Let Γ be a finitely generated group and let (X,μX) be an ergodic standard Borel probability Γ-space. Suppose that G is the connected component of the identity of the isometry group of a Hermitian symmetric space. Given a Zariski dense measurable cocycle σ:Γ×X→G, we define the notion of parametrized Kähler class and we show that it completely determines the cocycle up to cohomology.
Sarti, F., Savini, A. (2023). Parametrized Kähler class and Zariski dense orbital 1-cohomology. MATHEMATICAL RESEARCH LETTERS, 30(6), 1895-1929 [10.4310/mrl.2023.v30.n6.a9].
Parametrized Kähler class and Zariski dense orbital 1-cohomology
Sarti, Filippo
Co-primo
;Savini, AlessioCo-primo
2023
Abstract
Let Γ be a finitely generated group and let (X,μX) be an ergodic standard Borel probability Γ-space. Suppose that G is the connected component of the identity of the isometry group of a Hermitian symmetric space. Given a Zariski dense measurable cocycle σ:Γ×X→G, we define the notion of parametrized Kähler class and we show that it completely determines the cocycle up to cohomology.File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.