This article introduces the notion of global quadratic variation which is based on a notion weaker than the usual tensor topology appearing in the literature of stochastic processes in Banach separable spaces. It is based on convergence in the weak-star topology of approximating sequences. This calculus pursues in the infinite dimensional space the stochastic calculus via regularization introduced by Russo and Vallois for real valued processes and developed in Banach space by Di Girolami and Russo. This article in particular focuses on the relation with classical calculus in order to compare our global quadratic variation with the classical existing notions of quadratic variations in the literature.

Di Girolami Cristina (2024). Notion of quadratic variation in Banach spaces. STOCHASTIC ANALYSIS AND APPLICATIONS, 42(4), 674-701 [10.1080/07362994.2024.2369834].

Notion of quadratic variation in Banach spaces

Di Girolami Cristina
2024

Abstract

This article introduces the notion of global quadratic variation which is based on a notion weaker than the usual tensor topology appearing in the literature of stochastic processes in Banach separable spaces. It is based on convergence in the weak-star topology of approximating sequences. This calculus pursues in the infinite dimensional space the stochastic calculus via regularization introduced by Russo and Vallois for real valued processes and developed in Banach space by Di Girolami and Russo. This article in particular focuses on the relation with classical calculus in order to compare our global quadratic variation with the classical existing notions of quadratic variations in the literature.
2024
Di Girolami Cristina (2024). Notion of quadratic variation in Banach spaces. STOCHASTIC ANALYSIS AND APPLICATIONS, 42(4), 674-701 [10.1080/07362994.2024.2369834].
Di Girolami Cristina
File in questo prodotto:
File Dimensione Formato  
Articolo_SenzaFormatoRivista.pdf

embargo fino al 24/07/2025

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione 738.75 kB
Formato Adobe PDF
738.75 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/975678
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact