A novel ES-BGK-based model of non-polytropic rarefied gases in the framework of kinetic theory is presented. Key features of this model are: an internal state density function depending only on the microscopic energy of internal modes (avoiding the dependence on temperature seen in previous reference studies); full compliance with the H-theorem; feasibility of the closure of the system of moment equations based on the maximum entropy principle, following the well-established procedure of rational extended thermodynamics. The structure of planar shock waves in carbon dioxide (CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}) obtained with the present model is in general good agreement with that of previous results, except for the computed internal temperature profile, which is qualitatively different with respect to the results obtained in previous studies, showing here a consistently monotonic behavior across the shock structure, rather than the non monotonic behavior previously found.

Arima, T., Mentrelli, A., Ruggeri, T. (2024). A Novel ES-BGK Model for Non-polytropic Gases with Internal State Density Independent of the Temperature. JOURNAL OF STATISTICAL PHYSICS, 191(8), 1-34 [10.1007/s10955-024-03286-9].

A Novel ES-BGK Model for Non-polytropic Gases with Internal State Density Independent of the Temperature

Mentrelli, Andrea;Ruggeri, Tommaso
2024

Abstract

A novel ES-BGK-based model of non-polytropic rarefied gases in the framework of kinetic theory is presented. Key features of this model are: an internal state density function depending only on the microscopic energy of internal modes (avoiding the dependence on temperature seen in previous reference studies); full compliance with the H-theorem; feasibility of the closure of the system of moment equations based on the maximum entropy principle, following the well-established procedure of rational extended thermodynamics. The structure of planar shock waves in carbon dioxide (CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}) obtained with the present model is in general good agreement with that of previous results, except for the computed internal temperature profile, which is qualitatively different with respect to the results obtained in previous studies, showing here a consistently monotonic behavior across the shock structure, rather than the non monotonic behavior previously found.
2024
Arima, T., Mentrelli, A., Ruggeri, T. (2024). A Novel ES-BGK Model for Non-polytropic Gases with Internal State Density Independent of the Temperature. JOURNAL OF STATISTICAL PHYSICS, 191(8), 1-34 [10.1007/s10955-024-03286-9].
Arima, Takashi; Mentrelli, Andrea; Ruggeri, Tommaso
File in questo prodotto:
File Dimensione Formato  
2024-JSP191.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/980736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact