We prove that, given~$p>\max\left\{\frac{2n}{n+2},1\right\}$, the nonnegative almost minimizers of the nonlinear free boundary functional $$ J_p(u,\Omega):=\int_{\Omega}\Big( |\nabla u(x)|^p+\chi_{\{u>0\}}(x)\Big)\,dx$$ are Lipschitz continuous.

Dipierro, S., Ferrari, F., Forcillo, N., Valdinoci, E. (2024). Lipschitz regularity of almost minimizers in one-phase problems driven by the p-Laplace operator. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 73(3), 813-854 [10.1512/iumj.2024.73.9926].

Lipschitz regularity of almost minimizers in one-phase problems driven by the p-Laplace operator

Ferrari, Fausto
;
2024

Abstract

We prove that, given~$p>\max\left\{\frac{2n}{n+2},1\right\}$, the nonnegative almost minimizers of the nonlinear free boundary functional $$ J_p(u,\Omega):=\int_{\Omega}\Big( |\nabla u(x)|^p+\chi_{\{u>0\}}(x)\Big)\,dx$$ are Lipschitz continuous.
2024
Dipierro, S., Ferrari, F., Forcillo, N., Valdinoci, E. (2024). Lipschitz regularity of almost minimizers in one-phase problems driven by the p-Laplace operator. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 73(3), 813-854 [10.1512/iumj.2024.73.9926].
Dipierro, Serena; Ferrari, Fausto; Forcillo, Nicolo; Valdinoci, Enrico
File in questo prodotto:
File Dimensione Formato  
2206.03238v1 (5).pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 381.36 kB
Formato Adobe PDF
381.36 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/975974
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact