Background: Image reconstruction is crucial for improving overall image quality and diagnostic accuracy. Q.Clear is a novel reconstruction algorithm that reduces image noise. The aim of the present study is to assess the preferred Q.Clear β-level for digital [68Ga]Ga-DOTANOC PET/CT reconstruction vs. standard reconstruction (STD) for both overall scan and single-lesion visualization. Methods: Inclusion criteria: (1) patients with/suspected neuroendocrine tumors included in a prospective observational monocentric study between September 2019 and January 2022; (2) [68Ga]Ga-DOTANOC digital PET/CT and contrast-enhanced-CT (ceCT) performed at our center at the same time. Images were reconstructed with STD and with Q.Clear β-levels 800, 1000, and 1600. Scans were blindly reviewed by three nuclear-medicine experts: the preferred β-level reconstruction was independently chosen for the visual quality of both the overall scan and the most avid target lesion < 1 cm (t) and >1 cm (T). PET/CT results were compared to ceCT. Semiquantitative analysis was performed (STD vs. β1600) in T and t concordant at both PET/CT and ceCT. Subgroup analysis was also performed in patients presenting discordant t. Results: Overall, 52 patients were included. β1600 reconstruction was considered superior over the others for both overall scan quality and single-lesion detection in all cases. The only significantly different (p < 0.001) parameters between β1600 and STD were signal-to-noise liver ratio and standard deviation of the liver background. Lesion-dependent parameters were not significantly different in concordant T (n = 37) and t (n = 10). Among 26 discordant t, when PET was positive, all findings were confirmed as malignant. Conclusions: β1600 Q.Clear reconstruction for [68Ga]Ga-DOTANOC imaging is feasible and improves image quality for both overall and small-lesion assessment.

Di Franco M., Fortunati E., Zanoni L., Bonazzi N., Mosconi C., Malizia C., et al. (2024). β1600 Q.Clear Digital Reconstruction of [68Ga]Ga-DOTANOC PET/CT Improves Image Quality in NET Patients. JOURNAL OF CLINICAL MEDICINE, 13(13), 1-10 [10.3390/jcm13133841].

β1600 Q.Clear Digital Reconstruction of [68Ga]Ga-DOTANOC PET/CT Improves Image Quality in NET Patients

Di Franco M.
Co-primo
;
Fortunati E.
Co-primo
;
Zanoni L.;Bonazzi N.;Mosconi C.;Civollani S.;Campana D.;Andrini E.;Lamberti G.;Fanti S.;Ambrosini V.
Ultimo
2024

Abstract

Background: Image reconstruction is crucial for improving overall image quality and diagnostic accuracy. Q.Clear is a novel reconstruction algorithm that reduces image noise. The aim of the present study is to assess the preferred Q.Clear β-level for digital [68Ga]Ga-DOTANOC PET/CT reconstruction vs. standard reconstruction (STD) for both overall scan and single-lesion visualization. Methods: Inclusion criteria: (1) patients with/suspected neuroendocrine tumors included in a prospective observational monocentric study between September 2019 and January 2022; (2) [68Ga]Ga-DOTANOC digital PET/CT and contrast-enhanced-CT (ceCT) performed at our center at the same time. Images were reconstructed with STD and with Q.Clear β-levels 800, 1000, and 1600. Scans were blindly reviewed by three nuclear-medicine experts: the preferred β-level reconstruction was independently chosen for the visual quality of both the overall scan and the most avid target lesion < 1 cm (t) and >1 cm (T). PET/CT results were compared to ceCT. Semiquantitative analysis was performed (STD vs. β1600) in T and t concordant at both PET/CT and ceCT. Subgroup analysis was also performed in patients presenting discordant t. Results: Overall, 52 patients were included. β1600 reconstruction was considered superior over the others for both overall scan quality and single-lesion detection in all cases. The only significantly different (p < 0.001) parameters between β1600 and STD were signal-to-noise liver ratio and standard deviation of the liver background. Lesion-dependent parameters were not significantly different in concordant T (n = 37) and t (n = 10). Among 26 discordant t, when PET was positive, all findings were confirmed as malignant. Conclusions: β1600 Q.Clear reconstruction for [68Ga]Ga-DOTANOC imaging is feasible and improves image quality for both overall and small-lesion assessment.
2024
Di Franco M., Fortunati E., Zanoni L., Bonazzi N., Mosconi C., Malizia C., et al. (2024). β1600 Q.Clear Digital Reconstruction of [68Ga]Ga-DOTANOC PET/CT Improves Image Quality in NET Patients. JOURNAL OF CLINICAL MEDICINE, 13(13), 1-10 [10.3390/jcm13133841].
Di Franco M.; Fortunati E.; Zanoni L.; Bonazzi N.; Mosconi C.; Malizia C.; Civollani S.; Campana D.; Andrini E.; Lamberti G.; Allegri V.; Fanti S.; Am...espandi
File in questo prodotto:
File Dimensione Formato  
jcm-13-03841-v2.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/980796
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact