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Supplementary Note 1: DFT polaronic levels

The polaronic wavefunctions were calculated at the DFT level using the spinorial projected localised orbitals (PLOs)
defined by Fiore Mosca et al. [1] and Schüler et al. [2] within the projector augmented wave (PAW) scheme.
Specifically, an effective Hamiltonian Hnn′ was obtained by projecting the Kohn-Sham energy levels ϵm(k) onto the
subspace generated by the angular momentum l = 2 wavefunctions centered at the polaronic site and radial part
obtained from the PAW projectors, as implemented in the TRIQS dftTOOLs package [3]. The Hamiltonian was
projected onto the local correlated space as obtained from the following equation, in which Hmm′(k) = ϵm(k)δmm′

Hαβ
nn′ =

∑
k

P̃ Cβ
nm′(k)Hmm′(k)

(
P̃ Cα
mn(k)

)∗
, (1)

where
Pα
C,L(k) =

∑
i

⟨χL|ϕi⟩⟨p̃i|Ψ̃α
k⟩ , (2)

are the spinorial PLOs written in the PAW formalism [1].
The projectors were calculated after convergence of the DFT self-consistent cycle within an energy window of

2.25÷ 9.75 eV with respect to the Fermi level, in order to include all d levels of the polaronic Os site. At this stage,
the Hamiltonian was given in the |da, sz⟩ basis, where a = {xy, xz, yz, z2, x2 − y2} and sz = ±1/2. In terms of l2
and lz common eigenstates they are given by

|dxy, sz⟩ = − i√
2
(|2, sz⟩ − |−2, sz⟩)

|dxz, sz⟩ = − 1√
2
(|1, sz⟩ − |−1, sz⟩)

|dyz, sz⟩ =
i√
2
(|1, sz⟩+ |−1, sz⟩) (3)

|dz2 , sz⟩ = |0, sz⟩∣∣dx2−y2 , sz
〉
=

1√
2
(|2, sz⟩+ |−2, sz⟩)

The cubic harmonics |da⟩ are defined with respect to the VASP internal reference frame, so that in our
√
2a×

√
2a×a

supercell the x, y and z axes correspond respectively to the [110], [11̄0] and [001] crystallographic axes. In order
to have real harmonics defined in the reference frame of the OsO6 octahedron we rotate the orbital l = 2 and spin
s = 1/2 subspaces using Wigner Dj

mm′(α, β, γ) matrices, defined as

Dj
mm′(α, β, γ) = ⟨j,m′| e−iαJze−iβJye−iγJz |j,m⟩ (4)

where α, β and γ are Euler angles describing the reference frame rotation and Jy and Jz are cartesian coordinates
of the angular momentum operator J. In our case the rotation is described by the angles α = 0, β = 0, γ = π/4.

Since the crystal field interaction (∼ 5 eV) is much larger than SO interaction ( ∼ 0.3 eV ) in BNOO, we can
separate t2g and eg orbitals and consider only the former in our analysis. In the octahedron reference frame they
are defined as: ∣∣t12g〉 = − 1√

2
(|dxz⟩+ i |dyz⟩)∣∣t02g〉 = |dxy⟩ (5)∣∣t−1

2g

〉
=

1√
2
(|dxz⟩ − i |dyz⟩)

One can easily show that the projection of the angular momentum operator L onto the t2g orbitals give

Pt2gLPt2g = −l (6)

where l is an effective angular momentum operator with l = 1.
At this point, we employ Clebsch-Gordan coefficients to construct Jeff = 3/2 and Jeff = 1/2 states out of the t2g

ones. To conclude, we rotated again our basis with Wigner D-matrices to bring the angular momentum quantization
axis along the direction of magnetisation, which lies in the (110) plane. The occupation matrix thus obtained is
pictorially reproduced in Supplementary Fig. 1 and numerically in Supplementary Tab. 1.
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Supplementary Figure 1: Diagram of the polaronic occupation matrix as calculated from DFT non-collinear pro-
jectors. Axes are labelled according to (j, jz) values. Colors represent the value of the occupation matrix reported
in Supplementary Tab. 1. Dark red on the diagonal corresponds to level occupation equal to one. The diagram
shows that the DFT polaron occupies Jeff = 3/2 states |3/2, 3/2⟩ and |3/2, 1/2⟩ with the latter state slightly mixed
with the Jeff = 1/2 |1/2, 1/2⟩.

3/2, 3/2 3/2, 1/2 3/2, -1/2 3/2, -3/2 1/2, 1/2 1/2, -1/2
3/2, 3/2 0.90 0.00 0.04 0.00 0.00 -0.04
3/2, 1/2 0.00 0.80 0.00 -0.01 -0.31 0.00
3/2, -1/2 0.04 0.00 0.01 0.00 0.00 0.00
3/2, -3/2 0.00 -0.01 0.00 0.00 0.00 0.00
1/2, 1/2 0.00 -0.31 0.00 0.00 0.12 0.00
1/2, -1/2 -0.04 0.00 0.00 0.00 0.00 0.01

Supplementary Table 1: Polaronic occupation matrix calculated from DFT non-collinear projectors. Column and
row labels indicate the matrix components on the Jeff = 3/2 and Jeff = 1/2 levels.
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Supplementary Note 2: HI polaronic levels

Charge self-consistent DFT+DMFT calculations (see Methods section of the main text) predicted a multiplet
structure of the two-electron levels at the polaronic site, as depicted in Supplementary Fig. 2. In particular, we can
distinguish a low lying quintuplet, a triplet about 0.4 eV above the ground state multiplet and a singlet. The next
excited state lies about 1 eV above those represented in Supplementary Fig. 2. By looking at the wavefunctions of the
ground state quintuplet, we can see that they are well represented by Jeff = 2 spin-orbital states (see Supplementary
Tab. 2).

The one-electron spectral density was also calculated for the d1 and d2 states and is reported in Supplementary
Fig. 3. The DFT+HI polaronic states appear in the band gap just above the valence d1 states.
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Supplementary Figure 2: Lowest two-electron energy levels.

Energy (meV) J = 2 multiplet eigenstate

0.0 +0.999 |2; 0⟩ − (0.031− 0.003i) |2; 2⟩ − (0.031 + 0.003i) |2;−2⟩
18.6 +0.707 |2;−1⟩ − (0.701− 0.094i) |2; 1⟩
20.3 +0.707 |2; 1⟩+ (0.701 + 0.094i) |2;−1⟩
25.6 +0.706 |2; 2⟩+ 0.706 |2;−2⟩+ 0.044 |2; 0⟩
40.2 +0.707 |2;−2⟩ − 0.707 |2; 2⟩+ (0.000− 0.004i) |2; 0⟩

Supplementary Table 2: Multiplet eigenstates of the first five levels. The first row of the table indicates that the
polaronic ground state has a spin-orbital character with Jeff = 2.
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Supplementary Figure 3: Single particle spectral density. Contributions of the d1 and d2 sites are highlighted
respectively in yellow and violet. The violet polaronic peak lies just above the conduction band, around −1 eV.
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Supplementary Note 3: Polaron formation energy vs JT modes

The JT normal coordinates used in our analysis are defined as linear combinations of the Cartesian displacements
Xi, Yi, and Zi of the oxygen atoms located at the corners of the distorted octahedron structure (see Supplementary
Fig. 4). These displacements are defined with respect to their corresponding positions in a reference undistorted
structure, denoted by x

(0)
i , y

(0)
i , z

(0)
i . Starting from Xi, Yi, and Zi, JT normal coordinates Qi can be defined that

transform according to the irreducible representations of the octahedral group Oh [4], as represented in Supplemen-
tary Tab. 3.
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Supplementary Figure 4: Graphical representation of the cartesian distortions Xi, Yi and Zi.
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A1g Q1 (X2 −X5 + Y3 − Y6 + Z1 − Z4)/
√
6

Eg
Q2 (X2 −X5 − Y3 + Y6)/2

Q3 (2Z1 − 2Z4 −X2 +X5 − Y3 + Y6)/2
√
3

T2g

Qyz (Z3 − Z6 + Y1 − Y4)/2
Qxz (X1 −X4 + Z2 − Z5)/2
Qxy (Y2 − Y5 +X3 −X6)/2

T ′
1u

Q′
x (X1 +X3 +X4 +X6)/2

Q′
y (Y1 + Y2 + Y4 + Y5)/2

Q′
z (Z1 + Z3 + Z4 + Z6)/2

T ′′
1u

Q′′
x (X2 +X5)/

√
2

Q′′
y (Y3 + Y6)/

√
2

Q′′
z (Z1 + Z4)/

√
2

T1u

Q′
xy (X3 +X6 −X1 −X4)/2

Q′
yz (Y1 + Y4 − Y2 − Y5)/2

Q′
xz (Z2 + Z5 − Z3 − Z6)/2

rot.
Qr,yz (Z3 − Z6 + Y4 − Y1)/2
Qr,xz (X1 −X4 − Z2 + Z5)/2
Qr,xy (Y2 − Y5 −X3 +X6)/2

Supplementary Table 3: Definition of the octahedron vibration coordinates Qi as a function of the cartesian
distortions Xi, Yi and Zi.

We used the BNOO cubic structure with full Fm3̄m symmetry [5] as a reference. Cartesian directions Xi, Yi

and Zi correspond to crystallographic axes [100], [010] and [001] respectively. In all our calculations, we find only
four modes to be different from zero: Q1, Q2, Q3, and Qxy. Their values for both the pristine BNOO with cAFM
ordering and the polaronic site are reported in Supplementary Tab. 4. The T2g mode Qxy is not mentioned in
previous studies on pristine BNOO [6].

Q1 (Å) Q2 (Å) Q3 (Å) Qxy (Å)
pristine 0.057 0.017 -0.005 0.019
polaron 0.138 -0.011 0.014 -0.010

Supplementary Table 4: Non-zero deformation modes for an OsO6 octahedron in the pristine material (first row)
and for a polaronic one (second row).

We provide in the following the analysis of the effect of non-zero modes on the polaronic formation energy and
their relation to SO effects. First, we observe how polaron energy Epol changes as a function of the isotropic mode Q1

and the Eg modes Q2 and Q3. In particular, starting from the distortions obtained for the polaronic ground state,
we calculate all the Qi of Supplementary Tab. 3. Then, we fix all Qi but the one we want to study and invert the
transformation between Qi and Cartesian displacements to generate the new structure, where the polaron has one
mode changed and all others are left unchanged. By fixing the position of the polaronic OsO6 octahedron and letting
all other ions to relax, we calculate the polaron energy always with respect to the same delocalised configuration.
In this way, we obtain the parabolas reported in Supplementary Fig. 5. Here, the normalised distortions Q̃i are
defined as the ratio of the polaronic and pristine distortion modes. In this way we can easily estimate the energy
gained by the polaron by change one mode Qi with respect to its value in the pristine case Q̃i = 1. The same
calculations for Qxy show an energy gain of the same order of magnitude of those obtained for the Eg modes.

As a second step, we explore the relation between the JT modes and SO intensity cλ. The A1g mode Q1,
corresponding to an isotropic expansion of the octahedron, stays constant throughout the range of SO intensity
(see Supplementary Fig. 6(a)). For the Eg and T2g modes, two different behaviours could be distinguished. The
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Supplementary Figure 5: Polaron energy Epol as a function of the normalised (a) Q̃1, (b) Q̃2 and (c) Q̃3 modes
for cλ = 1. Dashed lines correspond to the pristine values of Q̃i. Solid grey lines indicate the lattice energy gain
given by a polaronic distortion with respect to the pristine one. The breathing-out mode Q̃1 presents the major
contribution amounting to ≈ 67% of the polaron energy.

tetragonal elongation in the [001] direction Q3 decreases with increasing cλ, as already mentioned in the main text
and also found by Streltsov and Khomskii [7]. On the other hand, Q2 and Qxy remain constant above cλ ≃ 0.2 and
rapidly go to zero for cλ < 0.2, as represented in Supplementary Fig. 6(c-d). However, previous studies predicted
exactly the opposite for a d2 JT impurity: all Eg and T2g distortions should decrease in amplitude for increasing
cλ [7, 8]. Moreover, the different behaviours of Q2 and Q3 suggest Therefore, we supposed that the Q2 and Qxy

distortions have a different origin than the Q3 one.
To prove this assumption, we estimate the JT energy EJT of the polaronic octahedron as a function of cλ

in a quasimolecular approximation [4, 9]. In particular, we calculate all the Qi from the polaronic ground state
structure, fix all of them but a chosen one, and invert the transformation of Supplementary Tab. 3 between Cartesian
displacements and generalised modes Qi to generate the distorted structures needed to construct the ionic potential
energy surface. For each distorted structure, total energies are calculated with the occupation matrix constrained to
that of the polaronic ground state [10]. The parabolas E(Qi) obtained in this way have been fitted to estimate the
JT energy gain EJT as the difference between the energy at the minimum and that corresponding to the structure
with the varying Qi equal to zero:

EJT = E(Qpol
i )− E(Qi = 0) (7)

where Qpol
i is the value of the distortion for the polaronic ground state. The results are shown in Fig. 3 of the main

text. While EJT was one order of magnitude more negative for the tetragonal distortion Q3 at weak SO coupling,
for Q2 and Qxy the JT energy gain remains smaller than 1 meV throughout the explored cλ range. We therefore
assume that their contribution to the polaron stability is negligible compared to the Q3 one.
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Supplementary Figure 6: Non-zero deformation modes behaviour as a function of SO coupling strength cλ. (a)
the breathing-out mode Q1 shows no SO dependence. (b) the tetragonal mode Q3 is quenched by SOC. (c-d) the
orthorhombic mode Q2 and the trigonal one Qxy are completely suppressed at very low SO and show a plateau for
cλ ≳ 0.2.
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Supplementary Note 4: DOS for different Ca concentrations

−1 0 1 2

E − EF (eV)

10

20

30

40

50

st
at
es
/e
V

x = 0.000

total
d1

d2

−1 0 1 2

E − EF (eV)

10

20

30

40

50

st
at
es
/e
V

x = 0.125

total
d1

d2

−1 0 1 2

E − EF (eV)

10

20

30

40

50

st
at
es
/e
V

x = 0.250

total
d1

d2

−1 0 1 2

E − EF (eV)

10

20

30

40

50

st
at
es
/e
V

x = 0.375

total
d1

d2

−1 0 1 2

E − EF (eV)

10

20

30

40

50

st
at
es
/e
V

x = 0.500

total
d1

d2

−1 0 1 2

E − EF (eV)

10

20

30

40

50

st
at
es
/e
V

x = 0.625

total
d1

d2

−1 0 1 2

E − EF (eV)

10

20

30

40

50

st
at
es
/e
V

x = 0.750

total
d1

d2

−1 0 1 2

E − EF (eV)

10

20

30

40

50

st
at
es
/e
V

x = 0.875

total
d1

d2

−1 0 1 2

E − EF (eV)

10

20

30

40

50
st
at
es
/e
V

x = 1.000

total
d1

d2

Supplementary Figure 7: DOS projected onto the d-orbitals of Os d1 (blue) and d2 (orange) sites at different Ca
concentration x. The total DOS is shown in light grey.
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Supplementary Note 5: NMR anomalous peak fit results

We have fitted the NMR 1/T1 anomalous peak using the BPP-like model of Eq. (1). The results are reported in
Supplementary Tab. 5.

x(%) Ta (K) Ea (meV) τ0 (ps) ∆2 × 109 (s−2)
12.5 855± 26 74± 2 0.7± 0.2 28.0± 0.8
25.0 788± 21 68± 2 2.5± 0.4 27.5± 0.6
37.5 953± 38 82± 3 0.7± 0.2 97± 3
50.0 931± 24 80± 2 0.8± 0.2 129± 3
75.0 928± 23 80± 2 0.9± 0.2 143± 3
90.0 857± 24 77± 2 1.1± 0.2 97± 2

Supplementary Table 5: NMR anomalous peak fitting results
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Supplementary Note 6: Determination of the relaxation times T1 and T2

The measure of T1 is extracted by using the standard saturation recovery method with echo detection. In these
conditions the nuclear spin transitions can be fully saturated but the detection reveals only the central transition.
In our sample Ba2Ca0.125Na0.875OsO6, the NMR signal amplitude as a function of the repetition delay time t can
be fitted to a stretched exponential function:

M(t) = M0

(
1− exp

(
−
(

t

T1

)β1
))

(8)

where the common interpretation of β < 1 is, in terms of the global relaxation, that the sample contains many
independently relaxing species, resulting in the sum of different exponential decays. This is expected in systems
with considerable electronic inhomogeneity, giving rise to a broad distribution of correlation times [11–13].

The stretched behaviour is often observed in complex transition metal oxides. It typically reflects the presence
of a non trivial distribution of relaxation rates due to local electronic inhomogeneities, which give rise to a site
dependent magnetic or electric coupling.

A single exponential decay is clearly corresponding to β = 1, while β = 0.5 is typical of a fully disordered system,
i.e. an intrinsic heterogeneity of phases, which can be described with a multi-exponential factor.

Supplementary Fig. 8 shows the experimental behaviour with the fit line of Supplementary Eq. (8), for the
normalized amplitude as a function of the delay time, for representative temperatures.

Supplementary Figure 8: Plot of the normalized amplitude signal as a function of the delay for the T1 relaxation of
the Ba2Na0.125Ca0.875OsO6 sample with the fit (solid line) to Supplementary Eq. (8).

The relaxation rate 1/T1 if displayed in the main text and the β1 coefficient as a function of temperature in
the whole range are reported in Supplementary Fig. 10 (squares). Notice that the stretching coefficient is reduced
to β = 0.5 at the relaxation rate’s peak, which indicates that the electronic disorder reaches its maximum when
cooling towards the crossover between the dynamic and the static regime on the NMR time scale, but it approaches
a single exponential decay with β = 1 elsewhere. The single relaxation rate is expected also for quadrupolar nuclei
(I > 1/2) in a cubic crystal since the static quadrupolar interaction vanishes and spin-spin interactions maintain a
spin temperature [14, 15]. Indeed, these conditions are satisfied throughout the reported temperature range, where
a single NMR line is observed, with linewidth below 30 kHz [16].

The measurements for the determination of the T2 transverse relaxation time have been performed by using a
modified π/2- π/2 Hanh echo sequence).

The data has been fitted to a stretched exponential fit function, analogous to the one used for the T1 longitudinal
relaxation case in Supplementary Eq. (8), in the form:

M(2τ) = M0 exp

(
−
(
2τ

T2

)β2
)
, (9)

with β ranging from 0.5 to 2 reflecting a more dynamical disordered or more Gaussian character, respectively.
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In Supplementary Fig. 9 is represented the fit function, expressed in the Supplementary Eq. (9), for the normal-
ized amplitude as a function of the echo delay time, for representative temperatures.

Supplementary Figure 9: Plot of the normalized amplitude signal as a function of the echo delay time for the T2

relaxation of the Ba2Na0.125Ca0.875OsO6 sample, for selected temperatures with the fit (solid line) to Supplementary
Eq. (9).

Supplementary Figure 10: Temperature dependence of the βi exponent for i = 1, 2 of Supplementary Eq. (8) and
Supplementary Eq. (9), respectively.

The relaxation rate 1/T2 if displayed in the main text and the β2 coefficient as a function of temperature in the
whole range are reported in Supplementary Fig. 10 (triangles).

The temperature dependence of the β parameter, both from T1 and T2, reflects the system dynamics. We can
observe that local minima of β coefficients correspond to the peaks maxima of 1/T1 and 1/T2. This is expected
in systems with a high electronic inhomogeneity which gives rise to a unresolved large distribution of correlation
times.
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Supplementary Note 7: Muon Spin Rotation

Muon spin relaxation measurements have been performed at the GPS instrument at the Paul Scherrer Institute
(Switzerland) in both zero field (ZF), µ0H=0, and longitudinal field (LF) conditions, where the latter uses an
external field µ0H parallel to the initial muon spin polarization.

After the implantation into powder samples of a beam of completely polarized positively charged muons (spin
Sµ=1/2), we study the time evolution of muon spin asymmetry which provides information on the spatial distribu-
tion and dynamical fluctuations of the magnetic environment.

The µSR is a magnetic probe and allows to investigate local magnetic moments values, but is not sensitive to
charge variations, because muons have no electric quadrupole moment and are typically insensitive to the static or
dynamical effects of the EFG.

The implanted muons decay with a characteristic lifetime of 2.2 µs, emitting a positron preferentially along the
direction of the muon spin. The positrons are detected and counted by a forward (NF (t)) and backward detector
(NB(t)) as a function of time. The asymmetry function A(t) is given by

A(t) =
NB(t)− αNF (t)

NB(t) + αNF (t)
, (10)

where α is a parameter determined experimentally from the geometry and efficiency of the µSR detectors. A(t)
is proportional to the muon spin polarization, and thus reveals information about the local magnetic field sensed
by the muons. Examples of the muon asymmetry behavior are displayed in Supplementary Fig. 11. The zero field
spectra are those previously reported in ref. [16] and accordingly in the magnetic phase each individual spectra was
fitted to a sum of precessing and relaxing asymmetries given by

A(t) =

[
A1e

−σ2
1t2

2 cos(2πν1t) +A2e
−σ2

2t2

2

]
+Aℓe

−λµt (11)

The terms inside the brackets reflect the perpendicular component of the internal local field probed by the spin-
polarized muons, the first term corresponds to the damped oscillatory muon precession about the local internal
fields at frequencies νi, while the second reflects a more incoherent precession with a local field distribution given
by σ, for a total of 2 different muon sites (accidentally the most general case accounts up to three inequivalent
muon sites for other compositions of the same series [16]). The term outside the brackets reflects the longitudinal
component characterized by the muon spin-lattice relaxation rate λµ ≡ 1/Tµ

1 .

Supplementary Figure 11: Representative time dependence of the muon decay asymmetry with fit curves (lines)
to Supplementary Eq. (11): open squares are for external zero field condition at 1.5 K and solid symbols are for
longitudinal applied field of µ0H = 0.1 T at selected temperatures (circle 1.5 K, up triangles 5 K, down triangles
40 K). Solid line are the best fit to Supplementary Eq. (11) and Supplementary Eq. (12) for ZF and LF, respectively

LF-µSR measurements have been performed as a function of temperature in order to apply a static field for two
field of 10 and 100 mT being the latter much greater than the internal static field detected in the ordered phase
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∼ 10 mT as reported in Ref. [16]. In this condition the longitudinal amplitude (the tail) is fully recovered to the
maximum amplitude already for few tens of mT also at the base temperature indicating a static character of the
magnetic state. All the LF muon asymmetry data can be simply fitted to

Aℓe
−λµt (12)

Both the ZF and LF longitudinal rates are reported in Fig. 2(b) as a function of temperature. They clearly show
a relaxation peak due to critical fluctuations when approaching the magnetic transition at TN ≃ 7 K. No evidence
of extra anomalous relaxation peak is detected at any temperature up to 300 K.
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Supplementary Note 8: Modelling of spin-lattice relaxation rate

The spherical coordinate of the EFG appearing in Eq. (3) are given in cartesian coordinates by [17]

V0 =
1√
6
[3Vzz − (Vxx + Vyy + Vzz)] (13a)

V±1 = ∓1

2
[Vxz + Vzx ± i (Vyz + Vzy)] (13b)

V±2 =
1

2
[Vxx − Vyy ± i (Vxy + Vyx)] (13c)

where the lower indices indicate derivatives with respect to the corresponding cartesian coordinate. To estimate
the EFG we used a point-charge model of the NaO6 octahedron with a coulombic potential given by

V (r) = qox

6∑
i=1

1

|r −Ri|
(14)

where qox is the formal charge of the oxagen ions and Ri is the position of the i-th oxygen ion with respect to the
nucleus. For the oxygen labelling convention see Supplementary Fig. 4.

By combining Supplementary Eq. (13) and Supplementary Eq. (14) we can calculate the matrices M (ij)
αβ used in

the derivation of the spin-lattice relaxation rate 1/T1 in the Methods section.

M (11) = M (44) =
1

R8
0

3 0 0
0 3 0
0 0 9

 M (22) = M (55) =
1

R8
0

9 0 0
0 3 0
0 0 3

 M (33) = M (66) =
1

R8
0

3 0 0
0 9 0
0 0 3


(15)

M (14) =
1

R8
0

−3 0 0
0 −3 0
0 0 −9

 M (25) =
1

R8
0

−9 0 0
0 −3 0
0 0 −3

 M (36) =
1

R8
0

−3 0 0
0 −9 0
0 0 −3

 (16)

M (12) = −M (15) = −M (42) = M (45) =
1

R8
0

 0 0 3
0 0 0

−9/2 0 0

 (17)

M (13) = −M (16) = −M (43) = M (46) =
1

R8
0

0 0 0
0 0 −3
0 −9/2 0

 (18)

M (23) = −M (26) = −M (53) = M (56) =
1

R8
0

0 −9/2 0
3 0 0
0 0 0

 (19)
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