating spatially structured
random effects provide the best estimation of cyberattack risk.

In addition, based on the five proposed models, we examine
the pricing of an insurance policy against cyberattacks using
three different premium principles. The results show that the
premiums obtained using the spatially uniform cyberattack

frequency model are significantly different from those obtained
with the other four models. Our investigation indicates that it is
inequitable to allocate premiums among the 49 states based on
the assumption of homogeneous cyberattack frequency. These
findings underscore the importance of using spatial modeling
techniques in insurance pricing, as they allow more accurate esti-
mates of cyberattack risk and more informed pricing decisions.

The remainder of this article is structured as follows. Section 2
provides an overview of the actuarial approach to cyber risk.
Section 3 briefly describes alternative spatial models for assess-
ing cyber risk, focusing on assumptions about the data generation
process and the Bayesian approach used to construct and esti-
mate the models. Section 4 presents the empirical results and
key findings of the spatial models used, as well as the actuarial
methodology we propose for estimating expected losses. Finally,
Section 5 concludes.

2 | Cyber Risk in the Actuarial Domain

Historically, cyber risk analyses have focused on identifying tech-
nological vulnerabilities rather than quantifying financial losses.
However, recent studies, such as the OECD 2017 report and the
Ponemon Institute’s 2019 study, have begun to address the issue
of financial impact, shedding light on the growing importance of
understanding the financial consequences of cyber incidents. For
example, the Ponemon report notes that “the total cost for each
company in the panel increased from 11.7 million US dollars in
2017 to a new high of 13.0 in 2018, with a rise of 12%.”

Importantly, cyber events can result in a range of liabilities to
third parties, including customers, suppliers, employees, and
shareholders. In addition to direct financial losses, cyber inci-
dents can also result in other costs, such as fines and penalties
imposed by regulatory bodies (e.g., GDPR for EU states), incident
response costs, and compensation for data breaches. Thus, it is
becoming increasingly clear that the financial impact of cyber
incidents can go well beyond direct losses.

As the cyber risk landscape continues to evolve and expand, the
insurance industry has also recognized the growing importance
of cyber risk and has begun to play an increasingly active role
in the risk management process. Insurers have developed cyber
insurance policies to help organizations manage and mitigate
their cyber risks, thus becoming key players in the effort to
address cyber risk.

The rapidly evolving nature of the cyber risk landscape presents
significant challenges for actuaries working in this area. Unlike
other fields with long histories and decades of historical data, the
lack of long-term data on cyber risk makes it difficult for actuaries
to accurately assess the risk and develop appropriate risk man-
agement strategies. As noted in Böhme, Laube, and Riek [10], the
existing datasets “quickly become obsolete since the threats, vul-
nerabilities and mitigation methods develop rapidly.” As a result,
actuaries must rely on a range of alternative data sources and
modeling techniques to effectively manage cyber risk.

The actuarial literature on cyber risk management is charac-
terized by a wide range of methods and contexts, resulting in
significant variations in the reported findings. For example,
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Biener, Eling, and Wirfs [11] compute the average cost per cyber
incident at 40 million over 994 incidents occurring between
1971 and 2009. In contrast, NetDiligence [12, 13] report a much
lower average cost of 0.7 million over 1201 claims filed between
2013 and 2017. This variation in reported costs highlights the
challenge of accurately assessing cyber risk in the absence of
long-term historical data.

Notably, the context of each cyber incident can vary signifi-
cantly, adding to the complexity of accurately pricing cyber risk.
According to Society of Actuaries [14], there are also differences
between companies in different industries, further complicating
the assessment of cyber risk. These challenges illustrate why pric-
ing cyber risk remains difficult and why the insurance market for
cyber risk is still in its infancy. Continued research and develop-
ment in this area is necessary to improve current understanding
of cyber risk and develop effective risk management strategies.

The cyber insurance market is developing mainly in the areas of
“companies processing large amounts of personal data (telecom-
munication and media companies, health care, education, etc.),
critical infrastructure companies (energy, communications),
companies whose business is based on online transactions
(retail, payment systems, financial institutions), a combination
of the above (transport companies, health care)” [15]. In general,
the cyber insurance market has some drawbacks, including a lack
of standardization, limitations on the amount of coverage, and
several exclusions in policy contracts. These factors can make it
difficult for companies to accurately assess their cyber risk and
select policies that provide adequate coverage. Addressing these
challenges will require continued efforts to improve policy stan-
dardization and develop more comprehensive and flexible cover-
age options that can adapt to the evolving cyber risk landscape.

3 | The Statistical Methodology

We present a modeling strategy for estimating the cyberattack
risk for 𝑆 = 49 US states, including the continental states (exclud-
ing Alaska) and the District of Columbia. This study region is spa-
tially connected and lends itself to straightforward spatial analy-
sis. We explore several different models, paying particular atten-
tion to the hypotheses regarding the data generating process. The
simplest model assumes homogeneous risk, while the most com-
plex model allows for both unstructured and spatially structured
heterogeneity through the inclusion of random effects. The range
of models presented provides a flexible approach to capturing the
complex nature of cyber risk and its spatial patterns.

To build and estimate the models, we use a Bayesian approach,
which is a popular choice when dealing with complex hierar-
chical mixed models, especially those involving spatial data.
This approach is particularly suited to our application because
of its ability to propagate uncertainty about model parameters
in the posterior distribution of cyberattack risk. By expressing
this uncertainty in the posterior distribution, we can easily
sample and combine it with simulations from the “claim size”
distribution for insurance policy pricing.

To begin, we specify the same likelihood function for all consid-
ered models. Let 𝑁

𝑖
and 𝐹

𝑖
denote the number of cyberattacks

and the number of firms in State 𝑖 respectively, 𝑖 = 1, … , 𝑆. Since
𝑁
𝑖

is count data, the Poisson model is a natural choice and pro-
vides a solid foundation for building more complex models that
can capture spatial heterogeneity:

𝑁
𝑖
|𝐹

𝑖
, 𝑅

𝑖
∼ Poisson(𝐹𝑖𝑅𝑖), 𝑖 = 1, … , 𝑆

where𝑅
𝑖
denotes the risk of a cyberattack in State 𝑖. In this model,

the expected cyberattack count is given by 𝐹
𝑖
𝑅
𝑖
, where 𝐹

𝑖
is an

offset that accounts for the size of each state (measured by the
number of firms) and 𝑅

𝑖
is a model parameter. This approach

allows us to estimate the relative risk of cyberattacks across differ-
ent states while controlling for differences in state size. However,
by incorporating additional factors, such as spatial correlation
and other predictors, we can construct more sophisticated mod-
els that better capture the complexity of cyber risk. Specifically,
to develop the model hierarchy, we use a log-linear predictor for
𝑅
𝑖
, which is specified as a generalized linear model. Below, we

present five alternative models, denoted as𝑀1–𝑀5, that differ in
their assumptions about the spatial structure and heterogeneity
of cyber risk across states.

3.1 | M1: Intercept-Only Model

As a first naive model, we consider the intercept-only model,
which implies the assumption that the risk is homogeneous
across states, that is, 𝑅

𝑖
= 𝑅, 𝑖 = 1, … , 𝑆. Thus, the linear

predictor is:
log(𝑅

𝑖
) = 𝛼 (1)

Specifying a diffuse Gaussian prior for the intercept term, 𝛼 ∼
 (0, 1000), will give a posterior mean of 𝑅 very close to the max-
imum likelihood estimate

∑𝑆

𝑖=1𝑁𝑖
∕
∑𝑆

𝑖=1𝐹𝑖 .

While the homogeneous Poisson model assumes the same level
of risk in all areas, empirical applications have shown that this
model is often unrealistic. Insurers must therefore price cyber
risk differently from state by state to account for differences in the
risk of cyberattacks. However, the homogeneous Poisson model
still serves as a natural starting point for building more complex
models that can capture spatial heterogeneity. These models are
proposed and compared in the following.

3.2 | M2: Fixed-Effects Model

To account for heterogeneity in cyberattack risk, the simplest
approach is a fixed effects model with state-specific intercepts:

log(𝑅
𝑖
) = 𝛼 + 𝜈

𝑖
,

𝑆∑

𝑖=1
𝜈
𝑖
= 0 (2)

where 𝜈
𝑖

is the deviation from the total intercept 𝛼. Note that
the sum-to-zero constraint in Equation (2) is necessary to ensure
model identifiability. The fixed effects structure of this model is
reflected in the prior specification. Specifically, we use indepen-
dent diffuse Gaussian priors for each model parameter:

𝛼 ∼ (0, 1000), 𝜈
𝑖
∼ (0, 1000), 𝑖 = 1 … , 𝑆
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The priors are chosen to be non-informative, allowing the data
to drive the inference and a wide range of model parameter
values to be explored. Note that since the predictor is linear in
the log scale, setting the prior variance to 1000 is sufficient to
assign non-negligible prior probabilities to risk values observed
in real-world applications.

Although more flexible than the intercept-only model, the fixed
effects model in Equation (2) assumes prior independence among
the risks. The use of diffuse priors results in posterior means that
are very close to the state-specific maximum likelihood estimate
of risk 𝑁

𝑖
∕𝐹

𝑖
. As a result, each state-specific risk estimate relies

only on data from the state itself, neglecting potentially useful
information provided by data available from other states.

The approach of using state-specific estimates may not fully
capture the spatial patterns and correlations in cyber risk, which
is a well-known limitation when modeling rare events such as
cyberattacks. This limitation is known in the literature as the
small-area problem, where the term “small” refers to the rarity of
the phenomenon under study and the weak empirical evidence
provided by individual state-specific data. This results in high
sampling variability and high uncertainty associated with the
estimates, which can lead to unreliable inferences.

To overcome the limitations of state-specific estimates, we follow
a borrowing strength procedure that allows us to leverage infor-
mation from neighboring areas and improve the statistical effi-
ciency of the estimates. By borrowing strength across regions, we
can obtain estimates that are a compromise between area-specific
data and data collected from the entire spatial domain, captur-
ing the spatial heterogeneity and correlation of cyber risk across
different areas.

The process of borrowing strength is often performed locally,
with neighboring regions playing a crucial role in determin-
ing the estimate for a given area. This is consistent with the
hypothesis, often reasonable when analyzing socioeconomic
phenomena, that things that are close in space are more similar
than those that are far away. This principle is also relevant to
disease mapping, which involves modeling the number of deaths
observed in a human population exposed to risk. The disease
mapping literature is built on these principles, and we can apply
similar models to insurance data collected over space to estimate
the spatial distribution of cyber risk. Below, we present several
models that have been extensively studied in the disease mapping
literature and that can be valuable tools for estimating cyber risk
across regions.

3.3 | M3: Exchangeable Random Effects Model

The first extension involves exchangeable random effects,
which assumes that the risks are heterogeneous and can
be considered as random draws from a Gaussian popula-
tion in the log scale. The structure of the linear predictor
is the same as in model (2), but with the important differ-
ence that area-specific deviations 𝜈

𝑖
from the overall intercept

𝛼 are independent only conditionally on the heterogeneity
parameter 𝜎

2
𝜈
, which unconditionally introduces dependence

between the areas.

The conditional distribution of the random effects is

𝜈
𝑖
|𝜎2

𝜈
∼ (0, 𝜎2

𝜈
), 𝑖 = 1 … , 𝑆

Following a fairly standard choice in Bayesian analysis, a Gamma
prior is specified for the variance parameter: 𝜎2

𝜈
∼ Gamma(𝑎, 𝑏).

The exchangeable random effects model provides estimates of
the area-specific risk 𝑅

𝑖
, obtained as a weighted average of the

observed data of area 𝑖 and the overall risk. This approach intro-
duces a shrinkage effect toward the global mean of the direct
estimates, which is more pronounced for areas with a smaller
number of firms 𝐹

𝑖
, and consequently with weaker empirical

evidence. In contrast, direct estimates obtained from states with
a high number of firms 𝐹

𝑖
and stronger empirical evidence are

preserved. This shrinkage effect can improve the precision of the
estimates and reduce the sampling variability and uncertainty
associated with the estimation process, particularly for areas
with limited data.

One of the drawbacks of model 𝑀3 is that it does not account
for local spatial correlation, inducing shrinkage toward global
risks, but neglecting local behavior. To address this limitation,
we introduce models 𝑀4 and 𝑀5, which allow for more flexible
spatial structures.

3.4 | M4: Spatial Random Effects Model

Spatial dependence between areas is introduced by speci-
fying a Gaussian Markov random field (GMRF, see [16]
for a full description) for the area-level random effects.
GMRFs are typically defined by the inverse of their covari-
ance matrix, known as the precision matrix, which describes
the conditional dependence relationships between areas. The
sparseness of this matrix provides notable computational advan-
tages. Again, the linear predictor has the same structure as
model (2), but the joint distribution of the random vector
𝝂 = (𝜈1, … , 𝜈

𝑆
)
⊤ is constructed using the adjacency matrix

W. This is a symmetric 𝑆-dimensional matrix with entries set
as follows:

{
𝑤
𝑖𝑗
= 1 if 𝑖 ∼ 𝑗

𝑤
𝑖𝑗
= 0 otherwise

The notation 𝑖 ∼ 𝑗 denotes that area 𝑖 is a neighbor of area 𝑗.
Following a standard choice, in this article, we consider areas
as neighbors if they share a common boundary. The row sums
of the adjacency matrix 𝑑

𝑖
=
∑𝑆

𝑗=1𝑤𝑖𝑗
correspond to the number

of neighbors of each area and are collected in the diagonal
matrix D = diag(𝑑1, … , 𝑑

𝑆
), so that the precision matrix is

obtained as

K
𝜈
= D − W

and is positive semi-definite because the row sums are all
equal to zero. Therefore, the joint distribution of the spa-
tial random effects is improper and a sum-to-zero constraint
is required for model identifiability. In particular, the joint
distribution is

𝝂 ∼
𝑆
(𝟎, 𝜎

2
𝜈
K−

𝜈
)
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where 𝜎2
𝜈

is a scaling parameter and K−

𝜈
is the generalized inverse

of K
𝜈
. The model hierarchy is completed by specifying the prior

𝜎
2
𝜈
∼ Gamma(𝑎, 𝑏).

3.5 | M5: Spatial and Exchangeable Random
Effects Model

The last model is based on the Besag York and Mollié (BYM)
specification [17], which is a popular approach designed to
account for both spatially structured and unstructured hetero-
geneity in spatial data. The BYM model includes two random
effects to capture these sources of variation, and the area-specific
term of Equation (2) is modeled as follows:

𝜈
𝑖
= 𝜓

𝑖
+ 𝜙

𝑖
(3)

where 𝜓 and 𝜙 denote the exchangeable and spatial components,
respectively, with priors

𝜓
𝑖
|𝜎2

𝜓
∼ (0, 𝜎2

𝜓
) 𝑖 = 1, … , 𝑛, 𝝓 ∼

𝑛
(𝟎, 𝜎

2
𝜙

K−

𝜙
)

Non-identifiability of model (3) requires sum-to-zero constraints
on both random effect vectors. Again, Gamma priors are assumed
for the scaling parameters, that is, 𝜎2

𝜙
∼ Gamma(𝑎

𝜙
, 𝑏

𝜙
) and 𝜎2

𝜓
∼

Gamma(𝑎
𝜓
, 𝑏

𝜓
). There are numerous contributions in the litera-

ture on prior specification of the parameters, which aim to man-
age the a priori weight of the random effects. Some of these con-
tributions propose interesting re-parameterizations of the model
(see, for example, Riebler et al. [18]). In this article, we present
a standard analysis of the model using common choices that are
appropriate for the specific application we are considering.

3.6 | Model Estimation and Comparison

Bayesian inference involves summarizing the posterior distribu-
tion. If we denote the parameter vector as 𝜽, then the posterior
density is proportional to the product of the likelihood and the
prior density, namely

𝜋(𝜽|N,F) ∝ 𝜋(N|𝜽,F)𝜋(𝜽)

where N = (𝑁1, … ,𝑁
𝑖
, … ,𝑁

𝑆
) and F = (𝐹1, … , 𝐹

𝑖
, … , 𝐹

𝑆
)

are vectors containing the number of cyberattacks and firms,
respectively. The parameter vector 𝜽 for each model is reported
in Table 1. The posterior distribution for all models cannot be
obtained in closed-form and must be computed through numer-
ical approximation. For this purpose, two widely used strategies
are Monte Carlo Markov chain (MCMC) sampling and inte-
grated nested Laplace approximations (INLA; Rue, Martino, and
Chopin [19]). INLA is particularly efficient for estimating latent
GMRF models because it provides a highly accurate approxima-
tion of the posterior distribution and is computationally much
faster than MCMC methods. INLA has been made easily acces-
sible the INLA package [20, 21], a valuable tool for practitioners
to use in applied Bayesian inference. Given these advantages, we
use INLA to estimate our models, and the R code for our analysis
is available upon request from the authors.

As a by-product of model estimation, INLA provides several
measures of model performance and also allows us to draw
random samples from the posterior distribution. This capability

TABLE 1 | Model parameters for models 𝑀2–𝑀5.

Model 𝜽

𝑀1: Intercept only R, 𝛼
𝑀2: Fixed effects R, 𝛼, 𝝂
𝑀3: Exchangeable random effects R, 𝛼, 𝝍, 𝜎2

𝜓

𝑀4: Spatial random effects R, 𝛼, 𝝓, 𝜎2
𝜙

𝑀5: BYM model R, 𝛼, 𝝍, 𝝓, 𝜎2
𝜓
, 𝜎

2
𝜙

TABLE 2 | Model comparison.

Model DIC WAIC CPO

𝑀1: Intercept only 1251.4 1286.2 643.5
𝑀2: Fixed effects 392.9 378.0 242.7
𝑀3: Exchangeable random effects 391.7 382.0 233.5
𝑀4: Spatial random effects 388.2 379.1 222.4
𝑀5: BYM model 388.2 379.1 222.4

is critical to our study because we will use posterior samples
for risks 𝑅

𝑖
, 𝑖 = 1, … , 𝑆 and frequencies 𝑁

𝑖
, 𝑖 = 1, … , 𝑆 along

with simulations from the claim size distribution to compute
insurance premiums.

To assess how well the five models describe the empirical data,
we use three different measures of fit: the deviance information
criterion (DIC), the widely applicable information criterion
(WAIC), and the conditional predictive ordinate (CPO; [22]). The
first two are widely used information criteria that assess model
fit while taking into account model complexity [23, 24]. The CPO
is a cross-validation criterion that is computed as follows:

CPO = −

𝑆∑

𝑖=1
ln(CPO

𝑖
)

where

CPO
𝑖
= 𝜋(𝑁

𝑖
|𝑁

−𝑖
) =
∫

𝜋(𝑁
𝑖
|𝑁

−𝑖
, 𝜽)𝜋(𝜽|𝑁

−𝑖
)d𝜽, 𝑖 = 1, … , 𝑆

and𝑁
−𝑖

denotes all the observations but the 𝑖th. For all three mea-
sures, lower values indicate better fit.

Table 2 shows the results of the model comparison. These results
are obtained using data of breach cyber risk provided by the
Privacy Rights Clearinghouse as described in the next section.
We observe that the intercept-only model performs significantly
worse than the other models, suggesting that cyberattack risk
varies spatially across the United States. Both the DIC and CPO
criteria favor spatial models, with no preference between the
model with only spatial random effects (𝑀4) and the model
that includes both structured and unstructured random effects
(𝑀5). However, according to the WAIC criterion, the fixed effects
model provides a slightly better fit.

In Figure 1, we present the PIT histograms for models 𝑀2 to 𝑀5
(excluding the intercept-only model, which provides very poor
fit). As we can see, the performance of 𝑀2 is worse than that of
all other models. Based on the goodness of fit measures in Table 2
and the PIT histograms in Figure 1, we can conclude that models
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FIGURE 1 | Probability integral transform histogram for models 𝑀2–𝑀5.

𝑀4 and 𝑀5, which include spatially structured random effects,
provide a better estimate of cyberattack risk. In the next section,
we will further explore the differences between the five models
when evaluating cyber insurance premiums.

4 | Insurance Application

In this section, we price a data breach insurance policy for cyber
risk. To estimate the probability distribution of claim frequency,
we use the five spatial models (𝑀1, 𝑀2, … , 𝑀5) described in
Section 3.

4.1 | Data

To estimate the five models, we need data on the number of
data breaches. For this purpose, we utilize the data provided
by the Privacy Rights Clearinghouse (https://privacyrights.org
/data-breaches). This dataset reports the number of data breach
attacks experienced by US firms from 2005 to 2019, as well as
the type and geographic location (latitude and longitude) of each
attack. The database covers the entire time interval from 2005
to 2019, so the spatial models M1–M5 evaluate the posterior
distribution of the number of cyberattacks over a 15-year period.
However, in the following, we will compute the premium for
a data breach insurance policy that provides coverage for one
year. Therefore, since the premium will be calculated using
Monte Carlo simulation (see below), we will divide the number
of cyberattacks sampled from the posterior distribution provided
by models 𝑀1–𝑀5 by 15.

Furthermore, we need the number of firms in each state. We
gather these data from the Statistics of U.S. Businesses (SUSB)
Annual Data Tables for the year 2017, provided by the United
States Census Bureau (https://www.census.gov/data/tables
/2017/econ/susb/2017-susb-annual.html).

For the 𝑖th state (and federal district), 𝑖 = 1, 2, … , 49, and each of
the five models 𝑀1, 𝑀2, … , 𝑀5 we will compute the probability
distribution of the total claims paid in one year by an insurer

offering protection against the cyber risk of data breaches to all
𝐹
𝑖

firms in that state. To this aim, we will also need the proba-
bility distribution of the cost 𝑌

𝑗,𝑖
incurred by the insurer for the

𝑗th cyber risk attack in the 𝑖th state. Unfortunately, data for the
on cyber risk losses are not available at the state level (at least
to the best of our knowledge). Therefore, we model 𝑌

𝑗,𝑖
as i.i.d.

log-normally distributed random variables, and set the mean of
𝑌
𝑗,𝑖

equal to the average cost attributed to the US market in IBM
[25], which is 9.05 million dollars, and assume a coefficient of
variation (the ratio of the standard deviation (SD) to the mean) of
10.95, as reported in Biener, Eling, and Wirfs [11]. With the coef-
ficient of variation and the mean, we can compute the variance
and fully determine the (LogNormal) distribution of𝑌

𝑗,𝑖
using the

method of moments. Specifically, the above calculation yields𝑌∼
LogNormal(13.621, 2.190), with 𝐸(𝑌) = 9.05 million dollars and
𝜎(𝑌) = 99.11 million dollars.

Summarizing, the data that we retrieved from the aforemen-
tioned databases and data sources to perform our analysis are:
the number of data breach attacks experienced from 2005 to 2019
in the 49 states, with the geographic location of each attack, the
number of firms per state (𝐹

𝑖
, 𝑖 = 1, 2, … , 49), and the mean and

coefficient of variation of the probability distribution of the data
breach incidents, modeled as i.i.d. log-normal random variables.

4.2 | Results

The total claims paid in a year in the 𝑖th state is computed as
follows:

𝑍
𝑖
=

𝑁
𝑖∑

𝑗=1
𝑌
𝑗,𝑖

(4)

where𝑁
𝑖
is the number of cyber risk attacks in the 𝑖th state in one

year and 𝑌
𝑗,𝑖

is the cost incurred by the insurer for the 𝑗th cyber
risk attack in the 𝑖th state. Based on (4), we can evaluate the prob-
ability distribution of 𝑍

𝑖
by Monte Carlo simulation. Specifically,

we first simulate 𝑁
𝑖

by drawing it from the posterior distribu-
tion computed with models 𝑀1–𝑀5 (we divide the Monte Carlo

6 of 12 Applied Stochastic Models in Business and Industry, 2024
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value by 15 since 𝑀1–𝑀5 are estimated using data covering a
15-year time interval). Then, for all of these cyberattacks, we sim-
ulate 𝑌

𝑗,𝑖
as i.i.d. log-normally distributed random variables with

𝐸(𝑌) = 9.05 million dollars and 𝜎(𝑌) = 99.11 million dollars (the
probability distribution of the severity that we estimated in the
previous subsection).

For the convenience of readers, the entire Monte Carlo simula-
tion procedure is outlined below:

1. Select one of the spatial models: 𝑀1, 𝑀2, 𝑀3, 𝑀4, or 𝑀5.

2. Specify the number 𝑁 of Monte Carlo simulations.

3. For 𝑖 = 1, 2, … , 49, simulate the number 𝑁
𝑖

of cyberattacks
in the 𝑖th state by drawing from the posterior Poisson
distribution.

4. Simulate the losses due to the 𝑁
𝑖

cyberattacks by drawing
them from the LogNormal distribution.

5. Compute the total loss for the 𝑖th state as the sum of the 𝑁
𝑖

losses previously obtained.

6. Recursively iterate the process𝑁 times and obtain the simu-
lated probability distribution of the total loss for each state.

To compute the premium, we use three different premium princi-
ples, which we describe below (see Klugman, Panjer, and Willmot
[26] and Pitacco and Olivieri [27]). Specifically, for the 𝑖th state,
we compute the expense-loaded premium as follows:

𝐸𝑃
𝑖
=

𝐸[𝑍
𝑖
] + 𝛿

(𝑖,𝑘)

1 − 𝛽
(5)

where 𝛿
(𝑖,𝑘)

is the safety loading for the 𝑖th state under the 𝑘th
premium principle, and 𝛽 is the percentage of expense loading
(in the numerical experiments presented in this article, we use
the values common to insurance practitioners, namely 𝛽 = 20%
and 𝛾 = 15%).

The premium principles used to evaluate the safety loading are
described below:

1. Percentile (P75) principle. We compute the safety loading as
follows:

𝛿
(𝑖,1) = 𝑉𝑎𝑅

𝛼
(𝑍

𝑖
) − 𝐸[𝑍

𝑖
] (6)

where 𝑉𝑎𝑅
𝛼
(𝑍

𝑖
) is the 𝛼 quantile of 𝑍

𝑖
. In the numerical

experiments we choose 𝛼 = 75%.

2. Cost of Capital (CoC) principle. Let 𝜌 denote the CoC, and
assuming that the cyber risk will expire after one year, let
𝑖
𝑟𝑓
(0, 1) denote the 1-year risk-free interest rate.

According to the Solvency II Directive 2009/138/EC of the
European Parliament [28] to evaluate the Solvency Capi-
tal Requirement (SCR), we compute the safety loading as
follows:

𝛿
(𝑖,2) =

𝜌 ⋅ 𝑆𝐶𝑅
𝑖

1 + 𝑖
𝑟𝑓
(0, 1)

=
𝜌(𝑉𝑎𝑅99.5%(𝑍𝑖) − 𝐸[𝑍

𝑖
])

1 + 𝑖
𝑟𝑓
(0, 1)

(7)

In the numerical experiments, we choose 𝜌 = 6% (according
to the Solvency II standard formula for quantifying the risk
margin for insurance liabilities) and 𝑖

𝑟𝑓
(0, 1) = 0.

TABLE 3 | Average premiums and coefficients of variations.

Model

P75 CoC SD

Mean CV Mean CV Mean CV

𝑀1 101.60 1.09 111.29 0.99 102.92 1.02
𝑀2 102.19 1.36 111.15 1.23 103.20 1.28
𝑀3 102.13 1.35 111.13 1.23 102.74 1.28
𝑀4 102.04 1.35 111.15 1.23 103.20 1.28
𝑀5 102.05 1.35 111.11 1.23 102.70 1.28

3. Standard deviation (SD) principle. We compute the safety
loading as follows:

𝛿
(𝑖,3) = 𝛾 ⋅ 𝜎[𝑍

𝑖
] (8)

where 𝜎[𝑍
𝑖
] is the SD of the probability distribution of 𝑍

𝑖

(computed according to the Monte Carlo simulation proce-
dure described above). In the numerical experiments we use
𝛾 = 15%, a value commonly used by practitioners.

Figure 2 reports the spatial distribution of the state-level premi-
ums divided by the number of firms 𝐹

𝑖
, 𝑖 = 1, … , 𝑆. These maps

are determined by the spatial distribution of the cyber-attack risk,
while observed differences are determined by the different prin-
ciples. It is worth noticing that the CoC approach always yields
the highest premiums, indicating that the right tail of the prob-
ability distribution of losses due to cyber attacks is quite heavy.
Indeed, the distance between the 99.5% percentile and the mean
𝐸[𝑍

𝑖
], when multiplied by the small 𝜌 value of 6% and divided by

1 + 𝑖
𝑟𝑓
(0, 1) (see formula (7)), exceeds both the distance between

the 75th percentile and the mean (as per formula (6)) and the SD
multiplied by the value of 𝛾, which is 15% (as per formula (8)).

We report the average premiums (across all 49 states) and coeffi-
cients of variation below.

As shown in Table 3, the premium depends strongly on the prin-
ciple used to compute it, but is less sensitive to the spatial model
used. In particular, for each premium principle, the average pre-
mium across the 49 states remains relatively constant across the
models. Consistent with the assumptions of the models, the pre-
mium computed using 𝑀1 is the most homogeneous across the
49 states, as evidenced by a coefficient of variation (CV) of 1.09
for P75, 0.99 for CoC, and 1.01 for SD, which is significantly lower
than that of the other models. In addition, models 𝑀2–𝑀5 pro-
duce similar coefficients of variation (as shown in Table 3).

Below we show the premiums obtained in each of the 49 states
using models 𝑀1–𝑀5 and the P75 premium principle (Table 4),
the CoC premium principle (Table 5), and the SD premium prin-
ciple (Table 6).

For each of the three premium principles, the results obtained
with 𝑀1 differ significantly from those obtained with the other
four models. For example, the risk scenario implied by the
assumption that the frequency of cyberattacks is homogeneous
across states is very different from the risk scenario obtained
by assuming heterogeneous frequency. The model comparison
presented in the previous section (where 𝑀1 fits the empirical
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TABLE 4 | Pricing using the P75 principle.

STATE 𝑴1 𝑴2 𝑴3 𝑴4 𝑴5
Alabama 63,827,829 41,019,006 41,984,799 41,920,041 41,788,630
Arizona 85,409,213 72,889,364 73,168,759 73,900,144 73,671,879
Arkansas 42,906,796 27,039,694 27,977,988 27,619,532 27,750,157
California 592,905,530 833,035,984 832,457,346 831,773,962 829,952,353
Colorado 112,745,358 106,777,959 106,105,652 104,698,700 104,850,218
Connecticut 55,548,125 85,305,920 83,253,447 84,449,348 84,661,750
Delaware 14,725,689 13,888,696 13,737,128 13,990,128 13,962,395
Distr. of Columbia 12,617,056 111,430,309 104,068,378 105,660,259 105,723,366
Florida 358,505,493 250,829,864 251,876,633 251,237,412 251,264,161
Georgia 152,316,803 155,751,966 155,238,197 153,410,604 153,360,335
Idaho 31,639,306 12,236,776 14,348,733 15,683,587 15,698,736
Illinois 205,621,217 195,211,628 194,663,955 193,798,514 194,065,921
Indiana 94,190,402 120,872,750 119,676,982 118,265,147 118,675,022
Iowa 53,802,728 41,944,893 42,213,664 41,068,321 41,043,989
Kansas 48,416,766 96,237,483 93,764,064 90,491,755 90,286,518
Kentucky 58,381,626 56,744,630 56,212,418 56,586,062 56,551,452
Louisiana 68,902,058 34,908,407 36,728,304 35,781,619 35,958,511
Maine 26,595,792 18,300,640 18,881,636 19,265,710 19,195,796
Maryland 89,046,630 149,110,846 146,672,703 147,417,642 147,225,126
Massachusetts 113,659,701 146,434,708 144,898,636 146,915,055 147,420,005
Michigan 143,366,249 80,965,483 82,349,992 84,387,187 84,349,203
Minnesota 98,064,055 81,881,675 81,882,734 78,493,679 78,402,628
Mississippi 38,622,437 15,782,377 17,776,637 18,032,361 18,035,421
Missouri 96,765,768 79,309,395 79,364,776 80,095,494 79,875,776
Montana 25,588,373 16,518,106 17,330,958 14,465,541 14,449,865
Nebraska 35,517,430 22,594,429 23,490,675 23,898,338 23,849,735
Nevada 40,233,509 38,453,828 38,116,590 37,441,041 37,451,104
New Hampshire 23,648,698 30,705,753 29,377,379 29,979,045 30,042,066
New Jersey 154,140,372 103,174,099 104,075,719 105,074,258 105,393,172
New Mexico 27,617,257 26,251,748 25,998,690 25,124,201 25,159,985
New York 361,282,494 515,354,793 514,542,573 512,388,486 513,666,061
North Carolina 149,284,941 125,610,291 125,335,412 125,880,881 125,500,406
North Dakota 15,542,686 2,762,328 5,431,239 4,906,943 4,956,888
Ohio 156,209,076 162,657,065 162,181,117 161,027,389 161,103,962
Oklahoma 60,719,661 38,457,031 39,362,419 41,366,810 41,543,993
Oregon 76,355,156 71,478,469 71,187,720 71,145,859 71,108,472
Pennsylvania 188,861,246 153,219,860 153,262,015 155,360,866 154,890,502
Rhode Island 17,689,620 23,589,686 22,286,349 23,888,025 23,902,909
South Carolina 69,688,643 44,576,986 45,430,907 45,738,727 45,722,914
South Dakota 17,447,788 4,471,178 6,820,263 6,998,145 6,964,088
Tennessee 86,057,380 88,015,060 87,176,578 84,637,402 84,685,599
Texas 364,564,252 313,509,000 314,436,904 311,792,224 312,238,840
Utah 52,392,488 39,424,335 39,814,929 39,072,881 39,010,686
Vermont 13,200,243 22,787,340 20,681,310 21,753,226 21,758,731
Virginia 131,418,277 139,591,574 139,063,455 141,877,243 141,762,736
Washington 124,362,534 117,256,091 117,136,813 116,611,266 116,769,547
West Virginia 22,447,244 13,021,422 14,189,333 16,128,123 16,228,850
Wisconsin 92,084,077 62,174,293 62,693,578 62,364,983 62,751,243
Wyoming 13,697,947 3,624,363 5,745,520 5,944,138 5,948,057
TOTAL 4,978,634,017 5,007,189,580 5,004,472,005 4,999,808,303 5,000,629,755

Note: Premiums are expressed in dollars.

8 of 12 Applied Stochastic Models in Business and Industry, 2024
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TABLE 5 | Pricing using the CoC principle.

STATE 𝑴1 𝑴2 𝑴3 𝑴4 𝑴5
Alabama 75,053,813 50,015,480 51,557,059 51,391,463 50,999,309
Arizona 97,425,670 83,560,438 83,771,962 84,899,871 84,342,495
Arkansas 53,194,035 35,331,854 36,389,169 35,945,298 36,100,556
California 595,583,313 828,522,524 827,035,551 828,113,318 826,031,709
Colorado 124,486,616 117,999,596 117,528,306 116,351,241 115,906,089
Connecticut 66,522,758 95,528,750 94,525,015 94,780,814 94,956,093
Delaware 21,741,838 21,176,028 21,009,667 20,905,363 21,095,447
District of Columbia 19,840,568 122,606,136 114,498,007 116,520,962 117,648,478
Florida 366,168,956 259,883,484 261,617,101 261,747,288 261,166,354
Georgia 164,177,546 167,574,127 165,530,171 164,747,314 163,734,711
Idaho 41,096,415 18,923,244 21,721,813 23,528,088 23,233,031
Illinois 217,194,371 205,894,728 205,005,116 203,897,989 203,871,481
Indiana 104,961,686 131,700,823 131,733,178 129,104,423 129,964,195
Iowa 63,998,634 51,771,915 52,318,577 50,155,358 50,737,193
Kansas 58,494,016 107,625,792 104,555,118 101,438,046 101,150,951
Kentucky 68,982,265 67,902,484 66,163,740 67,346,053 67,012,642
Louisiana 79,298,458 44,901,004 46,395,155 45,158,369 44,630,282
Maine 35,555,982 25,947,025 26,720,593 27,129,845 26,954,602
Maryland 100,452,498 159,363,689 157,256,189 158,448,923 158,738,042
Massachusetts 124,698,276 157,100,501 155,342,144 157,685,195 158,095,408
Michigan 154,781,019 92,159,635 93,206,764 95,272,151 95,831,980
Minnesota 109,347,192 92,622,164 93,020,362 89,680,895 88,905,909
Mississippi 48,331,355 23,305,791 25,418,033 26,098,089 25,602,484
Missouri 107,556,856 90,107,472 90,124,505 90,433,281 90,203,397
Montana 34,583,510 23,592,698 24,949,053 21,575,899 21,798,386
Nebraska 45,878,501 30,858,985 31,942,107 32,398,501 32,522,572
Nevada 50,009,026 47,818,784 47,842,183 47,020,950 47,080,708
New Hampshire 32,529,042 39,684,417 38,411,938 39,061,351 39,597,261
New Jersey 163,600,412 114,542,138 114,796,367 116,393,914 115,763,705
New Mexico 36,359,279 35,052,656 34,501,142 33,640,541 33,603,442
New York 367,892,733 518,618,416 517,069,184 516,788,577 516,235,638
North Carolina 160,810,894 136,304,359 136,476,437 136,662,969 136,938,898
North Dakota 22,849,770 6,906,331 10,527,761 9,950,587 9,853,460
Ohio 166,207,502 172,902,204 172,214,773 172,465,905 170,668,062
Oklahoma 70,977,834 48,034,462 48,677,321 51,025,668 51,313,004
Oregon 87,227,261 82,382,922 81,803,958 81,982,657 81,083,382
Pennsylvania 199,220,370 164,178,066 164,272,395 165,225,700 165,577,202
Rhode Island 25,532,902 31,961,559 30,439,516 32,109,724 32,345,369
South Carolina 81,262,491 53,732,089 55,123,644 55,614,358 55,271,206
South Dakota 25,403,686 9,225,304 12,287,927 12,500,248 12,601,974
Tennessee 96,796,179 99,040,796 98,666,561 95,603,119 95,620,645
Texas 372,413,180 320,601,287 321,099,539 320,988,107 321,830,205
Utah 63,271,943 49,029,452 49,142,072 48,326,617 48,723,463
Vermont 20,255,409 30,929,856 28,830,517 29,593,188 30,241,040
Virginia 142,385,927 150,931,644 150,277,422 152,552,673 153,344,234
Washington 134,641,944 128,090,042 128,175,792 126,384,163 127,061,322
West Virginia 31,123,918 20,220,100 21,410,531 23,455,393 23,604,845
Wisconsin 102,561,549 72,266,920 72,890,190 72,782,918 73,517,542
Wyoming 20,688,078 7,814,402 10,877,360 11,429,486 11,140,170
TOTAL 5,453,427,475 5,446,244,573 5,445,148,987 5,446,312,851 5,444,250,574

Note: Premiums are expressed in dollars.
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TABLE 6 | Pricing using the SD principle.

STATE 𝑴1 𝑴2 𝑴3 𝑴4 𝑴5
Alabama 67,144,816 44,724,553 45,636,241 44,851,773 45,339,661
Arizona 90,513,983 74,750,466 75,973,074 77,991,464 75,028,760
Arkansas 46,491,205 30,452,781 31,422,999 31,208,235 31,552,330
California 569,673,321 798,767,233 797,366,532 800,527,908 797,954,615
Colorado 113,056,513 107,207,467 107,777,114 105,566,035 105,562,360
Connecticut 59,669,744 91,726,343 84,805,489 85,574,353 85,597,494
Delaware 19,561,625 17,962,726 17,923,808 18,920,669 18,082,782
Distr. of Columbia 17,230,877 113,456,850 103,950,854 104,865,835 106,919,842
Florida 344,947,822 243,532,815 243,984,481 248,075,187 244,625,440
Georgia 151,415,515 154,533,699 152,879,092 152,494,583 151,013,932
Idaho 35,828,781 16,739,604 18,167,607 21,212,220 19,498,671
Illinois 201,256,741 191,714,018 197,010,985 192,059,956 189,997,317
Indiana 96,275,687 120,929,241 119,591,951 119,074,212 118,878,593
Iowa 56,897,442 45,401,380 45,643,492 45,033,216 44,383,898
Kansas 51,349,104 98,709,789 94,741,752 91,761,701 91,263,084
Kentucky 61,013,114 61,625,857 59,079,612 61,149,745 60,400,141
Louisiana 71,831,379 39,616,078 40,909,634 39,377,507 38,737,879
Maine 31,038,465 22,032,830 23,022,136 23,079,598 23,226,541
Maryland 91,324,195 146,472,443 147,650,899 145,226,494 146,363,504
Massachusetts 114,740,829 145,480,198 143,969,849 145,118,589 146,923,402
Michigan 142,088,615 83,551,385 83,822,482 86,851,509 87,913,657
Minnesota 98,914,577 83,704,868 83,417,592 80,449,210 81,631,929
Mississippi 42,221,217 22,006,386 22,157,986 22,879,468 21,586,083
Missouri 97,669,446 80,680,304 80,631,483 83,320,974 81,377,819
Montana 30,013,340 19,979,431 21,398,509 18,495,524 18,400,374
Nebraska 39,313,803 32,954,509 28,508,103 27,626,932 28,718,050
Nevada 43,881,643 42,996,882 41,827,789 40,568,711 42,607,551
New Hampshire 28,280,038 34,296,045 33,845,237 36,647,263 35,529,289
New Jersey 150,554,073 103,454,006 103,895,075 107,450,148 105,325,367
New Mexico 31,863,445 30,247,594 29,997,871 29,083,849 29,079,454
New York 349,431,129 497,187,896 494,716,819 494,437,712 492,229,601
North Carolina 146,885,025 125,166,305 124,429,266 125,742,265 124,103,827
North Dakota 19,567,884 6,698,932 10,027,585 9,403,711 7,956,189
Ohio 154,199,240 159,458,284 159,874,353 159,523,633 158,290,379
Oklahoma 63,769,578 41,416,504 42,340,151 45,267,813 44,932,159
Oregon 78,333,898 74,486,537 73,056,924 79,046,809 73,195,255
Pennsylvania 185,795,095 151,652,302 150,834,366 153,449,987 153,043,132
Rhode Island 25,129,475 29,158,130 25,884,412 27,981,876 27,729,988
South Carolina 89,933,829 47,022,718 49,355,560 48,860,577 49,002,542
South Dakota 20,968,259 7,841,791 10,922,064 10,765,353 11,616,222
Tennessee 88,068,183 91,186,045 88,073,305 87,775,740 87,248,459
Texas 353,883,874 302,978,686 304,686,306 308,843,440 306,022,175
Utah 59,798,862 49,584,346 43,470,636 43,242,682 42,975,086
Vermont 18,460,784 26,929,556 24,980,140 25,843,967 25,588,583
Virginia 130,513,886 139,446,399 140,090,660 141,033,948 141,324,557
Washington 123,010,220 117,741,739 118,721,608 115,035,127 115,619,286
West Virginia 27,243,105 17,736,312 18,026,208 20,070,022 19,946,603
Wisconsin 93,397,160 64,908,314 64,408,216 64,537,262 67,643,960
Wyoming 18,385,639 6,298,442 9,121,538 9,438,755 10,306,108
TOTAL 5,042,836,476 5,056,607,018 5,034,029,846 5,056,843,549 5,032,293,929

Note: Premiums are expressed in dollars.
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Cost of Capital Percentile 75% Standard deviation Premium

224 to 486
486 to 527
527 to 606
606 to 646
646 to 704
704 to 771
771 to 932
932 to 1,132
1,132 to 6,402

FIGURE 2 | Premiums divided by the number of firms in the continental US states obtained with the cost of capital principle (left), percentile 75%
principle (middle) and standard deviation principle (right).

risk distribution much worse than the other models) suggests
that it is unequitable to allocate premiums among the 49 states
based on the assumption of homogeneous cyberattack frequency.
When using the P75 and CoC principles, models 𝑀4 and 𝑀5
give very similar results (the maximum difference between the
premiums is less than 1% for P75 and less than 2.6% for CoC). In
addition, for most states, the premium obtained using 𝑀2 and
𝑀3 is similar to that obtained with 𝑀4 and 𝑀5. However, there
are some states for which the results obtained using 𝑀2 and 𝑀3
differ from those obtained using 𝑀4 and 𝑀5 (the maximum dif-
ference between the𝑀2 and𝑀5 premiums is approximately 44%,
and the maximum difference between the𝑀3 and𝑀5 premiums
is approximately 19%). The consistency between the results
obtained with models 𝑀4 and 𝑀5 is expected because the P75
and CoC principles rely on two quantiles of the posterior risk dis-
tribution (the 75th and 99.5th percentiles) that are relatively close
to each other and are not affected by the extreme tail behavior.

When using models 𝑀4 and 𝑀5 and the SD criterion, the results
for Idaho, North Dakota, South Dakota, and Wyoming differ sig-
nificantly from the results obtained for the remaining 45 states.
It is worth noting that Idaho, North Dakota, South Dakota, and
Wyoming have a relatively small number of firms and, together
with Montana, form a spatial cluster of low-risk states. Further-
more, these four states experienced the lowest number of cyber-
attacks during the study period (15 for Idaho, 4 for North Dakota,
6 for South Dakota, and 5 for Wyoming).

In this case, the difference between models 𝑀4 and 𝑀5, and in
particular the fact that the spatial-only model𝑀4 is less sensitive
to the variability across states than model 𝑀5 (which includes
both an unstructured and a structured random effect), leads to
significant differences in the premiums (in relative terms).

Finally, when considering the impact of such differences on the
overall premium distribution, worth noting is that the combined
contribution of the four states to the total premium amount is
approximately 1%.

5 | Conclusions

In this article, we use a statistical spatial modeling framework
to estimate the risk of cyberattacks across geographic areas
corresponding to the continental US. We implement the models
following the Bayesian paradigm, which allows obtaining the
posterior distribution of the number of data breaches or cyber-
attacks and to naturally simulate from the posterior predictive
distribution the number of attacks, which is useful for pricing
policies.

We show that models able to exploit spatial correlation provide
better fit performance (model comparison based on widely
adopted selection criteria, such as DIC, CPO, and PIT), making
them more suitable for sensitive policy pricing.

In addition, we use the posterior predictive distribution of the
number of data breaches to calculate the premium for a one-year
cyberattack insurance policy. To evaluate safety loadings, we use
three different premium principles: the 75% percentile, the CoC,
and the SD principle. For each of these principles, the results
obtained using the spatially uniform cyberattack frequency
model differ significantly from those obtained with the other
four models.

As pointed-out by an anonymous reviewer, the spatial preci-
sion matrix K

𝜈
could be specified by adopting different criteria

and possibly by embedding prior knowledge and expert opin-
ions concerning the similarity of US states with respect to the
phenomenon being analyzed. An interesting proposal in this
spirit can be found in Majumdar et al. [29]. For the sake of
brevity, we do not show results obtained by using different spa-
tial structures and a covariance matrix obtained by combining
the spatial structure of the map with weights determined by
the correlation between states with respect to cyber attacks.
In fact, policy pricing envisioned in the article depends on
the posterior distribution of the linear predictor, which shows
negligible sensitivity to the adopted structure in the application
being studied.

In particular, our investigation shows that it is inequitable to allo-
cate premiums among the 49 states based on the assumption of
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homogeneous cyberattack frequency. Therefore, it is important to
consider the spatial correlation and heterogeneity of cyberattack
frequency when pricing policies.
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