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Abstract
A novel ES-BGK-based model of non-polytropic rarefied gases in the framework of kinetic
theory is presented. Key features of this model are: an internal state density function
depending only on the microscopic energy of internal modes (avoiding the dependence on
temperature seen in previous reference studies); full compliancewith theH-theorem; feasibil-
ity of the closure of the systemofmoment equations based on themaximumentropy principle,
following thewell-established procedure of rational extended thermodynamics. The structure
of planar shock waves in carbon dioxide (CO2) obtained with the present model is in general
good agreement with that of previous results, except for the computed internal temperature
profile, which is qualitatively different with respect to the results obtained in previous studies,
showing here a consistently monotonic behavior across the shock structure, rather than the
non monotonic behavior previously found.
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1 Introduction

The kinetic description of the nonequilibrium flow of rarefied polyatomic gases has been
given much attention in recent years [1–4], and its importance for various applications, such
as atmospheric re-entry problems, is now recognized [5, 6].

One possible extension of the kinetic theory of monatomic gases to polyatomic gases was
made, for the case of polytropic fluids, by Borgnakke and Larsen [7]. According to the model
presented in [7], the distribution function f ≡ f (t, x, ξ , I ) depends, in addition to time t ,
the space variable x, and the molecular velocity ξ , on an additional continuous variable I
representing the microscopic energy of the internal modes of a molecule, accounting for the
energy exchange (other than the translational one) due to rotational and vibrational molecular
motions. This model, initially developed for Monte Carlo simulations of polyatomic gases,
was later applied to the derivation of the generalized Boltzmann equation by Bourgat et al.
[8].

In this model, along the energy variable I , the state density function ϕ (I ) needs to be
introduced when constructing the macroscopic fields as moments of the distribution function
f integrated over the phase space of the velocity and the newly introducedmicroscopic energy
variable. Being ϕ a state density, ϕ (I ) d I represents the number of internal states between
I and I + d I , and it is defined as recovering the macroscopic total specific internal energy
ε. Therefore, the quantity f (t, x, ξ , I ) ϕ (I ) dx dξd I represents the number of molecules in
the 7-dimensional phase space around a point (x, ξ , I ) at time t .1

The internal energy for polyatomic gases is given by the sum of the specific translational
energy, εK , and the specific internal energy due to rotational and vibrational modes, ε I :

ε = εK + ε I ,

εK = 1

ρ

∫
R
3

∫ ∞

0

1

2
mC2 f ϕ (I ) d I dξ ,

ε I = 1

ρ

∫
R
3

∫ ∞

0
I f ϕ (I ) d I dξ ,

(1)

whereC = ξ −v is the relative (peculiar) velocity, ρ is the mass density, v is the macroscopic
(bulk) velocity, and m denotes the molecular mass. For polytropic gases the specific internal
energy ε is a linear function of the temperature:

ε = D

2

kB
m

T , (2)

and the state density function ϕ (I ) has the following expression:

ϕ (I ) = I (D−5)/2, (3)

where the gas-specific constant D (� 3) represents the degrees of freedom of a molecule, kB
is the Boltzmann constant, and T denotes the absolute temperature.

1 It should be remarked that the distribution function adopted by other authors, as for example in [9], which
is written as f∗ here, is related to the distribution function f of the present paper as follows:

f∗ (t, x, ξ , I ) = m2 f (t, x, ξ , I ) ϕ (I ) .
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At the kinetic level, it is assumed that the distribution function f satisfies the Boltzmann
equation

∂ f

∂t
+ ξi

∂ f

∂xi
= Q ( f ) , (4)

which is formally the same as the Boltzmann equation for monatomic gases, but with a
collision integral Q ( f ) taking now into account the influence of the internal degrees of
freedom through the collisional cross-section.Thismodelwas proven to satisfy theH-theorem
[8].

At the macroscopic level, in the framework of rational extended thermodynamics (RET)
[10], the system of 14 moments associated with Eq. (4) was closed by Pavić et al. [11]2

making use of the maximum entropy principle (MEP) [13–15], stating that the distribution
function is the one that maximizes the entropy density

h =
∫
�3

∫ ∞

0
H ( f ) ϕ(I ) d I dξ , (5)

with

H ( f ) = −kB f log f , (6)

under the constraint of prescribedmoments (see for a brief history ofMEP theAppendixA). It
is proven the equivalence of this approach to the one in which the system of model equations
is obtained by means of a phenomenological closure by Arima et al. [16]. In subsequent
years, the theory was successfully applied to the study of wave propagation, such as shock
wave propagation in polyatomic gases (see [10] and reference therein).

The extension of the kinetic model of polytropic gases to non-polytropic gases, for which
the internal energy depends on the temperature in a non-linear fashion, was undertaken by
various authors following significantly different approaches.

Kosuge et al. [9] proposed to replace, in Eqs. (2) and (3), the constant Dwith a temperature-
dependent function, D (T ), allowing to model any arbitrary nonlinear dependence on the
temperature of the internal energy ε (T ) (a brief review of this reference model will be
outlined in Sect. 2). This idea has the advantage of being simple, but it has two major weak
points: Firstly, the resulting model equations with a model of the collisional term, which is
discussed later, do not fulfill theH-theorem, as the authors themselves point out [9]; second, in
the framework of this model, it is not possible to construct a closure of the moment equations
in the spirit of RET by means of the usual procedure of MEP. This is because ϕ (I , T ) is
now a function not only of the microscopic energy I but also of the temperature T , which is,
of course, a macroscopic field variable and therefore a moment of the distribution function
itself.

In addition to that, the quantity ϕ (I ) d I loses its neat physical meaning, since it does not
represent anymore the number of internal states between I and I + d I .

A different approach was proposed by Ruggeri and collaborators [10, 17, 18], who noticed
that ϕ (I ), which should not depend on any field variables, is actually the inverse Laplace
transform of a quantity that is related to the caloric equation of state of the internal modes,
therefore leading to a state density depending only on I , but different from the one given
in Eq. (3). In the framework of this model, the system of moment equations can be closed
by means of the MEP, as well-established in RET, and field equations are indeed derived

2 In this paper there are some typos that was corrected in [12] and Chapter 7 of [10] considering the polytropic
case as particular case of nonpolytropic one.
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for non-polytropic gases in particular cases [10, 19] including the 14 moment case [12]. It
is worth noticing that, in general, the procedure of the Laplace inversion required by this
approach has to be carried out numerically, except for simple cases for which the Laplace
inversion can be done analytically. However, it is also worth noticing that—as it will be
pointed out in Remark 1—the Laplace inversion is actually not required explicitly as long as
the field equations of macroscopic variables are needed [10, 12, 19].

When we deal with the Boltzmann equation, another critical model assumption has to be
made concerning the explicit formof the collisional term Q ( f ). For polyatomic gases, several
models of simplified collisional terms have been proposed.Wemention, among the others, the
extension of theBhatnagar–Gross–Krook (BGK)model [18, 20–23], the ellipsoidal statistical
BGK (ES-BGK) model [24–26], and the Fokker-Planck model [27–29], all of which were
originally developed for monatomic gases. Among the above-mentioned models, the BGK-
type collision term is—due to its simplicity—one of the most appealing and used models, but
it has the well-known drawback of inducing by construction a Prandtl number equal to 1. In
order to avoid this inconvenience in non-polytropic gases, Kosuge et. al., in their previously
mentioned research paper [9], proposed a model based on the ES-BGK collision term which
allows to induce the correct Prandtl number, and studied in the framework of kinetic theory
the structure of standing plane shock waves characterized by a large bulk viscosity, such as
carbon dioxide (CO2).

A model in which the molecular internal processes are treated in a more detailed way
by accounting separately for the rotational and vibrational modes has been proposed by
Arima et al. in [30, 31]. In this model, two separate internal microscopic energies, I R for the
rotational mode and I V for the vibrational mode, are introduced. In this case, two internal
state densities, ϕ

(
I R
)
and ψ

(
I V
)
, are accordingly introduced. To model such processes,

a generalized BGK model with 3 relaxation times that satisfies the H-theorem is proposed
[30].

In the context of the ES-BGK model, a similar extension has been done by Dauvois et
al. [32] and Mathiaud et al. [33]. In these models, the H-theorem is satisfied; however, in
contrast to the general case considered in [30] some particular assumptions were made: the
contribution of the vibrational mode is treated as in the non-polytropic gas case, while it
is assumed that the rotational mode behaves as in a polytropic gas. Since in these models
the microscopic vibrational energy is assumed, by construction, to have only discrete energy
levels, the state density function does not come into play.Although thesemodelswith separate
internal modes allow to investigate the role of the molecular internal modes, the assumption
of the relaxation equations of energies is needed in the construction of the ES-BGK model.

While previous studies have contributed significantly to the kinetic theory of non-
polytropic gases, the development of an ES-BGKmodel with microscopic continuous energy
levels is a task that remains to be accomplished: this is indeed the aim of the present paper.
Specifically, we present here an ES-BGKmodel based on the microscopic continuous energy
levels, I , compatible with a state density of non-polytropic gases, ϕ (I ), independent of the
temperature as it should be. The proposedmodel is conceptually different from all the models
proposed in the above-mentioned papers [9, 32, 33], and it is proven to satisfy the H-theorem.
At this stage of development of this newmodel, in order to avoid the assumption of the relax-
ation equations of the macroscopic rotational and vibrational energies as in [32, 33], the
microscopic rotational and vibrational modes are treated as a whole for simplicity. This
feature of the model has the additional advantage of allowing an easy integration of the
model with experimental data concerning the total internal energy of the non-polytropic gas.
However, this assumption will be eliminated in a forthcoming refinement of the model.
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Acomparison of the numerical results pertaining planar shockwaves obtained by adopting
the present model to those obtained by adopting the reference model by Kosuge et al. [9]
has been performed. Specifically, it will be shown that the model presented in [9] predicts
a non-monotonic profile of the internal temperature through planar shock wave structures,
while the correspondent profile obtained by the newly developed model, under the same
conditions, is monotonic. All other macroscopic quantities appear to be, in all the examined
cases, in a very good agreement with results presented in [9].

The paper is organized as follows. After summarizing, in Sect. 2, the relation between
the state density and the internal energy, we introduce in Sect. 3 the new ES-BGK model
for non-polytropic gases. In Sect. 4 the reduced ES-BGK model—useful for reducing the
computational cost of the numerical implementation of the model—is introduced. Based on
the reduced model, in Sect. 5 we show the comparison of two ES-BGK models when the
profiles of plane shock wave structures are computed. In Sect. 6, concluding remarks will be
outlined.

2 Internal State Density Function

Introducing themass densityρ, themomentumdensityρvi , and the energydensityρv2/2+ρε

as the first five moments of f :
⎛
⎝

ρ

ρvi
ρv2

2 + ρε

⎞
⎠ =

∫
R
3

∫ ∞

0

⎛
⎝

m
mξi

mξ2

2 + I

⎞
⎠ f (t, x, ξ , I ) ϕ (I ) d I dξ ,

then from Eq. (4), taking into account the existence of the collision invariants
(
m, mξi ,

1

2
mξ2 + I

)T
,

we obtain the conservation laws of mass, momentum, and energy.
The total (specific) internal energy,

ε = 1

ρ

∫
R
3

∫ ∞

0

(
1

2
mC2 + I

)
f ϕ (I ) d I dξ

= 1

ρ

∫
R
3

∫ ∞

0

(
1

2
mC2 + I

)
f (E)ϕ (I ) d I dξ = εE , (7)

is an equilibrium quantity, while the (specific) translational energy, εK , and the (specific)
internal mode energy, ε I , defined in Eq. (1) are non-equilibrium ones:

ε = εK + ε I = εKE + ε IE , (8)

where εKE and ε IE are, respectively, the equilibrium specific translational energy and the
specific internal mode energy defined by

εKE = 1

ρ

∫
R
3

∫ ∞

0

1

2
mC2 f (E)ϕ (I ) d I dξ , (9)

ε IE = 1

ρ

∫
R
3

∫ ∞

0
I f (E)ϕ (I ) d I dξ , (10)

f (E) being the equilibrium distribution function, which was obtained in [8] with con-
siderations based on the H-theorem, and in [10–12] requiring (similarly to the case of
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monatomic gas) the maximization of the entropy under the constraints of prescribed first
five moments:

f (E) = ρ

m A (T )

(
m

2πkBT

)3/2
exp

{
− 1

kBT

(
1

2
mC2 + I

)}
= f (M) f (I ), (11)

where f (M) denotes theMaxwellian distribution function, and f (I ) is the distribution function
related to the internal mode:

f (M) = ρ

m

(
m

2πkBT

)3/2
exp

(
− mC2

2kBT

)
, f (I ) = 1

A (T )
exp

(
− I

kBT

)
, (12)

being

A (T ) =
∫ ∞

0
exp

(
− I

kBT

)
ϕ (I ) d I (13)

a normalization factor such that ∫ ∞

0
f (I ) ϕ (I ) d I = 1. (14)

The function A (T ) can therefore be regarded, using the language of statistical mechanics,
as the partition function for the molecular internal mode.

For a rarefied non-polytropic gas, the total internal energy ε is a non-linear function of
the temperature, the expression of which is given by the caloric equation of state3:

ε = εE (T ) . (15)

Once the specific heat cv (T ) = dε/dT is known as a function of the temperature T , either
as a result of statistical mechanics calculations, or by experimental measurements, the total
internal energy ε is obtained as a function of the temperature T by:

ε (T ) =
∫ T

T∗
cv (τ ) dτ,

where T∗ is a reference temperature. From Eqs. (10), (11) and (13), it is found (see [10] and
references therein):

ε IE = ε IE (T ) = 1

m

∫ ∞

0
I f (I ) ϕ (I ) d I = kB

m
T 2 d log A (T )

dT
. (16)

Since it is known that

εKE = εKE (T ) = 3

2

kB
m

T , (17)

if the caloric equation of state is given, the expression of the internal energy from Eq. (8) is
obtained as

ε IE (T ) = ε (T ) − εKE (T ) , (18)

and, from Eq. (16), it is found

A (T ) = A0 exp

(
m

kB

∫ T

T∗

ε IE (τ )

τ 2
dτ

)
, (19)

3 The temperature T at kinetic level in the non-polytropic gas can be defined as the inverse function of (15)
with εE given by Eq. (7).
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where A0 is an inessential constant. Letting s = 1/ (kBT ) and ε IE,s (s) = ε IE

(
1

kBs

)
, Eq. (19)

can be written as

As (s) = A

(
1

kBs

)
= A0 exp

(
−
∫ 1/kBs

1/kBs∗
mε IE,s (σ ) dσ

)
. (20)

On the other hand, according to Eq. (13) the function As is

As (s) =
∫ ∞

0
e−s Iϕ (I ) d I ,

from which it is seen that the function As is the Laplace transform of ϕ (I ) [10, 17, 18]:

As (s) = L [ϕ (I )] (s) .

The internal state density function, ϕ (I ), is therefore obtained as the inverse Laplace trans-
form of the the function As defined in Eq. (20):

ϕ (I ) = L−1 [As (s)] (I ) . (21)

The inverse Laplace transform prescribed in Eq. (21) can be carried out analytically in
simple cases, such as the case of a gas with constant specific heat cv (i.e. a polytropic gas), or
the case of a gas with a specific heat cv which is a linear function of the temperature, which
we show below.

Remark 1 Except for the cases of a gas with constant specific heat or linearly varying specific
heat, in general (and realistic) cases of a gas with a specific heat which is a generic function
of the temperature, the inverse Laplace transform prescribed by Eq. (21) is difficult (if even
possible) to perform analytically, and we can perform it only numerically. On the other hand,
it is remarkable that, in order to close—making use of MEP—the system obtained by taking
moments of the Boltzmann equation, the explicit expression of ϕ (I ) is actually not needed.
In fact, it is proven that all coefficients in the constitutive equations are expressed by the
integral of the equilibrium distribution function and, as a consequence, only the following
type of integral appear:

Ār =
∫ ∞

0
f (I )
(

I

kBT

)r
ϕ (I ) d I , r ∈ N,

which is a generalization of the moments appearing in Eqs. (14) and (16). By differentiating
Eq. (16) with respect to T , it is possible to find a recurrence formula such that the integrals
Ār are determined for any r ∈ N by ε IE (T ) and its derivatives [19]. See also [10, 12] for
particular cases.

Remark 2 It is seen that the physical dimension of A (T ) /ϕ (I ) is the same as that of I—as it
can be deduced from Eqs. (12)2, (13) and (14)—which in turn corresponds to the dimension
of kBT . Furthermore, we notice that the physical dimension of A (T ) hinges on an inessential
constant A0, as shown in Eq. (19). In the case of a polytropic gas, which is discussed in the
following, this physical dimension is deduced from Eq. (23).
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2.1 Constant Specific Heat (Polytropic Gas)

For a polytropic gas, the specific heat cv is constant, and it is expressed in terms of the
molecular degrees of freedom D as follows:

cv

kB/m
= D

2
.

As shown in Eq. (2), the total internal energy ε is a linear function of the temperature; the
internal energy due to the translational motion, εKE , and the internal energy related to the
internal degrees of freedom, ε IE , are given, respectively, by:

εKE (T ) = 3

2

kB
m

T , ε IE (T ) = D − 3

2

kB
m

T = (1 + α)
kB
m

T ,

where

α = D − 5

2
, (α � −1) ,

or,

D = 5 + 2α. (22)

From Eq. (19) it is readily seen that

A (T ) = A0 exp

(∫ T

T∗

1 + α

τ
dτ

)
= A0

(
T

T∗

)1+α

,

and

As (s) = A0

( s∗
s

)1+α

.

From Eq. (21) it is obtained:

ϕ (I ) = A0
Iα

(kBT∗)1+α � (1 + α)
,

and, letting,

A0 = (kBT∗)1+α � (1 + α) , (23)

it is found:

ϕ (I ) = Iα, A (T ) = (kBT )1+α � (1 + α) , (24)

which is compatible with Eq. (3).

2.2 Linearly Varying Specific Heat

In the case of a specific heat, cv , linearly depending on the temperature,

cv (T )

kB/m
= 5

2
+ α0 + 2α1

T

T∗
,

where α0 and α1 are dimensionless constants, on the basis of Eq. (2)—which is valid only
for polytropic gases—we may write:

ε (T ) = D (T )

2

kB
m

T ,
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where D, in contrast to Eq. (22), is now a function of the temperature T :

D (T ) = 5 + 2α0 + 2α1
T

T∗
. (25)

The energy of the internal modes can now be written as:

ε IE (T ) = D (T ) − 3

2

kB
m

T =
(
1 + α0 + α1

T

T∗

)
kB
m

T , (26)

and, taking into account Eq. (19), and choosing A0 as in Eq. (23), we obtain:

A (T ) = A0 exp

{∫ T

T∗

(
1 + α0

τ
+ α1

T∗

)
dτ

}

= (kBT )1+α0 � (1 + α0) exp

{
α1

(
T

T∗
− 1

)}
,

and

As (s) = exp (−α1) � (1 + α0)

(
1

s

)1+α0

exp
(
α1

s∗
s

)
. (27)

It can be proven that Eq. (27) has the following exact inverse Laplace transform:

ϕ (I ) = exp (−α1) � (1 + α0) Iα0

(√
α1 I

kBT∗

)−α0

Iα0

(
2

√
α1 I

kBT∗

)
, (28)

being Iα0 (z) the modified Bessel function of the first kind of order α0. It can also be proven
that

ϕ (I )
α1→0−−−→ I α0 ,

and the state function ϕ (I ) for a polytropic gas given in Eq. (24) is recovered as expected.
As discussed in Sect. 1, in the model presented in [9], the state density function—based

on Eq. (26)—would be defined for a gas with a linearly varying specific heat, as

ϕ (I , T ) = I (D(T )−5)/2, (29)

with D (T ) given in Eq. (25). It is clearly seen that, despite corresponding to the same internal
energy, the state density function ϕ given in Eq. (28) is independent of the temperature T ,
while the state density function ϕ given in Eq. (29) depends on the temperature T .

3 Novel ES-BGKModel for Non-polytropic Gas

In this Section, our novel ES-BGK model for non-polytropic polyatomic gases with
temperature-dependent specific heat is described. In this model, the state density function
ϕ (I ) is not assumed to be given by Eq. (24)1, which is valid only for polytropic gases; rather,
ϕ (I ) is obtained as the inverse Laplace transform of the function As(s) given in Eq. (21), in
a fully consistent way.
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3.1 NonequilibriumTemperatures

Before discussing the novel ES-BGKmodel, we introduce the nonequilibrium temperatures,
T K and T I , associated, respectively, to the molecular translational and internal modes. The
temperatures T K and T I are implicitly defined by the internal energies of eachmode, Eq. (1),
via the caloric equations of state of each mode:

εK = εKE

(
T K
)

, ε I = ε IE

(
T I
)

,

i.e.

T K = ε
K , −1
E

(
εK
)

= 2εK

3 kB
m

, T I = ε
I ,−1
E

(
ε I
)

, (30)

ε
K , −1
E and ε

I ,−1
E being the inverse functions of, respectively, εKE and ε IE , given in Eqs. (17)

and (18). We remark that the translational temperature T K is related to the stress tensor

ti j = −
∫
�3

∫ ∞

0
mCiC j f ϕ (I ) d I dξ , (31)

which is decomposed as follows

ti j = −Pδi j + σ〈i j〉, (32)

where σ〈i j〉 is the shear stress4 and P is the total pressure, the latter being the sum of the
equilibrium pressure p, expressed as

p ≡ p (ρ, T ) = 2ρ

3
εKE (T ) = kB

m
ρT ,

and the dynamic pressure (nonequilibrium part of pressure) � = P − p. From Eqs. (1)2 and
(31), it is seen that the nonequilibrium energy of the translational mode is expressed in terms
of the total pressure P as follows:

εK = εKE

(
T K
)

= − 1

2ρ
tll = 3

2ρ
P.

Recalling the functional form of εKE , given in Eq. (17), we have

P = kB
m

ρT K = p
(
ρ, T K

)
,

which, together with Eq. (32), shows the relation between the stress tensor ti j and the trans-
lational temperature T K .

3.2 Model of Collisional Term

The newly proposed ES-BGK model for non-polytropic polyatomic gases is the natural
extension of the original model studied in [25]. The collision integral Q is given by

Q ( f ) = 1

τES
(G − f ) , (33)

4 Angular brackets denote the symmetric traceless part (deviatoric part) with respect to these indices.
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where the relaxation time τES is a positive function of ρ and T , and the distribution function
G is determined as follows.

Let S be the set of all non-negative, integrable distribution functions such that for any
Ḡ ∈ S , the following relations hold:

ρ =
∫
�3

∫ ∞

0
m f ϕ (I ) d I dξ =

∫
�3

∫ ∞

0
m Ḡϕ (I ) d I dξ ,

ρvi =
∫
�3

∫ ∞

0
mξi f ϕ (I ) d I dξ =

∫
�3

∫ ∞

0
mξi Ḡϕ (I ) d I dξ ,

ρε =
∫
�3

∫ ∞

0

(m
2
C2 + I

)
f ϕ (I ) d I dξ =

∫
�3

∫ ∞

0

(m
2
C2 + I

)
Ḡϕ (I ) d I dξ ,

(34)

i.e. the first five moments of Ḡ are equal to the corresponding moments of f . It is important
to mention that defining the setS as the set of the distribution functions Ḡ for which Eq. (34)
holds, guarantees that the conservation laws are satisfied. In fact, multiplying the Boltzmann

equation (4) with Eq. (33) by each of the collision invariants
(
m, mξi , m

(
ξ2 + 2 I

m

))T
and

integrating over the phase space with respect to molecular velocity and internal energy vari-
able, the conservation laws of mass, momentum and energy are obtained:

∂ρ

∂t
+ ∂

∂x j

(
ρv j
) = 0,

∂

∂t
(ρvi ) + ∂

∂x j

(
ρviv j − ti j

) = 0,

∂

∂t

(
ρv2 + 2ρε

)+ ∂

∂x j

(
ρv2v j + 2ρεv j − 2t jkvk + 2q j

) = 0,

(35)

where q j is the heat flux defined by

q j =
∫
�3

∫ ∞

0

m

2

(
C2 + 2

I

m

)
C j f ϕ (I ) d I dξ .

The distribution function G is determined by the following theorem.

Theorem 1 Let us consider the following eleven moments of Ḡ ∈ S :

F
¯G =

⎛
⎜⎜⎝

ρ

ρvi
ρTi j + ρviv j

2ρε Irel

⎞
⎟⎟⎠ = m

∫
�3

∫ ∞

0
ψ Ḡϕ (I ) d I dξ , (36)

with ψ ≡ (1, ξi , ξiξ j , 2I/m
)T

, where we have introduced the second-order symmetric and
positive definite tensor:

Ti j = 1

ρ

∫
�3

∫ ∞

0
mCiC j Ḡϕ (I ) d I dξ , (37)

and the relaxation internal energy ε Irel:

ε Irel = 1

ρ

∫
�3

∫ ∞

0
I Ḡϕ (I ) d I dξ . (38)

Defining the entropy density in S as follows:

h
¯G = −kB

∫
�3

∫ ∞

0
Ḡ log Ḡϕ (I ) d I dξ , (39)

123



   95 Page 12 of 34 T. Arima et al.

the distribution function G ∈ S that maximizes the entropy (39) under the constraint that
the eleven moments of Ḡ defined in Eq. (36) are prescribed, is

G = G (K ) G (I ), (40)

with

G (K ) = ρ

m (2π)3/2 (det T)1/2
exp

{
−1

2
(ξi − vi )

(
T−1)

i j (ξ j − v j )

}
,

G (I ) = 1

A
(
T Irel
) exp

(
− I

kBT Irel

)
,

(41)

where T I
rel is the relaxation temperature defined via the caloric equation of state given in

Eq. (18):

T I
rel = ε

I ,−1
E

(
ε Irel

)
. (42)

The entropy density given in Eq. (39) maximized by G has the following expression:

hG = −kB
m

ρ

(
log

ρ

m (2π)3/2 (det T)1/2 A
(
T I
rel

) − mε IE

(
T I
rel

)
kBT I

rel

− 3

2

)
. (43)

Proof MEP states that the distribution function G ∈ S which maximizes the entropy density
(39) with prescribed eleven moments (36) is the solution of a variational problem with
constraints associated to the functional

L
(
Ḡ
) = −kB

∫
�3

∫ ∞

0
Ḡ log Ḡϕ (I ) d I dξ + � ·

(
F

¯G − m
∫
�3

∫ ∞

0
ψ Ḡϕ (I ) d I dξ

)
,

(44)

where � ≡ (λ, λi , λi j , μ
)
is the vector of the Lagrange multipliers. In order to have an

extremum the first variation with respect to Ḡ must be equal to zero, i.e.5

δL

δḠ
= −kB

∫
�3

∫ ∞

0

(
log Ḡ + 1 + m

kB
� · ψ

)
ϕ (I ) d I dξ = 0, (45)

and the distribution function G maximizing the functional (44) is [10, 34, 35]:

G = exp

(
−1 − m

kB
χ

)
,

where

χ = � · ψ = �̂ · ψ̂, (46)

with a hat on a quantity indicating its velocity independent part: ψ̂ ≡ (1, Ci , CiC j , 2I/m
)T

and �̂ ≡
(
λ̂, λ̂i , λ̂i j , μ̂

)
. The identity in (46) is proved in [36], and it is evident also by the

fact that G is a scalar independent of the frame. For later convenience, we write G as

G = � e−λ̃i Ci e
−λ̃i j CiC j− 2μ̂

kB
I
, (47)

5 We observe that the MEP cannot be done in the form (45) in the case in which the state density ϕ(I , T ) also
depends on the temperature T .
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where

� = exp

(
−1 − m

kB
λ̂

)
, λ̃i = m

kB
λ̂i , λ̃i j = m

kB
λ̂i j .

Given that

∫
R
3
e−λ̃i j CiC j dC = π3/2

(
det λ̃

)− 1
2
,

∫
R
3
CkCle

−λ̃i j CiC j dC = π3/2

2

(
λ̃

−1
)
kl

(
det λ̃

)− 1
2
,

where λ̃ is the matrix the elements of which are λ̃i j , and inserting Eq. (47) into the right-hand
side of Eq. (36), we obtain λ̃i = 0 and6

ρ = m�π3/2
(
det λ̃

)−1/2
A

(
1

2μ̂

)
,

ρTi j = 1

2
m�π3/2

(
λ̃

−1
)
i j

(
det λ̃

)−1/2
A

(
1

2μ̂

)
,

2ρε Irel = −2kB�π3/2
(
det λ̃

)−1/2 d A
(

1
2μ̂

)

d
(
2μ̂
) ,

and then

� = ρ

mπ3/2
(
det λ̃

)−1/2
A
(

1
2μ̂

) ,

(
λ̃

−1
)
i j

= 2Ti j , (48)

ε Irel = −kB
m

d

d
(
2μ̂
) log A

(
1

2μ̂

)
. (49)

From Eq. (48), we have (det λ̃)−1 = 23 det T and, since it can be seen that μ̂ has the physical
dimension of inverse temperature, we introduce a new temperature T I

rel defined as

T I
rel = 1

2μ̂
.

Recalling Eqs. (16), and (49) suggests:

ε Irel = ε IE

(
T I
rel

)
;

in other words, T I
rel is determined by ε Irel from the inverse function of the caloric equation of

the state of internal mode, as introduced in Eq. (42).
The explicit expression of the entropy density maximized by G , i.e. hG , given in Eq. (43),

is derived by substituting G into Eq. (39). 	


6 Hereafter, Ti j and ε Irel are given in Eqs. (37) and (38) by substituting Ḡ with G .
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3.3 Derivation of Tij as a Function of Physical Quantities

Following the discussion in [26], we find that the tensor Ti j is related to the physical macro-
scopic variables. We can draw a parallel with the results of the standard BGK model.
Specifically, for the collisional term given by Eqs. (33) and (40), we require that the fol-
lowing six relations hold:

m

τES

∫
�3

∫ ∞

0

(
ξ2

ξ〈iξ j〉

)
(G − f ) ϕ (I ) d I dξ =

⎛
⎜⎝

−2
ρ

τ

(
εKE

(
T K
)

− εKE (T )
)

1

τσ

σ〈i j〉

⎞
⎟⎠ , (50)

where τ = τ (ρ, T ) and τσ = τσ (ρ, T ) are relaxation times. In the standard BGK model
this is an identity but with a common relaxation time. In contrast, we now require that εK and
σ〈i j〉 have different relaxation times; in such away, we can have a physicallymore appropriate
Prandtl number when we take the hydrodynamic limit.

Although we will explore the hydrodynamic limit in detail in Sect. 3.5, to clarify the
meaning of the production terms in Eq. (50), we present the field equations for εK and σ〈i j〉,
obtained bymultiplying theBoltzmann equation (4) by

(
mξ2, mξ〈iξ j〉

)T
and integrating each

of the two resulting equations over the phase space with respect to the molecular velocity
and the internal energy variable:

∂

∂t

(
ρv2 + 2ρεK

)
+ ∂

∂xk

(
ρv2vk + 10

3
ρεK vk − 2σ〈kl〉vl + Ĥ0

llk

)

= −2ρ

τ

(
εKE

(
T K
)

− εKE (T )
)

,

∂

∂t

(
ρv〈iv j〉 − σ〈i j〉

)+ ∂

∂xk

(
ρv〈iv j〉vk + 4

3
ρεK v〈iδ j〉k − σ〈i j〉vk − 2σ〈k〈i〉v j〉 + Ĥ0〈i j〉k

)

= 1

τσ

σ〈i j〉,

(51)

where

Ĥ0
llk =

∫
�3

∫ ∞

0
mC2Ck f ϕ (I ) d I dξ ,

Ĥ0〈i j〉k =
∫
�3

∫ ∞

0
mC〈iC j〉Ck f ϕ (I ) d I dξ .

Equations (8) with (35)3 and (51)1 provide an equation for the relaxation of ε I :

∂

∂t

(
2ρε I

)
+ ∂

∂xk

(
2ρε I vk − Ĥ0

llk + 2qk
)

= −2ρ

τ

(
ε IE

(
T I
)

− ε IE (T )
)

. (52)

From Eqs. (51) it is seen that εK and σ〈i j〉 relax to the equilibrium state with relaxation times
τ and τσ , respectively. The role of the relaxation times is easily found when we consider the
spatially homogeneous case. In this case, Eqs. (51) and (52) reduce to:
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dεKE

(
T K
)

dt
= − 1

τ

(
εKE

(
T K
)

− εKE (T )
)

,

dε IE

(
T I
)

dt
= − 1

τ

(
ε IE

(
T I
)

− ε IE (T )
)

,

dσ 〈i j〉
dt

= − 1

τσ

σ〈i j〉.

Theorem 2 The tensor Ti j compatible with the requirement (50) has the following form:

Ti j = 2

3
θεKE (T ) δi j + (1 − θ)

{
ν
Pi j
ρ

+ 2

3
(1 − ν) εKE

(
T K
)

δi j

}
, (53)

where Pi j = −ti j is the pressure tensor and the two parameters θ and ν are related to τ , τσ

and τES by

1

τ
= θ

τES
,

1

τσ

= 1

τES
[1 − ν (1 − θ)] . (54)

Since Ti j is definite positive, the ranges of these parameters are restricted to ν ∈ [− 1
2 , 1
]

and θ ∈ [0, 1].

Proof By substituting Eqs. (31) with (32) and Eq. (37) into the left-hand-side of Eq. (50), we
have

(
ρTll − Pll

ρT〈i j〉 − P〈i j〉

)
=
⎛
⎝−2

τES

τ
ρ
(
εKE

(
T K
)

− εKE (T )
)

τES

τσ

σ〈i j〉

⎞
⎠ .

Recalling that Pll = 3P = 2ρεKE

(
T K
)
and P〈i j〉 = −σ〈i j〉, we have

Tll = 2
(
1 − τES

τ

)
εKE

(
T K
)

+ 2
τES

τ
εKE (T ) ,

T〈i j〉 = 1

ρ

(
−1 + τES

τσ

)
σ〈i j〉.

In order to have correspondence with previous studies [9, 25, 26], the parameters θ and ν are
defined as

τES

τ
= θ,

τES

τσ

= 1 − ν (1 − θ) , (55)

which provide Eq. (54). With these parameters, from Eq. (55), Ti j = Tllδi j/3+ T〈i j〉 has the
form of Eq. (53).

Contrasting with the macroscopic-level determination of Ti j , expressed in Eq. (53), the
microscopic expression of Ti j defined in Eq. (37) (with G in place of Ḡ ), ensures the definite
positiveness of Ti j . This difference between the macroscopic and microscopic descriptions
is recognized in the literature as the issue of realizability [37]. To maintain consistency in
these different levels of description, the parameter ranges of ν and θ are restricted. Let us
rewrite Ti j defined in Eq. (62) as follows

Ti j = θ
p

ρ
δi j + (1 − θ)

Ri j
ρ

,

with

Ri j = νPi j + (1 − ν)Pδi j . (56)
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We may notice that Ti j , Ri j , and Pi j have diagonal form. Let λTi , λ
R
i , λ

P
i (i = 1, 2, 3) be the

eigenvalues of, respectively, Ti j , Ri j , and Pi j . From Eq. (56), we have

λRi = νλPi + (1 − ν)P. (57)

Since P = Pll/3 = (λP1 + λP2 + λP3

)
/3, Eq. (57) can be rewritten as follows:

λRi = 1 + 2ν

3
λPi + 1 − ν

3

(
λPj + λPk

)
, (i �= j �= k) .

Sufficient condition for Ri j to be positive definite is − 1
2 � ν � 1. Similarly, we have

λTi = θ
p

ρ
+ (1 − θ)

λRi

ρ
,

from which it is seen that the sufficient condition for Ti j to be positive definite is 0 � θ � 1,
in addition to − 1

2 � ν � 1. 	


Corollary 2.1 Defining the relaxation energy of the translational mode εKrel, in analogy to ε Irel
given in Eq. (38), as:

εKrel = 1

ρ

∫
�3

∫ ∞

0

m

2
C2 Gϕ (I ) d I dξ , (58)

the following relation holds

εKrel = (1 − θ) εKE

(
T K
)

+ θεKE (T ) , (59)

and we have

ε = εKE

(
T K
rel

)
+ ε IE

(
T I
rel

)
, (60)

where the relaxation temperature of translational mode T K
rel is defined by

T K
rel = ε

K , −1
E

(
εKrel

)
.

Similarly, ε Irel satisfies

ε Irel = (1 − θ) ε IE

(
T I
)

+ θ ε IE (T ) . (61)

Proof FromEq. (37), we have εKrel = Tll/2. Then, by taking the trace part of Eq. (53), we have
Eq. (59). Since Eq. (34)3 is sum of Eqs. (58) and (38), we have Eq. (60). After subtracting
Eqs. (60) from (59), and taking into account Eq. (8), we obtain Eq. (61). 	

Remark 3 The tensor Ti j can also be expressed with the functional form of the pressure
p (ρ, T ) = 2ρεKE (T ) /3, as follows:

ρTi j = θ pδi j + (1 − θ)
{
νPi j + (1 − ν)Pδi j

}
. (62)

Moreover, from the Corollary 2.1, it is seen that the tensor Ti j can be expressed as

Ti j = 2

3
εKE

(
T K
rel

)
δi j − ν (1 − θ)

σ〈i j〉
ρ

.

123



A Novel ES-BGK Model for Non-polytropic Gases Page 17 of 34    95 

Remark 4 Equations (61) and (59), given that θ ∈ [0, 1], define ε Irel and εKrel as convex
combinations, respectively, of ε IE (T I ) and ε IE (T ), and of εKE (T K ) and εKE (T ). On the other
hand, from Eq. (62) it is seen that Ti j is a convex combination of p (ρ, T ) δi j and νPi j +
(1 − ν) p(ρ, T K )δi j , but the latter is not a convex combination of Pi j and p(ρ, T K )δi j since
ν ∈ [− 1

2 , 1
]
.

Remark 5 The difference between the present model and the model proposed by Kosuge et
al. [9] is not limited to the state density ϕ (I ) and the normalization function A (T ), but
also involves the definition of T I

rel and the introduction of T K
rel . In the previous model, T I

rel
is introduced as a convex combination of T and T I , i.e., T I

rel = θT + (1 − θ) T I with
θ ∈ [0, 1]. On the other hand, here, the relaxation temperatures are defined through the
energy as shown in Eq. (60). The two definitions of T I

rel coincide in the case of polytropic
gases. These definitions of the relaxation temperatures T K

rel and T I
rel also appear in [32, 33].

3.4 H-theorem and Properties of the Novel ES-BGKModel

Over the parameter domain ν ∈ [− 1
2 , 1
]
and θ ∈ [0, 1], which ensures that Ti j is positive-

definite, we can prove the H-Theorem:

Theorem 3 The Boltzmann equation (4), with the collisional term given in Eqs. (33), (40),
(41), and (53) satisfies the H-theorem:

� = − 1

τES
kB

∫
�3

∫ ∞

0
(G − f ) log f ϕ (I ) d I dξ � 0.

Proof From the Boltzmann equation, by taking the moment of Eq. (5), we have the entropy
balance law

∂h

∂t
+ ∂hi

∂xi
= �,

where the entropy density h is defined in Eq. (5), and the entropy flux hi and production �

are defined as follows:

hi =
∫
�3

∫ ∞

0
ξi H ( f ) ϕ (I ) d I dξ ,

� = − 1

τES
kB

∫
�3

∫ ∞

0
(G − f ) log f ϕ (I ) d I dξ

= 1

τES

∫
�3

∫ ∞

0
(G − f ) H ′ ( f ) ϕ (I ) d I dξ .

(63)

Since H ( f ) is a concave function, we have

(G − f ) H ′ ( f ) � H (G ) − H ( f ) . (64)

From Eq. (63), taking into account (64) the following inequality holds

� � 1

τES

∫
�3

∫ ∞

0
(H (G ) − H ( f )) ϕ (I ) d I dξ = 1

τES

(
hG − h

)
. (65)

Let h(11) be the maximized entropy under the constraints that the first eleven moments
of f are

(
ρ, ρvi , ρv2 + 2ρε, ρviv j + Pi j

)
(see also Remark 6). These eleven moments

correspond to the substitution of G with f in Eqs. (34) and (37), which results in replacing

123



   95 Page 18 of 34 T. Arima et al.

the macroscopic quantities from Ti j to Pi j/ρ and from T I
rel to T I . Similarly to the derivation

of G shown in Eqs. (40) and (41), we obtain a distribution function f (11) that maximizes the
entropy density for eleven moments:

f (11) = ρ

m (2π)3/2 [det (P/ρ)]1/2 A
(
T I
) exp

{
−1

2
(ξi − vi )

(
(P/ρ)−1)

i j (ξ j − v j ) − I

kBT I

}
,

(66)

and then we obtain the maximized entropy h(11) from Eq. (5) as follows:

h(11) = −kB
m

ρ

(
log

ρ

m (2π)3/2
√
det (P/ρ)A

(
T I
) − mε IE

(
T I
)

kBT I
− 3

2

)
. (67)

For any number of truncation N , using the MEP, the entropy h(N ) that is maximized under
the constraints that the first N moments are prescribed satisfies the inequality

h(N ) � h (68)

(see Appendix A for the proof), therefore in particular we have:

h(11) � h. (69)

Moreover, we can prove that hG � h(11). First, we note that A (T ) given in Eq. (19) may be

expressed with the specific heat of internal mode, cIv(T ) = ∂ε IE (T )

∂T , as follows:

A (T ) = A0 exp

{
− m

kB

(
ε IE (T )

T
− ε IE (T∗)

T∗

)
+ m

kB

∫ T

T∗

cIv (τ )

τ
dτ

}
. (70)

From Eq. (70) and the explicit expressions of h(11) and hG , given respectively in Eqs. (67)
and (43), we have

h(11) − hG = −kB
m

ρ

(
log

√
det T

det (P/ρ)
+ log

A
(
T I
rel

)
A
(
T I
) − mε IE

(
T I
)

kBT I
+ mε IE

(
T I
rel

)
kBT I

rel

)

= 1

2

kB
m

ρ log
det (P/ρ)

det T
+ ρ

∫ T I

T I
rel

cIv
(
T ′)

T ′ dT ′. (71)

Given the following inequality:

det (P/ρ)

det T
�
(

εKE

(
T K
)

εKE

(
T K
rel

)
)3

, (72)
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which is proven in Appendix B, and introducing the specific heat of the translational mode,

cKv = ∂εKE (T )

∂T = 3
2
kB
m , Eq. (71) satisfies

h(11) − hG �1

2

kB
m

ρ log

(
εKE

(
T K
)

εKE

(
T K
rel

)
)3

+ ρ

∫ T I

T I
rel

cIv
(
T ′)

T ′ dT ′

= ρ

∫ T K

T K
rel

cKv
T ′ dT

′ + ρ

∫ T I

T I
rel

cIv
(
T ′)

T ′ dT ′

= ρ

∫ εK

εKrel

1

ε
K , −1
E

(
εK

′)dεK
′ + ρ

∫ ε I

ε Irel

1

ε
I ,−1
E

(
ε I

′)dε I
′

= ρs
(
ρ, εK , ε I

)
− ρs

(
ρ, εKrel, ε

I
rel

)
,

where we have adopted Eq. (17), and s
(
ρ, εK , ε I

)
is a function which satisfies the following

generalized Gibbs relation [30]:

ds
(
ρ, εK , ε I

)
= 1

ε
K , −1
E

(
εK
)dεK + 1

ε
I ,−1
E

(
ε I
)dε I − kB

m

1

ρ
dρ.

It remains to be proven that s
(
ρ, εK , ε I

)
� s
(
ρ, εKrel, ε

I
rel

)
, and we follow the procedure

proposed in [32]. To this aim, recalling that εKrel and ε Irel depend on θ (see Eqs. (59) and (61)),
we introduce

S (θ) = s
(
ρ, εKrel, ε

I
rel

)
,

which satisfies

S (0) = s
(
ρ, εK , ε I

)
.

The function S (θ) is a concave function of θ because we have

∂S

∂θ
(θ) = ∂s

(
ρ, εKrel, ε

I
rel

)
∂εKrel

∂εKrel

∂θ
+ ∂s

(
ρ, εKrel, ε

I
rel

)
∂ε Irel

∂ε Irel

∂θ

= 1

T K
rel

(
εKE (T ) − εKE

(
T K
))

+ 1

T I
rel

(
ε IE (T ) − ε IE

(
T I
))

,

∂2S

∂θ2
(θ) = − 1

cKv T K
rel

2

(
εKE (T ) − εKE

(
T K
))2 − 1

cIv
(
T I
rel

)
T I
rel

2

(
ε IE (T ) − ε IE

(
T I
))2

� 0,

where in the last inequality, we have used cKv � 0 and cIv(T
I
rel) � 0.Moreover, since T K

rel = T
and T I

rel = T when θ = 1, we have ∂S
∂θ

(1) = 0 from Eq. (8). Therefore, S is an increasing
function of θ on the interval [0, 1], and the following relation holds

S (0) � S (θ) .

Since s
(
ρ, εK , ε I

)
� s
(
ρ, εKrel, ε

I
rel

)
is proven, we conclude that

hG � h(11). (73)

Combining Eqs. (73) with (69), we conclude that

hG � h,
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and therefore, from Eq. (65), it is proven that � � 0. 	

Dividing the range of θ into θ ∈ (0, 1] and θ = 0, we have the following propositions.

Proposition 1 When θ ∈ (0, 1], the distribution functions f and G reduce to f (E) at the
equilibrium (see Eq. (11)) where Q ( f ) = 0.

Proposition 2 When θ = 0, the distribution functions f and G reduce to f (6), which is
defined by

f (6) = ρ

m A
(
T I
)
(

m

2πkBT K

)3/2
exp

(
− mC2

2kBT K
− I

kBT I

)
, (74)

at the equilibrium where Q ( f ) = 0.

Proof of Proposition 1 We follow the procedure outlined in [9]. At an equilibrium state where
Q = 0, we have f = G . Then, from Eqs. (58) and (37)2 we have

T K
rel = T K , T I

rel = T I .

Moreover, since Ti j = Pi j/ρ from Eqs. (31) and (37), Eq. (62) provides

(1 − ν + θν) Pi j = {θ p + (1 − θ) (1 − ν)P} δi j .

This indicates that σ〈i j〉 = −ρT〈i j〉 = 0 and that θ
(
T K − T

) = 0. The latter relation, being
θ �= 0, gives T K = T . Similarly, from Eq. (61), we obtain T I = T . Therefore, the following
relation holds

T K = T I = T K
rel = T I

rel = T , (75)

and Ti j = kB
m T δi j . From Eq. (40), G = f (E) and then f = f (E).

Inversely, assuming f = f (E), Eqs. (30) with (9) and Eq. (10) gives T K = T I = T .
Then, Eqs. (59) and (61) provide Eq. (75). Recalling σ〈i j〉 = 0 in this case, from Eq. (62) we
have Ti j = p/ρδi j . Therefore, G = f (E), and then f = G , which provides Q = 0. 	

Proof of Proposition 2 Since θ = 0, we have T K = T K

rel and T I = T I
rel from Eqs. (59) and

(61), respectively. Therefore, we have∫
�3

∫ ∞

0
mξ2 (G − f ) ϕ (I ) d I dξ = 0,

∫
�3

∫ ∞

0
I (G − f ) ϕ (I ) d I dξ = 0,

which indicate that the collisional invariants are now
(
m, mξi , mξ2, I

)
(or(

m, mξi , m(ξ2 + 2I/m), mξ2
)

or
(
m, mξi , m(ξ2 + 2I/m), I

)
). For the 6–moments(

ρ, ρvi , ρv2 + 2ρεK , 2ρε I
)
(see Remark 7) that correspond to the moments of the present

collisional invariants, by exploiting MEP, we have Eq. (74).
In an equilibrium state, for which Q = 0, we have f = G , which provides Ti j = Pi j/ρ

fromEqs. (31) and (37). Then, Eq. (62) givesPi j = Pδi j which results inσ〈i j〉 = 0. Therefore,
we have Ti j = kB

m T K δi j . From Eq. (40), G = f (E), and then f = f (E).
Inversely, when we suppose f = f (6), we notice σ〈i j〉 = 0. This results in, from Eq. (62),

Ti j = kB
m T K δi j . Therefore, G = f (6), and then f = G , which provides Q = 0. 	


Remark 6 The 11 moments of f , namely
(
ρ, ρvi , ρv2 + 2ρε, ρviv j + Pi j

)
, form the sys-

tem of 11 moments as specified by Eqs. (35) and (51). By employing f (11) as presented in
Eq. (66), we obtain Ĥ0

i jk = 0 and qi = 0.
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Remark 7 The systemof the equations of 6moments of f , that is,
(
ρ, ρvi , ρv2+2ρεK, 2ρε I

)
,

constitute Eqs. (35) and (51)1. With the use of f (6) given in Eq. (74), the constitutive func-
tions are closed with Ĥ0

llk = 0, σ〈i j〉 = 0 and qi = 0. See [17, 38] for the closure of the
present case.

3.5 Chapman–Enskog Expansion

When the Knudsen number is small, one can formally derive the fluid-dynamic equations
by means of the standard Chapman-Enskog procedure. Equations (4) with (33) reduce, after
straightforward calculations (see [25] for its details in the case of the ES-BGKmodel), to the
Navier–Stokes–Fourier equations

σ〈i j〉 = 2μ
∂v〈i
∂x j〉

, � = −μb
∂vl

∂xl
, qi = −κ

∂T

∂xi
,

with the shear viscosity μ, bulk viscosity μb and heat conductivity κ , given by

μ = p τES

1 − ν + θν
, μb = 1

θ

(
2

3
− 1

ĉv

)
p τES, κ = kB

m

(
1 + ĉv

)
p τES, (76)

where ĉv = mcv/kB is the dimensionless specific heat. These expressions of the transport
coefficients are consistent with the ones obtained in [9]. With these expressions, we can
express the Prandtl number Pr = cpμ/κ , being cp = cv + kB/m the specific heat at
constant pressure, as the function of the two parameters:

Pr = 1

1 − ν + θν
.

Moreover, the ratio of the viscosities is given by

μb

μ
= 1 − ν + θν

θ

(
2

3
− 1

ĉv

)
= Pr

θ

(
2

3
− 1

ĉv

)
.

In this way, the transport coefficients are determined by θ , ν and τES under a given value of
cv . On the other hand, when the data of cv , κ , μ and μb are available, we can evaluate the
values of τES, θ , ν. However, since data of μb are generally not available, we may set μb/μ

as an adjustable parameter [39, 40] (see also Sect. 5).

4 Reduced ES-BGKModel

In order to reduce the computational cost of the numerical implementation of the ES-BGK
model, the so-called reducedmodel is usually introduced [32, 33]. After defining themarginal
distribution functions �m and �I as follows:

�m (t, x, ξ) =
∫ ∞

0
m f ϕ (I ) d I , �I (t, x, ξ) =

∫ ∞

0
I f ϕ (I ) d I , (77)

and introducing

�m (t, x, ξ) =
∫ ∞

0
m G ϕ (I ) d I = mG (K ), �I (t, x, ξ) =

∫ ∞

0
I G ϕ (I ) d I = mG (K )ε Irel,

(78)
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the evolution equation of the marginal distribution functions � ≡ (�m,�I ) are obtained
from the Boltzmann equation with � ≡ (�m, �I ) as follows:

∂�

∂t
+ ξi

∂�

∂xi
= 1

τES
(� − �) . (79)

The macroscopic fields are expressed as moments of �m or �I with respect to ξ as fol-
lows:

ρ =
∫
�3

�m dξ ,

ρvi =
∫
�3

�mξi dξ ,

ρεKE

(
T K
)

=
∫
�3

1

2
(ξi − vi ) (ξi − vi )�mdξ ,

ρε IE

(
T I
)

=
∫
�3

�I dξ ,

ti j = −
∫
�3

(ξi − vi )(ξ j − v j )�mdξ ,

q j =
∫
�3

{
1

2
(ξi − vi ) (ξi − vi )�m + �I

} (
ξ j − v j

)
dξ .

5 Study of Standing Planar ShockWaves

A shock wave structure in one-space dimension is a traveling wave depending on x1 and t
through z = x1 − s t , where s is the shock velocity. As the Boltzmann equation is Galilean
invariant, as usual we can consider the reference framemoving with the shock front for which
s = 0. Then, in order to investigate the structure of standing planar shock waves obtained
with the novel ES-BGK model, Eq. (4) is written in its steady one-dimensional form as
follows:

ξ1
∂ f

∂x1
= Q ( f ) , (80)

and then suitably put in dimensionless form.
For a rarefied CO2 gas, since the shear viscosity μ is well approximated by a power of the

temperature [41], recalling Eq. (76)1 and following the notation in [9], it is useful to write
the relaxation time τES as

τES = 1

ρAc (T )
,

where the explicit expression of Ac (T ) as a power of T will be given later (see
Sect. 5.4).
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5.1 Dimensionless System

Adopting the following dimensionless variables, as suggested in [42],

x̂1 = x1
L

, ξ̂1 = ξ1

a0
, v̂1 = v1

a0
, ρ̂ = ρ

ρ0
,

p̂ = p

ρ0a20/2
, P̂i j = Pi j

ρ0a20/2
, T̂i j = Ti j

ρ0a20/2
, ε̂ = ε

a20/2
,

ε̂K = εK

a20/2
, ε̂ I = ε I

a20/2
, ε̂Krel = εKrel

a20/2
, ε̂ Irel = ε Irel

a20/2
, q̂1 = q1

ρ0a30/2
,

T̂ = T

T0
, T̂ K = T K

T0
, T̂ I = T I

T0
, T̂ K

rel = T K
rel

T0
, T̂ I

rel = T I
rel

T0
,

f̂ = mA (T0) f

ρ0a
−3
0

, Ĝ (K ) = mG (K )

ρ0a
−3
0

, Ĝ (I ) = A (T0)G
(I ), Î = I

ma20/2
,

Âc

(
T̂
)

= Ac (T )

Ac (T0)
, Â

(
T̂
)

= A (T )

A (T0)
, ϕ̂

(
Î
)

= ma20ϕ (I )

2A (T0)
,

where ρ0 and T0 are reference values for, respectively, the density and temperature; a0 =(
2 kB

m T0
)1/2

, L = 2a0/
(
π1/2ρ0Ac (T0)

)
is the mean free path of the gas molecules in the

equilibrium state with density ρ0 and temperature T0, Eq. (80) takes the form

ξ̂1
∂ f̂

∂ x̂1
= 2

π1/2 Q̂
(
f̂
)

, Q̂
(
f̂
)

= Âc

(
T̂
)

ρ̂
(
Ĝ − f̂

)
, (81)

where Ĝ = Ĝ (K )Ĝ (I ) with

Ĝ (K ) = ρ̂

π3/2
(
det T̂

)1/2 exp

{
−
(
ξ̂i − v̂i

) (
T̂−1
)
i j

(
ξ̂ j − v̂ j

)}
,

Ĝ (I ) = 1

Â
(
T̂ I
rel

) exp
(

− Î

T̂ I
rel

)
,

and

ρ̂ =
∫
R
3

∫ ∞

0
f̂ ϕ̂
(
Î
)
d Î d ξ̂ ,

v̂i = 1

ρ̂

∫
R
3

∫ ∞

0
ξ̂i f̂ ϕ̂

(
Î
)
d Î d ξ̂ ,

T̂i j = (1 − θ)

[
(1 − ν) T̂ K δi j + ν

P̂i j
ρ̂

]
+ θ T̂ δi j .

Moreover, we have

ε̂ = ε̂K + ε̂ I , ε̂K = 1

2ρ̂

∫∫ ∞

0

∣∣∣ξ̂ − v̂
∣∣∣2 f̂ ϕ̂

(
Î
)
d Î d ξ̂ , ε̂ I = 1

ρ̂

∫∫ ∞

0
Î f̂ ϕ̂

(
Î
)
d Î d ξ̂ ,

and

ε̂E

(
T̂
)

=
∫ T̂

T̂∗
ĉv (τ ) dτ, T̂ = ε̂−1

E

(
ε̂
)
, p̂ = ρ̂T̂ ,
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where T̂∗ = T∗/T0. The dimensionless translational temperature T̂ K is readily given by

T̂ K = 2

3
ε̂K , (82)

while the dimensionless internal temperature T̂ I and the dimensionless temperature T̂rel are
obtained as implicit solutions of

ε̂ IE

(
T̂ I
)

= ε̂ I , ε̂ IE

(
T̂ I
rel

)
= θ ε̂ IE

(
T̂
)

+ (1 − θ) ε̂ IE

(
T̂ I
)

. (83)

5.2 Similarity Solution

Since in the following we shall be interested in studying the structure of plane shock waves
traveling along the x1 direction (i.e. v̂2 = v̂3 = 0), it is useful to introduce the similarity
solution of the form

f̂ = f̂
(
x̂1, ξ̂1, ξ̂r , Î

)
, ξ̂r =

(
ξ̂22 + ξ̂23

)1/2
.

Under this assumption, the distribution function Ĝ (K ) is written as

Ĝ (K ) = ρ̂

π3/2
(
T̂11
)1/2

T̂22

exp

⎛
⎜⎝−
(
ξ̂1 − v̂1

)2

T̂11
− ξ̂2r

T̂22

⎞
⎟⎠ , (84)

where the involved macroscopic quantities are written as follows:

ρ̂ = 2π
∫ ∞

0

∫ +∞

−∞

∫ ∞

0
ξ̂r f̂ ϕ̂

(
Î
)
d Î d ξ̂1 d ξ̂r ,

v̂1 = 2π

ρ̂

∫ ∞

0

∫ +∞

−∞

∫ ∞

0
ξ̂1ξ̂r f̂ ϕ̂

(
Î
)
d Î d ξ̂1 d ξ̂r ,

P̂11 = 4π
∫ ∞

0

∫ +∞

−∞

∫ ∞

0
ξ̂r

(
ξ̂1 − v̂1

)2
f̂ ϕ̂
(
Î
)
d Î d ξ̂1 d ξ̂r ,

P̂22 = P̂33 = 2π
∫ ∞

0

∫ +∞

−∞

∫ ∞

0
ξ̂3r f̂ ϕ̂

(
Î
)
d Î d ξ̂1 d ξ̂r ,

T̂11 = θ T̂ + (1 − θ)

(
(1 − ν) T̂ K + ν

P̂11
ρ̂

)
,

T̂22 = T̂33 = θ T̂ + (1 − θ)

(
(1 − ν) T̂ K + ν

P̂22
ρ̂

)
,

ε̂K = 2π

ρ̂

∫ ∞

0

∫ +∞

−∞

∫ ∞

0
ξ̂r

((
ξ̂1 − v̂1

)2 + ξ̂2r

)
f̂ ϕ̂
(
Î
)
d Î d ξ̂1 d ξ̂r ,

ε̂ I = 2π

ρ̂

∫ ∞

0

∫ +∞

−∞

∫ ∞

0
ξ̂r Î f̂ ϕ̂

(
Î
)
d Î d ξ̂1 d ξ̂r ,

q̂1 = 2π
∫ ∞

0

∫ +∞

−∞

∫ ∞

0
ξ̂r

(
ξ̂1 − v̂1

)((
ξ̂1 − v̂1

)2 + ξ̂2r + Î

)
f̂ ϕ̂
(
Î
)
d Î d ξ̂1 d ξ̂r ,

and

P̂i j = 0, T̂i j = 0 for i �= j .
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5.3 Reduced ES-BGKModel for Similarity Solution

In the present case, it is possible to introduce the marginal distribution function from Eq. (77)
as follows:

ϕ1 = 2π
∫ ∞

0
ξ̂r �̂m d ξ̂r = 2π

∫ ∞

0

∫ ∞

0
ξ̂r f̂ ϕ̂

(
Î
)
d Î d ξ̂r ,

ϕ2 = 2π
∫ ∞

0
ξ̂3r �̂m d ξ̂r = 2π

∫ ∞

0

∫ ∞

0
ξ̂3r f̂ ϕ̂

(
Î
)
d Î d ξ̂r ,

ϕ3 = 2π
∫ ∞

0
ξ̂r �̂I d ξ̂r = 2π

∫ ∞

0

∫ ∞

0
ξ̂r Î f̂ ϕ̂

(
Î
)
d Î d ξ̂r ,

where �̂m = �m/
(
ρ0a

−3
0

)
and �̂I = 2a0�I /ρ0. Moreover, similarly to Eq. (78), we

introduce

ψ1 = 2π
∫ ∞

0
ξ̂r �̂m d ξ̂r = 2π

∫ ∞

0
ξ̂r Ĝ

(K ) d ξ̂r ,

ψ2 = 2π
∫ ∞

0
ξ̂3r �̂m d ξ̂r = 2π

∫ ∞

0
ξ̂3r Ĝ (K ) d ξ̂r ,

ψ3 = 2π
∫ ∞

0
ξ̂r �̂I d ξ̂r = 2πε̂ Irel

∫ ∞

0
ξ̂r Ĝ

(K ) d ξ̂r ,

(85)

where �̂m = �m/
(
ρ0a

−3
0

)
and �̂I = 2a0�I /ρ0. Recalling Eq. (84) and the Gaussian

integrals
∫∞
0 z exp

(
− z2

μ

)
dz = μ

2 and
∫∞
0 z3 exp

(
− z2

μ

)
dz = μ2

2 , Eq. (85) is written as

follows:

ψ1 = 2ρ̂(
π T̂11

)1/2
T̂22

exp

⎛
⎜⎝−
(
ξ̂1 − v̂1

)2

T̂11

⎞
⎟⎠
∫ ∞

0
ξ̂r exp

(
− ξ̂2r

T̂22

)
d ξ̂r

= ρ̂(
π T̂11

)1/2 exp

⎛
⎜⎝−
(
ξ̂1 − v̂1

)2

T̂11

⎞
⎟⎠ ,

ψ2 = 2ρ̂(
π T̂11

)1/2
T̂22

exp

⎛
⎜⎝−
(
ξ̂1 − v̂1

)2

T̂11

⎞
⎟⎠
∫ ∞

0
ξ̂3r exp

(
− ξ̂2r

T̂22

)
d ξ̂r

= ρ̂T̂22(
π T̂11

)1/2 exp

⎛
⎜⎝−
(
ξ̂1 − v̂1

)2

T̂11

⎞
⎟⎠ ,

ψ3 = 2ρ̂ε̂ Irel(
π T̂11

)1/2
T̂22

exp

⎛
⎜⎝−
(
ξ̂1 − v̂1

)2

T̂11

⎞
⎟⎠
∫ ∞

0
ξ̂r exp

(
− ξ̂2r

T̂22

)
d ξ̂r

= ρ̂ε̂ Irel(
π T̂11

)1/2 exp

⎛
⎜⎝−
(
ξ̂1 − v̂1

)2

T̂11

⎞
⎟⎠ ,
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and the following system is obtained from Eq. (81) (see also Eq. (79)):

ξ̂1
∂ϕk

∂ x̂1
= 2

π1/2 Âc

(
T̂
)

ρ̂ (ψk − ϕk) , k = 1, 2, 3. (86)

It is also noted that the macroscopic quantities ρ̂, v̂1, P̂11, and P̂22 involved in Eq. (86) may
be written in terms of the marginal functions ϕ1, ϕ2, and ϕ3 as follows:

ρ̂ =
∫ +∞

−∞
ϕ1 d ξ̂1, v̂1 = 1

ρ̂

∫ +∞

−∞
ξ̂1ϕ1 d ξ̂1,

P̂11 = 2
∫ +∞

−∞

(
ξ̂1 − v̂1

)2
ϕ1 d ξ̂1, P̂22 =

∫ +∞

−∞
ϕ2 d ξ̂1,

while the translational internal energy, ε̂K , the internal energy associated to internal modes,
ε̂ I , and the heat flux q̂1 are given by

ε̂K = 1

ρ̂

∫ +∞

−∞

((
ξ̂1 − v̂1

)2
ϕ1 + ϕ2

)
d ξ̂1, ε̂ I = 1

ρ̂

∫ +∞

−∞
ϕ3 d ξ̂1.

and

q̂1 =
∫ ∞

−∞

(
ξ̂1 − v̂1

)((
ξ̂1 − v̂1

)2
ϕ1 + ϕ2 + ϕ3

)
d ξ̂1.

The translational and internal temperatures, T̂ K and T̂ I , are directly obtained from ε̂K and
ε̂ I from Eqs. (82) and (83), respectively.

5.4 Numerical Results

In order to obtain the structure of planar shock waves for various values of the Mach number
M0, the system of integro-differential equations given in Eq. (86) is numerically solved on a
one-dimensional finite computational domain.

Provided the quantities ρ0, v1,0, and T0 representing, respectively, the density, x1-
component of the velocity, and temperature in the unperturbed equilibrium state (x1 → −∞),
the corresponding density, ρ1, x1-component of the velocity, v1,1, and temperature, T1, in
the perturbed equilibrium state (x1 → +∞) are obtained as a one-parameter solution of the
Rankine-Hugoniot equations, being the Mach number M0 the parameter.

In terms of dimensionless variables, the equilibrium distribution function in the unper-
turbed state (x1 → −∞), f̂0, and in the perturbed state (x1 → +∞), f̂1, are, respectively,

f̂0 = ρ̂0(
π T̂0
)3/2 exp

⎛
⎜⎝−
(
ξ̂1 − v̂1,0

)2 + ξ̂2r

T̂0

⎞
⎟⎠ 1

Â
(
T̂0
) exp

(
− Î

T̂0

)
,

and

f̂1 = ρ̂1(
π T̂1
)3/2 exp

⎛
⎜⎝−
(
ξ̂1 − v̂1,1

)2 + ξ̂2r

T̂1

⎞
⎟⎠ 1

Â
(
T̂1
) exp

(
− Î

T̂1

)
,

where ρ̂0 = T̂0 = 1 due to the choice of the quantities ρ0 and T0 as reference values, respec-
tively, for the density and the temperature in the definition of the dimensionless variables.

123



A Novel ES-BGK Model for Non-polytropic Gases Page 27 of 34    95 

Table 1 Values of ν and θ for
Pr = 0.73 and r =
(μb/μ)T=T0 = 500, 1000, 2000

r = (μb/μ)T=T0 ν θ

500 −0.3702 1.034 × 10−3

1000 −0.3701 5.169 × 10−4

2000 −0.37 2.585 × 10−4

From the above expression of f̂0 and f̂1, the correspondingmarginal distribution functions
ϕ1,0, ϕ2,0, and ϕ3,0 in the unperturbed equilibrium state, and ϕ1,1, ϕ2,1, and ϕ3,1 in the
perturbed equilibrium state are obtained (i = 0, 1):

ϕ1,i = ρ̂i(
π T̂i
)1/2 exp

⎛
⎜⎝−
(
ξ̂1 − v̂1,i

)2

T̂i

⎞
⎟⎠ ,

ϕ2,i = ρ̂i T̂i(
π T̂i
)1/2 exp

⎛
⎜⎝−
(
ξ̂1 − v̂1,i

)2

T̂i

⎞
⎟⎠ ,

ϕ3,i = ρ̂i ε̂
I
i(

π T̂i
)1/2 exp

⎛
⎜⎝−
(
ξ̂1 − v̂1,i

)2

T̂i

⎞
⎟⎠ .

(87)

The previous expressions in Eq. (87) are used as boundary conditions in the process of
numerically solving the system of equations outlined in Eq. (86).

In order to compare the results obtained by means of the model proposed by Kosuge et
al. [9] to the model proposed here, calculations have been carried out adopting the same
model parameters as those used in [9], which in turn used model parameters discussed in
[40, 43]. A carbon dioxide (CO2) gas is considered, for which the temperature dependence
of the specific heat, ĉv = cv/ (kB/m), may be approximated at around room temperature as
follows [40]:

ĉv (T ) = 1.412 + 8.697 × 10−3T − 6.575 × 10−6T 2 + 1.987 × 10−9T 3. (88)

The temperature dependence of the shear viscosity is approximated as μ ∝ T 0.935 [40].

Therefore, from Eq. (76)1, we set Ac (T ) ∝ T 0.065, i.e., Âc

(
T̂
)

= T̂ 0.065. Following [9], the

values of ν and θ are suitably chosen as to match a value of the Prandtl number equal to 0.73
and a ratio r of the bulk viscosity, μb, and the viscosity, μ, in the unperturbed equilibrium
state varying in the range from 500 to 2000, as shown in Table 1.

In order to facilitate the comparison of the results obtained by means of the two models,
the profiles of the density, velocity, temperature, translational temperature and internal tem-
perature in a planar shock wave, shown in Figs. 1 and 2 for M0 = 1.3, and Figs. 3 and 4 for
M0 = 5, are normalized, following [9], as follows:

ˆ̂ρ = ρ̂ − ρ̂0

ρ̂1 − ρ̂0
, ˆ̂v = v̂1 − v̂1,1

v̂1,0 − v̂1,1
,

ˆ̂T = T̂ − T̂0

T̂1 − T̂0
,

ˆ̂T K = T̂ K − T̂0

T̂1 − T̂0
,

ˆ̂T I = T̂ I − T̂0

T̂1 − T̂0
.

Despite the relevant differences in themodel proposed in [9] and the novelmodel presented
here, the numerical results obtained by means of the two models are very similar except for a
remarkable difference in the profile of the internal temperature, T I . Being the profiles of all
the othermacroscopic quantities very similar to those already published in [9], the comparison
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Fig. 1 Profiles of the normalized density ˆ̂ρ (a); normalized velocity ˆ̂v (b); normalized temperature ˆ̂T (c);

normalized translational temperature ˆ̂T K (d); normalized internal temperature ˆ̂T I (e); dimensionless pressure
difference P̂11 − p̂ (f); dimensionless pressure difference P̂22 − p̂ (g); dimensionless heat flux −q̂ (h) for a
plane shock wave corresponding to M0 = 1.3, for three different values of the parameter r = (μb/μ)T=T0

is not reported here, and only the profiles obtained with the novel model presented in Sect. 3
are shown in Figs. 1 and 3; the only comparison between the results obtained with the two
models that we show pertains to the profile of the internal temperature, shown in Figs. 2 and 4.
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Fig. 2 a Profiles of the normalized internal temperature, ˆ̂T I , for a plane shock wave corresponding to M0 =
1.3, for three different values of the parameter r = (μb/μ)T=T0 ; b zoom of the profiles of the normalized
internal temperature near the foot of the shock. Results obtainedwith themodel presented in [9] are represented
by dash lines; results obtained with the model presented in Sect. 3 are represented by solid lines. Panel b shows
a zoom of the region

In Fig. 2, corresponding to the case with M0 = 1.3, it may be appreciated that the model
proposed in [9] leads to a profile of the internal temperature dropping to values below the
unperturbed one in the region close to the foot of the shock profile. In Fig. 4, the same

profile of the normalized internal temperature, ˆ̂T I , is shown for the case corresponding to a
larger Mach number, M0 = 5. In this case, values of the internal temperature lower than the

unperturbed values (i.e. negative values of the normalized internal temperature ˆ̂T I ) obtained
by the model presented in [9] are even more noticeable than in the previous case shown in
Fig. 2. In both cases, the profiles of the internal temperature obtained by means of the model
proposed here are physicallymeaningful, since the profiles show that the internal temperature
is monotonically non-decreasing through the shock profile.

As an additional consideration, it might be observed that the results presented in [9]
pertaining the case θ = 0 (i.e. r → ∞), seem to show that the internal temperature, T I ,
takes on values different from the unperturbed value of the temperature, T0, across the shock

structure (specifically, the results show that ˆ̂T I < 0, i.e. T I < T0 across the shock structure).
On the other hand, the results presented here obtained with the newly developed model
suggest that, as r increases, the internal temperature T I across the shock structure tends to

remain constant and equal to the unperturbed temperature T0 (i.e.
ˆ̂T I = 0 across the shock

structure). The latter result is in agreement with the fact that r → ∞ corresponds to the
physical situation in which the internal molecular mode is frozen and, as such, no variation
in the internal temperature T I should be expected in the non-equilibrium region.

6 Conclusions

In this study, we introduced a novel ES-BGKmodel of non-polytropic polyatomic gases that
incorporates an internal state density function depending solely on the microscopic energy
of internal modes and is, therefore, independent from the temperature. This model adheres to
conservation laws and is capable of inducing the correct Prandtl number; moreover it upholds
the H-theorem, distinguishing it from a model recently proposed in [9]. Additionally this
model allows to obtain a closed systemofmacroscopic equationsmaking use of themaximum
entropy principle (MEP) in the spirit of Rational Extended Thermodynamics (RET).

We also introduced the so-called reduced version of this model by incorporating marginal
distribution functions. The numerical implementation of the reduced model enabled us to
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Fig. 3 Profiles of the normalized density ˆ̂ρ (a); normalized velocity ˆ̂v (b); normalized temperature ˆ̂T (c);

normalized translational temperature ˆ̂T K (d); normalized internal temperature ˆ̂T I (e); dimensionless pressure
difference P̂11 − p̂ (f); dimensionless pressure difference P̂22 − p̂ (g); dimensionless heat flux −q̂ (h) for a
plane shock wave corresponding to M0 = 5, for three different values of the parameter r = (μb/μ)T=T0

investigate the structure of planar shock waves in carbon dioxide (CO2) and to make compar-
ative assessments against results obtained from the previous model [9]. It is noteworthy that,
for the reduced model and shock waves, we did not need to calculate ϕ (I ) explicitly through
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Fig. 4 a Profiles of the normalized internal temperature, ˆ̂T I , for a plane shock wave corresponding to M0 = 5,
for three different values of the parameter r = (μb/μ)T=T0 ; b zoom of the profiles of the normalized internal
temperature near the foot of the shock. Results obtained with the model presented in [9] are represented by
dash lines; results obtained with the model presented in Sect. 3 are represented by solid lines

the inverse Laplace transform. Nevertheless, for general solutions of the kinetic model, we
must compute the expressions of ϕ (I ), which can be challenging also numerically.

Future studies will delve into areas not covered in this paper. In particular, they will
include:

(i) The closure via MEP for this model is now possible and an evaluation of the production
terms appearing in the macroscopic field equations obtained in the framework of RET
using the collisional term proposed here;

(ii) An extension of the ES-BGK model proposed here in order to model separately the
molecular internal modes of rotation and vibration. Preliminary investigations on this
point can be found in the BGK model for collisional processes presented in [30], and
in the development of an ES-BGK model accommodating for rotational and discrete
vibrational modes [32, 33];

(iii) An analysis of the structure of standing planar shock waves in gases with a different
interpolating function for the specific heat cv(T ) than the one defined in Eq. (88), and
considering other interesting physical cases of cv(T ) for different gases.

Appendix A: MEP and Proof of Inequality (68)

We first recall a brief history of the maximum entropy principle (MEP) that was developed
by Jaynes in the context of the theory of information [44, 45].

The applicability of MEP to nonequilibrium thermodynamics was originally proposed in
1967 by Kogan [13]. A precise equivalence between MEP and RET, in the 13 moment case,
was proved in 1987 by Dreyer [14]; then, the MEP procedure was applied in 1993 by Müller
and Ruggeri [15], also for degenerate gases, to the general case of any number of moments,
where it was proved for the first time that the closed system is symmetric hyperbolic if
one chooses the Lagrange multipliers as field variables. The MEP was proposed again and
popularized three years later by Levermore [46]. The complete equivalence between the
entropy principle and the MEP was finally proved in 1997 by Boillat and Ruggeri [35].
More details are found in [10]. For non degenerate gases, the distribution function f (N ) that
maximizes the entropy (5) under the constraint that the first N moments are prescribed is
expressed by [10, 15, 34]:

f (N ) = exp

(
−1 − m

kB
χ(N )

)
, (A1)
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where χ(N ) is the generalization of Eq. (46) to the case with N moments.
Concerning the inequality (68), since the function H( f ) defined in (6) is concave, we

have the following inequality:

H ( f ) � H ( f0) + H ′ ( f0) ( f − f0) . (A2)

Let us choose f0 as the distribution function f (N ), then, from Eqs. (A2), (A1) and (5), we
have

h � h(N ) + m
∫
�3

∫ ∞

0
χ(N )

(
f − f (N )

)
ϕ (I ) d I dξ . (A3)

As the first N moments of f and f (N ) are equal, the second term on the right-hand side of
Eq. (A3) disappears and then, the inequality (68) holds.

Appendix B: Proof of Inequality (72)

As the proof closely follows the elegant method proposed by Dauvois et al. [32], we provide
a concise presentation. The primary distinction in our approach is the adoption of a single
internal mode, unlike the original work.

Since det T is characterized by a parameter ν, let us introduce

ϕ (ν) = log (det T) =
3∑

i=1

log

{
θ
p

ρ
+ (1 − θ)

1

ρ

(
νλPi + (1 − ν)P

)}
.

This is a concave function because the argument of the logarithm function is positive due
to the definite positiveness of T, and has a maximum at ν = 0 since ϕ′ (0) = 0. With the
use of the arithmetic and geometric means, we can prove ϕ

(− 1
2

)
� ϕ (1), and therefore

ϕ (ν) � ϕ (1). The derived inequality provides

det T �
3∏

i=1

1

ρ

(
θ p + (1 − θ) λPi

)
,

then, we have

det (P/ρ)

det T
�

∏3
i=1 λPi∏3

i=1

(
θ p + (1 − θ) λPi

) .
From this inequality, we obtain

log
det (P/ρ)

det T
� log

∏3
i=1 λPi∏3

i=1

(
θ p + (1 − θ) λPi

) =
3∑

i=1

log

(
λPi

θ p + (1 − θ) λPi

)

� 3 log

( P
θ p + (1 − θ)P

)
= log

(
T K

T K
rel

)3
= log

(
εKE

(
T K
)

εKE

(
T K
rel

)
)3

.

Here we adopt
∑3

i=1 λPi = 3P and utilize the Jensen inequality for a concave function in the
second inequality. Then, the inequality Eq. (72) is proven.
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11. Pavić, M., Ruggeri, T., Simić, S.: Maximum entropy principle for rarefied polyatomic gases. Physica A
392(6), 1302–1317 (2013)

12. Ruggeri, T.:Maximumentropy principle closure for 14-moment system for a non-polytropic gas. Ricerche
mat. 70(1), 207–222 (2021)

13. Kogan, M.N.: Rarefied Gas Dynamics, vol. I, pp. 359–368. Academic Press, New York (1967)
14. Dreyer, W.: Maximisation of the entropy in non-equilibrium. J. Phys. A 20(18), 6505–6517 (1987)
15. Müller, I., Ruggeri, T.: Extended Thermodynamics. Springer, New York (1993)
16. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of dense gases. Contin-

uum Mech. Thermodyn. 24(4–6), 271–292 (2012)
17. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Recent results on non linear extended thermody-

namics of real gas with six fields. Part I: general theory. Ricerche Mat. 65(1), 263–277 (2016)
18. Bisi, M., Ruggeri, T., Spiga, G.: Dynamical pressure in a polyatomic gas: Interplay between kinetic theory

and extended thermodynamics. Kinet. Rel. Models 11(2), 1–25 (2018)

123

http://creativecommons.org/licenses/by/4.0/


   95 Page 34 of 34 T. Arima et al.

19. Arima, T., Carrisi, M.C., Pennisi, S., Ruggeri, T.: Which moments are appropriate to describe gases with
internal structure in rational extended thermodynamics? Int. J. Non Linear Mech. 137, 103820 (2021)

20. Baranger, C., Dauvois, Y., Marois, G., Mathé, J., Mathiaud, J., Mieussens, L.: A BGK model for high
temperature rarefied gas flows. Eur. J. Mech. B 80, 1–12 (2020)

21. Bisi, M., Spiga, G.: On kinetic models for polyatomic gases and their hydrodynamic limits. Ricerche mat.
66(1), 113–124 (2017)

22. Rahimi, B., Struchtrup, H.: Capturing non-equilibrium phenomena in rarefied polyatomic gases: a high-
order macroscopic model. Phys. Fluids 26(5), 052001 (2014)

23. Struchtrup, H.: The BGK model for an ideal gas with an internal degree of freedom. Transp. Theor. Stat.
Phys. 28(4), 369–385 (1999)

24. Holway, L.H.J.: New statistical models for kinetic theory: methods of construction. Phys. Fluids 9(9),
1658–1673 (1966)

25. Andries, P., Le Tallec, P., Perlat, J.-P., Perthame, B.: The Gaussian-BGK model of Boltzmann equation
with small Prandtl number. Eur. J. Mech. B 19(6), 813–830 (2000)

26. Brull, S., Schneider, J.: On the ellipsoidal statistical model for polyatomic gases. Continuum Mech.
Thermodyn. 20(8), 489–508 (2009)

27. Brau, C.A.: Kinetic theory of polyatomic gases: models for the collision processes. Phys. Fluids 10(1),
48–55 (1967)

28. Gorji, M.H., Jenny, P.: A Fokker–Planck based kinetic model for diatomic rarefied gas flows. Phys. Fluids
25(6), 062002 (2013)

29. Mathiaud, J., Mieussens, L.: A Fokker–Planck model of the Boltzmann equation with correct Prandtl
number for polyatomic gases. J. Stat. Phys. 168(5), 1031–1055 (2017)

30. Arima, T., Ruggeri, T., Sugiyama, M.: Rational extended thermodynamics of a rarefied polyatomic gas
with molecular relaxation processes. Phys. Rev. E 96(4), 042143 (2017)

31. Arima, T., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of rarefied polyatomic gases: 15-field
theory incorporating relaxation processes of molecular rotation and vibration. Entropy 20(4), 301 (2018)

32. Dauvois, Y., Mathiaud, J., Mieussens, L.: An ES-BGK model for polyatomic gases in rotational and
vibrational nonequilibrium. Eur. J. Mech. B 88, 1–16 (2021)

33. Mathiaud, J., Mieussens, L., Pfeiffer, M.: An ES-BGK model for diatomic gases with correct relaxation
rates for internal energies. Eur. J. Mech. B 96, 65–77 (2022)

34. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn. Springer, New York (1998)
35. Boillat, G., Ruggeri, T.: Moment equations in the kinetic theory of gases and wave velocities. Continuum

Mech. Thermodyn. 9(4), 205–212 (1997)
36. Ruggeri, T.: Galilean invariance and entropy principle for systems of balance laws. Continuum Mech.

Thermodyn. 1(1), 3–20 (1989)
37. Hamburger, H.L.: Hermitian transformations of deficiency-index (1, 1), Jacobimatrices and undetermined

moment problems. Am. J. Math. 66(4), 489–522 (1944)
38. Arima,T., Taniguchi, S., Ruggeri, T., Sugiyama,M.: Extended thermodynamics of real gaseswith dynamic

pressure: an extension of Meixner’s theory. Phys. Lett. A 376(44), 2799–2803 (2012)
39. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Dispersion relation for sound in rarefied polyatomic

gases based on extended thermodynamics. Continuum Mech. Thermodyn. 25(6), 727–737 (2013)
40. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Thermodynamic theory of the shock wave structure

in a rarefied polyatomic gas: beyond the Bethe–Teller theory. Phys. Rev. E 89(1), 013025 (2014)
41. Gilbarg, G., Paolucci, D.: The structure of shock waves in the continuum theory of fluids. J. Rational

Mech. 2(4), 617–642 (1953)
42. Kosuge, S., Aoki, K.: Shock-wave structure for a polyatomic gas with large bulk viscosity. Phys. Rev.

Fluids 3(2), 023401 (2018)
43. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Overshoot of the non-equilibrium temperature in

the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressure. Int. J. Non Linear
Mech. 79, 66–75 (2016)

44. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957)
45. Jaynes, E.T.: Information theory and statistical mechanics II. Phys. Rev. 108(2), 171–190 (1957)
46. Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5/6), 1021–1065

(1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	A Novel ES-BGK Model for Non-polytropic Gases with Internal State Density Independent of the Temperature
	Abstract
	1 Introduction
	2 Internal State Density Function
	2.1 Constant Specific Heat (Polytropic Gas)
	2.2 Linearly Varying Specific Heat

	3 Novel ES-BGK Model for Non-polytropic Gas
	3.1 Nonequilibrium Temperatures
	3.2 Model of Collisional Term
	3.3 Derivation of Tij as a Function of Physical Quantities
	3.4 H-theorem and Properties of the Novel ES-BGK Model
	3.5 Chapman–Enskog Expansion

	4 Reduced ES-BGK Model
	5 Study of Standing Planar Shock Waves
	5.1 Dimensionless System
	5.2 Similarity Solution
	5.3 Reduced ES-BGK Model for Similarity Solution
	5.4 Numerical Results

	6 Conclusions
	Appendix A: MEP and Proof of Inequality (68)
	Appendix B: Proof of Inequality (72)
	Acknowledgements
	References


