In this paper we study a class of variable coefficient third order partial differential operators on R^{n+1} , containing, as a subclass, some variable coefficient operators of KdV-type in any space dimension. For such a class, as well as for the adjoint class, we obtain a Carleman estimate and the local solvability at any point of R^{n+1} . A discussion of possible applications in the context of dispersive equations is provided.

Federico, S. (2024). Carleman estimates for third order operators of KdV and non KdV-type and applications. ANNALI DI MATEMATICA PURA ED APPLICATA, 203, 2801-2823 [10.1007/s10231-024-01467-7].

Carleman estimates for third order operators of KdV and non KdV-type and applications

Federico, Serena
2024

Abstract

In this paper we study a class of variable coefficient third order partial differential operators on R^{n+1} , containing, as a subclass, some variable coefficient operators of KdV-type in any space dimension. For such a class, as well as for the adjoint class, we obtain a Carleman estimate and the local solvability at any point of R^{n+1} . A discussion of possible applications in the context of dispersive equations is provided.
2024
Federico, S. (2024). Carleman estimates for third order operators of KdV and non KdV-type and applications. ANNALI DI MATEMATICA PURA ED APPLICATA, 203, 2801-2823 [10.1007/s10231-024-01467-7].
Federico, Serena
File in questo prodotto:
File Dimensione Formato  
S.Federico-Ann.Mat.PuraAppl.2024-Carleman Kdv.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 396.24 kB
Formato Adobe PDF
396.24 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/971137
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact