Metabolomics can allow for the comprehensive identification of metabolites within biological systems, at given time points, in physiological and pathological conditions. In the last few years, metabolomic analysis has gained popularity both in human and in veterinary medicine, showing great potential for novel applications in clinical activity. The aim of applying metabolomics in clinical practice is understanding the mechanisms underlying pathological conditions and the influence of certain stimuli (i.e., drugs, nutrition, exercise) on body systems, in the attempt of identifying biomarkers that can help in the diagnosis of diseases. Proton Nuclear Magnetic Resonance spectroscopy (1H-NMR) is well tailored to be used as an analytical platform for metabolites' detection at the base of metabolomics studies, due to minimal sample preparation and high reproducibility. In this mini-review article, the scientific production of NMR metabolomic applications to equine medicine is examined. The research works are very different in methodology and difficult to compare. Studies are mainly focused on exercise, reproduction, and nutrition, other than respiratory and musculoskeletal diseases. The available information on this topic is still scant, but a greater collection of data could allow researchers to define new reliable markers to be used in clinical practice for diagnostic and therapeutical purposes.

Laus F., Bazzano M., Spaterna A., Laghi L., Marchegiani A. (2024). Nuclear magnetic resonance (NMR) metabolomics: current applications in equine health assessment. METABOLITES, 14(5), 1-14 [10.3390/metabo14050269].

Nuclear magnetic resonance (NMR) metabolomics: current applications in equine health assessment

Laghi L.;
2024

Abstract

Metabolomics can allow for the comprehensive identification of metabolites within biological systems, at given time points, in physiological and pathological conditions. In the last few years, metabolomic analysis has gained popularity both in human and in veterinary medicine, showing great potential for novel applications in clinical activity. The aim of applying metabolomics in clinical practice is understanding the mechanisms underlying pathological conditions and the influence of certain stimuli (i.e., drugs, nutrition, exercise) on body systems, in the attempt of identifying biomarkers that can help in the diagnosis of diseases. Proton Nuclear Magnetic Resonance spectroscopy (1H-NMR) is well tailored to be used as an analytical platform for metabolites' detection at the base of metabolomics studies, due to minimal sample preparation and high reproducibility. In this mini-review article, the scientific production of NMR metabolomic applications to equine medicine is examined. The research works are very different in methodology and difficult to compare. Studies are mainly focused on exercise, reproduction, and nutrition, other than respiratory and musculoskeletal diseases. The available information on this topic is still scant, but a greater collection of data could allow researchers to define new reliable markers to be used in clinical practice for diagnostic and therapeutical purposes.
2024
Laus F., Bazzano M., Spaterna A., Laghi L., Marchegiani A. (2024). Nuclear magnetic resonance (NMR) metabolomics: current applications in equine health assessment. METABOLITES, 14(5), 1-14 [10.3390/metabo14050269].
Laus F.; Bazzano M.; Spaterna A.; Laghi L.; Marchegiani A.
File in questo prodotto:
File Dimensione Formato  
Articolo_2024_Laus_Metabolites_HorseMetabolomicsReview.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 816.35 kB
Formato Adobe PDF
816.35 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/971239
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact