Polarons and spin-orbit (SO) coupling are distinct quantum effects that play a critical role in charge transport and spin-orbitronics. Polarons originate from strong electron-phonon interaction and are ubiquitous in polarizable materials featuring electron localization, in particular 3d transition metal oxides (TMOs). On the other hand, the relativistic coupling between the spin and orbital angular momentum is notable in lattices with heavy atoms and develops in 5d TMOs, where electrons are spatially delocalized. Here we combine ab initio calculations and magnetic measurements to show that these two seemingly mutually exclusive interactions are entangled in the electron-doped SO-coupled Mott insulator Ba2Na1-xCaxOsO6 (0 < x < 1), unveiling the formation of spin-orbital bipolarons. Polaron charge trapping, favoured by the Jahn-Teller lattice activity, converts the Os 5d1 spin-orbital Jeff = 3/2 levels, characteristic of the parent compound Ba2CaOsO6 (BNOO), into a bipolaron 5d2 J(eff )= 2 manifold, leading to the coexistence of different J-effective states in a single-phase material. The gradual increase of bipolarons with increasing doping creates robust in-gap states that prevents the transition to a metal phase even at ultrahigh doping, thus preserving the Mott gap across the entire doping range from d1 BNOO to d(2) Ba2CaOsO6 (BCOO).

Celiberti, L., Mosca, D.F., Allodi, G., Pourovskii, L.V., Tassetti, A., Forino, P.C., et al. (2024). Spin-orbital Jahn-Teller bipolarons. NATURE COMMUNICATIONS, 15(1), 1-9 [10.1038/s41467-024-46621-0].

Spin-orbital Jahn-Teller bipolarons

Celiberti, L
Primo
Methodology
;
Tassetti, A;Forino, PC;Sanna, S;Franchini, C
Ultimo
Conceptualization
2024

Abstract

Polarons and spin-orbit (SO) coupling are distinct quantum effects that play a critical role in charge transport and spin-orbitronics. Polarons originate from strong electron-phonon interaction and are ubiquitous in polarizable materials featuring electron localization, in particular 3d transition metal oxides (TMOs). On the other hand, the relativistic coupling between the spin and orbital angular momentum is notable in lattices with heavy atoms and develops in 5d TMOs, where electrons are spatially delocalized. Here we combine ab initio calculations and magnetic measurements to show that these two seemingly mutually exclusive interactions are entangled in the electron-doped SO-coupled Mott insulator Ba2Na1-xCaxOsO6 (0 < x < 1), unveiling the formation of spin-orbital bipolarons. Polaron charge trapping, favoured by the Jahn-Teller lattice activity, converts the Os 5d1 spin-orbital Jeff = 3/2 levels, characteristic of the parent compound Ba2CaOsO6 (BNOO), into a bipolaron 5d2 J(eff )= 2 manifold, leading to the coexistence of different J-effective states in a single-phase material. The gradual increase of bipolarons with increasing doping creates robust in-gap states that prevents the transition to a metal phase even at ultrahigh doping, thus preserving the Mott gap across the entire doping range from d1 BNOO to d(2) Ba2CaOsO6 (BCOO).
2024
Celiberti, L., Mosca, D.F., Allodi, G., Pourovskii, L.V., Tassetti, A., Forino, P.C., et al. (2024). Spin-orbital Jahn-Teller bipolarons. NATURE COMMUNICATIONS, 15(1), 1-9 [10.1038/s41467-024-46621-0].
Celiberti, L; Mosca, DF; Allodi, G; Pourovskii, LV; Tassetti, A; Forino, PC; Cong, R; Garcia, E; Tran, PM; De Renzi, R; Woodward, PM; Mitrovic, VF; Sa...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/983218
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact