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Abstract
In this paper we study a class of variable coefficient third order partial differential operators
on R

n+1, containing, as a subclass, some variable coefficient operators of KdV-type in any
space dimension. For such a class, as well as for the adjoint class, we obtain a Carleman
estimate and the local solvability at any point of Rn+1. A discussion of possible applications
in the context of dispersive equations is provided.
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1 Introduction

In this paper, we will continue the investigation of some variable coefficient PDOs (partial
differential operators) built from a system of real smooth vector fields, initiated in the works
[13, 15, 18, 19] (see also [12, 14, 17]). Since when the celebrated works by Kolmogorov
[31] first, and by Hörmander [24] afterwards, about the hypoellipticity of operators written
as sums of squares of vector fields were published, a lot of connected problems have been
investigated. In particular, Hörmander’s hypoelliptic theorem in [24] opened up the study of
sub-Laplacians onLie groups (see [40]), of parametrices for such operators, of sharp estimates
in appropriate functional spaces (see the pioneering works [23, 40]), but also, among other
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questions, that of the local solvability of closely related models (see, for instance, [13, 15,
18, 19, 35, 39] and references therein).

In the series of works [13, 15, 18, 19], the authors focus on the local solvability of some
classes of degenerate second order PDOs built from a system of real smooth vector fields
and a somewhere vanishing function. The use of the vanishing function is twofold: on one
side it adds degeneracy to a model which is already degenerate by itself, on the other side
it permits to include in the treatment some operators generalizing the Kannai operator, that
is operators having a changing sign principal symbol. The introduction of the vanishing
function requires a price to pay, price which is given in terms of conditions on the lower
order terms of the operators (see [12, 14, 17] for an overview of such results). Nevertheless,
the classes studied in these works encompass different lower order terms, which makes it
possible to include parabolic-type operators, Schrödinger-type operators, a blend of the two,
and some prototypes with non-smooth coefficients.

What we do in the present paper, is to take inspiration by these works and by the form of
some operators relevant in physics, and build a class of operators of order three (instead of
two) starting from a system of smooth real vector fields. Let us say right away that we will not
involve any additional somewhere vanishing function, since the model under consideration
is already highly degenerate and complicated without this adjustment.

Besides the connection with the aforementioned previous works, the interest for such
kind of operators has several motivations (see [30] and references therein). One of them
is represented by the applications to variable coefficient dispersive equations of KdV-type,
where we refer to KdV-type operators as those of the form i∂t + L(t, x, Dx ), with L being
a third order PDO with smooth coefficients.
In the last decades variable coefficient Schrödinger equations have attracted lots of attention.
Smoothing and Strichartz estimates have been proved under different hypotheses (see [2, 11,
20–22, 29, 34, 37, 41] and references therein), nonlinear problems have been solved (see
[11, 20, 21, 25, 29, 34]), and uniqueness results have been proved (see [7, 8, 10, 27] in the
constant coefficient case, and [3, 16] and references therein for variable coefficient cases).
For KdV-type equations the investigation has not been pushed that far, possibly because of
the unknown real analogue of this equation in dimensions higher than two, and also because
variable coefficient third order equations can be much more challenging to study. Here we
wish to start a local analysis of some variable coefficient cases, and prove Carleman type
estimates to be employed to reach uniqueness results. Let us underline that such estimates
have a pivotal role in establishing uniqueness properties, not only at a local (in space) level,
but also for global results. In the context of dispersive equations, results for KdV and ZK
(Zakharov-Kuznetsov) equations can be found, for instance, in [4, 9, 26, 28, 36, 44], while
for nonlocal operators we refer the interested reader to [27, 38]. Note that all these cases
deal with constant coefficients operators, while here we are concerned with the situation
where the coefficients are variable. As far as the author knows, there are no results in the
space variable coefficients setting, at least when the coefficients appear in the highest order
part of the operator of KdV-type. Recently, some results on p-evolution equations in one
space dimension have appeared in [1]. In that work the operators under investigation have
time-dependent coefficients in the leading part, and the class includes KdV operators (since
the space domain is one dimensional) with time variable coefficients in the leading part, but
not ZK operators. Here we are concerned with space-dependent coefficients in any space
dimension.
An other motivation driving this work is that of the local solvability problem for multiple
characteristics PDOs. This problem is very hard to attack, and general results often require
precise geometrical conditions on the characteristic set. We refer the interested reader to [43]
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Carleman estimates for third order operators of KdV and… 2803

for a nice overview of the classical local solvability problem, and to [5] for the resolution of
the Nirenberg-Treves local solvability conjecture.

Let us give a description of the family of operators we will be considering in this paper.
Given a system of vector fields {i X j (x, D)}Nj=0 on R

n+1 - where N is a positive integer
not necessarily equal to n or n + 1, and D = (D1, . . . , Dn+1) = (−i∂x1 , . . . ,−i∂xn+1) -
such that

• the vector fields i X j (x, D), j = 0, . . . , N , are smooth and real;
• the vector fields i X j (x, D); j = 1, . . . , N , form a global involutive distribution, that

is, [Xl , Xm](x, D) = −[i Xl , i Xm] is uniquely determined by a linear combination with
smooth coefficients of the vector fields {i X j (x, D)} j=1,...,N , for all l,m = 1, . . . , N ,

and for all x ∈ R
n+1;

• X1 is nondegenerate, namely it is nowhere vanishing on Rn+1;

we define P1 as the third order PDO of the form

P1(x, D) := X1

N∑

j=1

X∗
j X j + X0. (1.1)

The latter is the class of operators we will be dealing with, which, depending on N and on
the choice of the system of vector fields, includes (linear) KdV-type operators of different
kind.

We have already mentioned that our goal is to prove Carleman estimates for such class of
operators. To be precise, we will not only obtain Carleman estimates for the class of operators
represented by P1, but also for the adjoint class, that is the family of operators P∗

1 obtained
by taking the adjoint of P1, namely

P∗
1 =

n∑

j=1

X∗
j X j X

∗
1 + X∗

0, (1.2)

which coincides with P1 up to a differential operator of order two.
Themainmotivation for theCarleman estimate for P∗

1 , is our interest in the local solvability
of P1. We recall that the role of Carleman estimates—which is well-known to be determinant
in the analysis of unique continuation problems (see, for instance, [32] and [42])—is also
crucial to prove local solvability properties of partial differential equations with variable
coefficients. An estimate of this sort for an operator P , yields a local solvability result for
the adjoint operator P∗. Hence, we can take advantage of the Carleman estimate for P∗

1 to
get the local solvability of P1.

The connection between our operator P1 and some important operators coming from
physics, can be seen by analyzing the following two examples: the (linear) KdV operator
and its higher dimensional generalization, the ZK operator. The (linear) KdV operator is
described by i P1 with N = n = 1, Rn+1 = R

2
t,x , i X0 = ∂t . and i X1 = −∂x . However, by

taking i X1(x) = a(x)∂x , with a(x) �= 0 for all x ∈ R, then we get an operator, again of
the form P1, that describes a variable coefficient KdV operator. If we consider N = n = 2,
R
n+1 = Rt × R

2
x , i X0 = ∂t and i X j = −∂x j , j = 1, 2, then i P1 describes the ZK

operator.Again, by taking nonvanishing space-variable coefficient real vector fields satisfying
condition (H1) in (2.1) below, we get a variable coefficient ZK model.

Note that both the classical KdV and the ZK operator (with constant coefficients) are built
by taking an elliptic operator in R

n
x , i.e. the Laplacian in R and R

2 respectively, and then
using the two vector fields i X0 = ∂t and i X1 = ∂x1 to define a third order operator. Observe
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that P1 is built exactly the same way, but employing variable coefficient real vector fields
instead of constant coefficient ones. In fact, to define P1 we take operators being sums of
squares, that is

∑N
j=1 X

∗
j X j (not necessarily elliptic in a subspace of dimension n of the

n + 1-dimensional domain), and cook up a third order operator by using X1 and X0. An
example of variable coefficient KdV-type operator in a three-dimensional Euclidean space
domain, can be constructed, for instance, by using the canonical basis of the Lie algebra of
the Heisenberg group. Let

i X0 = ∂t , i X1(x, t) = ∂x1 − x2
2

∂x3 , i X2(x, t) = ∂x2 + x1
2

∂x3 , i X3(x) = ∂x3 ,

be four real smooth vector fields, where i X1, i X2 are the generators of the stratified Lie
algebra h = h1 ⊕ h2 of H1. Then {i X j }3j=1 is a global involutive distribution in R4

t,x ,

L =
3∑

j=1

X∗
j X j

is an elliptic operator on R
3
x , and

X j0

3∑

j=1

X∗
j X j + X0, j0 = 1, 2, 3,

is a variable coefficient KdV-type operator of the form P1 for every choice of j0 = 1, 2, 3,
since X j0 is nondegenerate for all j0 = 1, 2, 3.

The examples above show that P1-type operators include KdV and ZK variable coefficient
PDOs. However, our class is not limited to be just a generalization of KdV-type operators
in any space dimension, since we are free to choose n ≥ 3, N ≤ n + 1, but also i X0 �= ∂t ,
giving rise to a very wide family of degenerate operators.

Let us finally conclude this introduction with the plan of the paper. Section2 is devoted to
the the main results of this work, specifically Theorem 2.8 about a Carleman estimate for P1
and for P∗

1 , and Theorem 2.10 giving a local solvability result for both the aforementioned
operators. Section3 is dedicated to explicit examples of operators of the form under study and
of KdV-type. The last section, Sect. 4, contains final remarks and the discussion of possible
applications in the context of dispersive equations.

2 Carleman estimate and local solvability for P1 and P∗
1

We recall once more that in this section we are concerned with the proofs of the main results
of the article: a Carleman estimate for P1 and P∗

1 , and a local solvability result for these
operators. The Carleman estimate is the most important result of the paper, in that it is the
key tool to get the solvability property. Moreover, it can find applications in other problems
of our interest, like in uniqueness/unique continuation problems for dispersive equations.
On the other hand, the investigation of the local solvability of highly degenerate operators
is quite complicated, thus our results represent a step ahead in the understanding of certain
kind of operators.

Before stating and proving our theorems, let us make precise the objects we are working
with. Recall that, on Rn+1

x , x = (x1, . . . , xn, xn+1), n ≥ 1, we define the operator P1 as

P1 = X1

N∑

j=1

X∗
j X j + X0, 1 ≤ N ≤ n + 1,
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where

X j (x, Dx ) =
n+1∑

k=1

a jk(x1, . . . , xn+1)Dk, ∀ j = 1, . . . , N

X∗
j (x, Dx ) =

n+1∑

k=1

a jk(x1, . . . , xn+1)Dk + d j (x1, . . . , xn+1)

= X j (x, D) + dj(x1, . . . , xn+1), dj(x) :=
n+1∑

k=1

Dka jk(x1, . . . , xn+1),

∀ j = 1, . . . , N

with Dk = −i∂k := −i∂xk , and a jk ∈ C∞(Rn+1), for all j, k = 1, . . . , n + 1.
The condition we shall assume on the system of vector fields on Rn+1 which make up P1

is the following:

(H1) We say that a system of real smooth vector fields {i Xl}l=1,...,N , 1 ≤ N ≤ n + 1, satisfies
condition (H1) if the distribution �({i Xl}l=1,...,N ) is a global involutive distribution, that
is, for all j, k = 1, . . . , N , there exist (uniquely determined) c jkl ∈ C∞(Rn+1, iR), l =
1, . . . , N , such that

[X j , Xk](x, D) =
N∑

l=1

c jkl (x)Xl(x, D), ∀x ∈ R
n+1, (2.1)

where [X , Y ] := XY − Y X denotes the commutator of the operators X and Y .

In other words (H1) amounts to the global involutivity of the system of real smooth vector
fields {i X j }Nj=1 on R

n+1.

Remark 2.1 Due to the global involutivity of the system, and the fact that N ≥ 1, there exists
at least one vector field i X j0 ∈ {i X j }Nj=1 being nondegenerate on R

n+1, or, equivalently, a

nowhere vanishing vector field onRn+1 in {i X j }Nj=1. By possibly renaming the vector fields,
we can always assume j0 = 1, so we will use this convention in the rest of the paper when
assuming condition (H1) on a system of vector fields. This assumption will be crucial to
derive the Carleman estimate below, and thus the solvability result as well. Note also that,
if N ≤ n + 1 and �({i X j }) is a global involutive distribution of rank = N , then X j is
nondegenerate in R

n+1 for all j = 1, . . . , N , and we are free to take any vector field in the
system as the one playing the role of X1. Finally, observe that the requirement N ≤ n + 1 is
not restrictive. Indeed, when the system is globally involutive and the rank of the distribution
is M ≤ n+ 1, then if N > n+ 1 we can rewrite P1 in terms of M ≤ n+ 1 < N vector fields
in the second order part.

Remark 2.2 Notice that formula (2.1) holds true independently of the rank of the distribution.
If the system of vector fields satisfies (H1), and the rank of �({i Xl}l=1,...,N ) = M ≤ N ≤
n + 1, then

[X j , Xk](x, D) =
M∑

l=1

c jkl (x)Xl(x, D) =
N∑

l=1

c jkl (x)Xl(x, D),

where some coefficients will be identically zero. Since we will not care about the precise
rank of the distribution, we will simply use (2.1).
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Remark 2.3 An additional remark is that, by imposing only (H1) on the system of vector
fields, P1 generates a class of operators larger than the one of KdV-type operators, in that the
latter is modeled by using a system of vector fields satisfying the additional conditions

• X0(x, D) �= 0, ∀x ∈ R
n+1,

• [X j , X0] ≡ 0, ∀ j = 1, . . . , N ,
• X j (x, D) = X j (x1, . . . , xn, D1, . . . , Dn), ∀ j = 1, . . . , N ,

• N = n and
∑n

j=1 X
∗
j X j is elliptic on Rn

(x1,...,xn)
.

Since we will be giving a local solvability result for P1 and P∗
1 , for completeness we

recall here the definition of Hs − Hs′ locally solvable partial differential operator at a point
x0 ∈ �, where, adopting the usual notation, Hs(�) will denote the standard Sobolev space
of order s.

Definition 2.4 Let P be a partial differential operator with smooth coefficients defined on an
open subset � of Rn , and let x0 ∈ �. We say that P is Hs − Hs′ locally solvable at x0 if
there exists a compact K containing x0 in its interior UK , such that, for every f ∈ H−s

loc (�)

there exists u ∈ H−s′
loc (�) for which Pu = f in UK . We say that P is Hs − Hs′ locally

solvable in �, if it is locally solvable at each point of �.

When P is Hs − Hs′ locally solvable at x0 with s = s′ = 0, we will just say that the
operator is L2 − L2 locally solvable at x0.

Notations. Below N will always be a positive integer, λ will be a real number, whereas
A = {a ji (x)} j=0,...,N

i=1,...,n+1
will denote the variable coefficient matrix containing the coefficients

of the vector fields i X j , for j = 0, . . . , N . For a matrix A as above and α ∈ N
n+1 ⋃{0}n+1,

we define

‖∇αA‖L∞(�) := sup
j=1,...,N

i=1,...,n+1

‖∂αa ji‖L∞(�), ∀� ⊂ R
n+1,

where ∂α f = ∂
α1
1 . . . ∂

αn+1
n+1 . Throughout the paper we will write ‖ · ‖L∞ , ‖ · ‖L2 , ‖ · ‖Hs

without specifying the set � where the L∞(�), L2(�), and the Hs(�) norms are taken.
Given that we will be working with compactly supported functions, the set � will be the
fixed support of the function (or its interior), so we omit it for simplicity. However, note that
we can take ‖∇αA‖L∞ = ‖∇αA‖L∞(Rn+1) in the coming estimates when A has C∞

b (Rn+1)

coefficients.
Given a partial differential operator P , we will write (P f )g to indicate the multiplication

of P f and g, meaning that the operator P is applied to the function f only, while P f g means
that P acts on the product f g, that is on everything appearing on the right of the operator.
For example, for two vector fields i X and iY , we will have X f g = (X f )g + f (Xg), and
(X f )Yg = (X f )(Yg).

Finally, we shall use the notation �({i X j }Nj=1) for the distribution spanned by the system

of vector fields {i X j }Nj=1.
In order to prove our Carleman inequality for P1 and for P∗

1 , we will make use of the
subsequent fundamental lemma.

Lemma 2.5 Let f ∈ C∞(Rn+1), N ≥ 1, and λ ≥ 1. Let also P1 be as in (1.1) and {i X j }Nj=1

satisfying (H1). Then, for every compact set K of Rn+1, there exists a positive constant
CK = CK

({‖∂α f ‖L∞(K )}|α|=0,1,2, {‖∇αA‖L∞(K )}|α|=0,1,2
)
such that, for all u ∈ C∞

0 (K ),

Im(e−λ f P1u, e−λ f u)
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≥
N∑

j=1

(Q je
−λ f u, e−λ f u) + λ3

N∑

j=1

(
(−i X1 f )|X j f |2e−λ f u, e−λ f u

) − λ2CK ‖e−λ f u‖2L2 ,

where

Q j = Q j (x, D) := (
λ(−i X1 f ) + id1/2

)
X∗

j X j +
N∑

k=1

ic j1k X∗
k X j

− iλ(X j X1 f )X j + i/2
(
c′
j − (X1d j ) + 2(X jd1) + d1d j

)
X j ,

(2.2)

with c j1k , as in (2.1), and c′
j := ∑N

k=1(
∑N

l=1 c
lk
j + (Xkck1j ) + dkck1j − 2dkc

j1
k ) ∈

C∞(Rn+1, iR) for all j, k = 1, . . . , N.

Proof We start the proof by computing the quantity

Im(e−λ f P1u, e−λ f u).

Writing

e−λ f P1(x, D)u = e−λ f P1(x, D)eλ f e−λ f u = P f
1 (x, D)e−λ f u,

then

P f
1 (x, D) = P1(x, D + λDf ) = (X1 + λ(X1 f ))

N∑

j=1

(X j + λ(X j f ))

∗(X j + λ(X j f )) + X0 + λ(X0 f )

= (X1 + λ(X1 f ))
N∑

j=1

(X∗
j − λ(X j f ))(X j + λ(X j f )) + X0 + λ(X0 f )

= (X1 + λ(X1 f ))
N∑

j=1

[
X∗

j X j + λX∗
j (X j f )−λ(X j f )X j − λ2(X j f )

2
]
+X0 + λ(X0 f )

= (X1 + λ(X1 f ))
N∑

j=1

[
X∗

j X j + λd j (X j f ) + λ(X2
j f ) − λ2(X j f )

2
]

+ X0 + λ(X0 f )

= P1 + X1

N∑

j=1

[
λd j (X j f ) + λ(X2

j f ) − λ2(X j f )
2
]
+

+ λ(X1 f )
N∑

j=1

[
X∗

j X j + λd j (X j f ) + λ(X2
j f ) − λ2(X j f )

2
]

+ λ(X0 f )

= P1 +
N∑

j=1

[
λd j (X j f ) + λ(X2

j f ) − λ2(X j f )
2
]
X1+

+
N∑

j=1

[
λ(X1d j )(X j f ) + λd j (X1X j f ) + λ(X1X

2
j f ) − 2λ2(X j f )(X1X j f )

]
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+ λ(X1 f )
N∑

j=1

X∗
j X j + (X1 f )

N∑

j=1

[
λ2d j (X j f ) + λ2(X2

j f ) + λ3(i X j f )
2
]

+ λ(X0 f )

= P1 + L2 + L1 + L0,

where L2, L1, L0 are the partial differential differential operators of order 2, 1, and 0, given,
respectively, by

L2 = L2(x, D) := λ(X1 f )
N∑

j=1

X∗
j X j

L1 = L1(x, D) :=
N∑

j=1

[
λd j (X j f ) + λ(X2

j f ) − λ2(X j f )
2
]
X1

L0 = L0(x) :=
N∑

j=1

[
λ(X1d j )(X j f ) + λd j (X1X j f ) + λ(X1X

2
j f ) − 2λ2(X j f )(X1X j f )+

+(X1 f )(λ
2d j (X j f ) + λ2(X2

j f ) + λ3(i X j f )
2)

]
+ λ(X0 f )

By the calculations above

Im(e−λ f P1u, e−λ f u) = Im(P1e
−λ f u, e−λ f u) + Im(L2e

−λ f u, e−λ f u)

+ Im(L1e
−λ f u, e−λ f u) + Im(L0e

−λ f u, e−λ f u),

so, for simplicity, we handle each term on the right-hand side separately.
Recall that, since the system of vector fields {i X j } j=1,...,N is globally involutive, that is

satisfies (H1), for all j = 1, . . . , N , there exist c j1k ∈ C∞(Rn+1, iR), k = 1, . . . , N , such
that

[X j , X1] =
N∑

k=1

c j1k Xk .

By the same token, there exist some c jkl ∈ C∞(Rn+1, iR), l = 1, . . . , N , such that

[X j , [X j , X1]] =
N∑

k,l=1

c j1k c jkl Xl .

Now, on putting v := e−λ f u, and using the previous observation, we have

2iIm(P1e
−λ f u, e−λ f u) = 2i

N∑

j=1

Im(X1X
∗
j X jv, v) + 2i Im(X0v, v)

=
N∑

j=1

(
(X1X

∗
j X j − X∗

j X j X1 − X∗
j X j d1)v, v

)
+ (

(X0 − X∗
0)v, v

)

= −
N∑

j=1

(
(2[X j , X1]X j + [X j , [X j , X1]] + d j [X j , X1] − (X1d j )X j )v, v

)

−
N∑

j=1

((
d1X

∗
j X j + 2(X jd1)X j + d1d j X j + (X∗

j X j d1) + (X jd1)d j

)
v, v

)
− (d0v, v)
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= −
N∑

j,k=1

(2c j1k Xk X jv, v) − d1

N∑

j=1

X∗
j X j −

N∑

j,k,l=1

(c jkl Xlv, v) −
N∑

j,k=1

(
(X jc

j1
k )Xkv, v

)

−
N∑

j,k=1

(d j c
j1
k Xkv, v) −

n∑

j=1

((
− (X1d j ) + 2(X jd1) + d1d j

)
X jv, v

)

−
N∑

j=1

((
(X∗

j X j d1) + (X jd1)d j
)
v, v

)
− (d0v, v).

Adopting the notation ‖ · ‖L∞ := ‖ · ‖L∞(K ), we get

Im(P1v, v) =
N∑

j,k=1

(ic j1k Xk X jv, v) + i

2
d1

N∑

j=1

(X∗
j X jv, v)

+ i

2

N∑

j=1

( N∑

k=1

( N∑

l=1

clkj + (Xkc
k1
j ) + dkc

k1
j

)
X jv, v

)

+ i

2

n∑

j=1

((
− (X1d j ) + 2(X jd1) + d1d j

)
X jv, v

)

+ i

2

N∑

j=1

((
(X∗

j X j d1) + (X jd1)d j

)
v, v

)
+ i

2
(d0v, v)

≥
N∑

j=1

(( N∑

k=1

ic j1k X∗
k X j + i

2
d1X

∗
j X j + i/2

(
c′
j − (X1d j ) + 2(X jd1) + d1d j

)
X j

)
v, v

)

−CK ‖v‖2L2 , (2.3)

where c′
j (x) := ∑N

k=1(
∑N

l=1 c
lk
j + (Xkck1j ) + dkck1j − 2dkc

j1
k )(x), while CK denotes a

constant depending on the L∞(K )-norm of some smooth functions, specifically functions
depending on the coefficients of the vector fields i X j and on their derivatives. Abusing of the
notation, belowwe shall writeCK for any constant of this form, that is any constant depending
on the L∞(K )-norms of f , of the coefficients of the vector fields i X j , j = 0, . . . , N , and
of the derivatives of these functions. Sometimes CK will also depend on the L∞(K )-norm
of cklj , k, l = 1, . . . , N , j = . . . , n + 1.

As for the term containing L2, recalling that f is a real function and that X1 f takes purely
imaginary values, we obtain

Im(L2v, v) = Im
(
λ(X1 f )

N∑

j=1

X∗
j X jv, v

)

= −i

2
λ

N∑

j=1

((
(X1 f )X

∗
j X j − X∗

j X j (−X1 f )
)
v, v

)

= λ

N∑

j=1

[(
(−i X1 f )X

∗
j X jv, v

)
− i

(
(X j X1 f )X jv, v

)

− i

2

((
(X2

j X1 f ) + (X j X1 f ) + d j (X j X1 f )
)
v, v

)]
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≥ λ

N∑

j=1

(
(−i X1 f )X

∗
j X jv, v) − i((X j X1 f )X jv, v

)
− CK ‖v‖2L2 . (2.4)

By similar considerations

Im(L1v, v) = 1

2i

n∑

j=1

[
λ

((
d1d j (X j f ) − d1(X

2
j f ) + (X1d j (X j f )) − (X1X

2
j f )

)
v, v

)

+ λ2
((

d1(X j f )
2 + 2(X j f )(X1X j f )

)
v, v

)]

≥ −λ2CK ‖v‖2L2 , (2.5)

and

Im(L0v, v) ≥ λ3
N∑

j=1

(
(−i X1 f )|X j f |2v, v

) + λ
( − i(X0 f )v, v

) − λ2CK ‖v‖2L2

≥ λ3
N∑

j=1

(
(−i X1 f )|X j f |2v, v

) − λ2CK ‖v‖2L2 . (2.6)

Finally, by (2.3), (2.4), (2.5), (2.6), and the fact that λ ≥ 1, we can find a new suitable
positive constant CK such that

Im(e−λ f P1u, e−λ f u) ≥
N∑

j=1

(Q jv, v) + λ3
N∑

j=1

(
(−i X1 f )|X j f |2v, v

) − λ2CK ‖v‖2L2 ,

∀u ∈ C∞
0 (K ),

with

Q j = Q j (x, D) := (
λ(−i X1 f ) + id1/2

)
X∗

j X j +
N∑

k=1

ic j1k X∗
k X j

− iλ(X j X1 f )X j + i/2
(
c′
j − (X1d j ) + 2(X jd1) + d1d j

)
X j .

This completes the proof. ��

The same result as Lemma 2.5, with suitable small adjustments, is still valid for the
operator P∗

1 , the adjoint of P1. We state the precise result in Lemma 2.6 below.

Lemma 2.6 Let f ∈ C∞(Rn+1), N ≥ 1, and λ ≥ 1. Let also P∗
1 be as in (1.2), and

{i X j }Nj=1 satisfying (H1). Then, for every compact set K of Rn+1, there exists a positive

constant CK = CK
({‖∂α f ‖L∞(K )}|α|=0,1,2, {‖∇αA‖L∞(K )}|α|=0,1,2

)
such that, for all

u ∈ C∞
0 (K ),

Im(e−λ f P∗
1 u, e−λ f u)

≥
N∑

j=1

(Q′
j e

−λ f u, e−λ f u) + λ3
N∑

j=1

(
(−i X1 f )|X j f |2e−λ f u, e−λ f u

) − λ2CK ‖e−λ f u‖2L2
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where

Q′
j (x, D) = Q j (x, D) − i

N∑

k=1

c j1k (X∗
j Xk + X∗

k X j ) − ic′′
j X j

= (
λ(−i X1 f ) + id1/2

)
X∗

j X j −
N∑

k=1

ic j1k X∗
j Xk

− iλ(X j X1 f )X j + i/2
(
c′
j − c′′

j − (X1d j ) + 2(X jd1) + d1d j

)
X j

with c j1k , as in (2.1), c′′
j := ∑N

k=1

(
(Xkc

j1
k ) + (X∗

k c
j1
k ) + (Xkck1j ) + (X∗

k c
k1
j )

)
∈

C∞(Rn+1, iR) for all j, k = 1, . . . , N, and Q j , c′
j , as in (2.2) for all j = 1, . . . , N.

Proof To prove this lemma we make use of Lemma 2.5. By standard arguments we have

P∗
1 (x, D)=P1(X , D)+d1

n∑

j=1

X∗
j X j+

N∑

j,k=1

[
c j1k (X∗

j Xk+X∗
k X j ) − c j1k dk X j + (X∗

k c
k1
j )X j

]

−
N∑

j=1

(X1d j )X j +
N∑

j=1

(
(X jd1)d j + (X∗

j X1d1)
) + d0,

where c j1k ∈ C∞(Rn+1, iR) are such that

[X j , X1] =
N∑

k=1

c j1k Xk .

Next, as in the proof of Lemma 2.5, we compute

Im(e−λ f P∗
1 u, e−λ f u) = Im(P∗

1
f e−λ f u, e−λ f u),

where

P∗
1

f = e−λ f P∗
1 e

λ f = P∗
1 (x, D + λDf )

= P f
1 + d1

n∑

j=1

X∗
j X j +

N∑

j,k=1

[
c j1k (X∗

j Xk + X∗
k X j ) + ( − c j1k dk + (X∗

k c
k1
j )

)
X j

]

−
N∑

j=1

(X1d j )X j

+
N∑

j=1

(
(X jd1)d j + (X∗

j X1d1)
) + d0 + d1

N∑

j=1

[
λd j (X j f ) + λ(X2

j f ) − λ2(X j f )
2
]

+
N∑

j,k=1

c j1k

{
λ(Xk f )(X

∗
j − X j )

+λ(X j f )(X
∗
k − Xk) + λ(X∗

j Xk f ) + λ(X∗
k X j f ) − 2λ2(X j f )(Xk f )

}

− λ

N∑

j=1

{
N∑

k=1

(
c j1k dk − (X∗

k c
k1
j )

)
(X j f ) + (X1d j )(X j f )

}
.
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Using the same notations as in the proof of Lemma 2.5, we have

Im(P∗
1

f
v, v)≥Im(P f

1 v, v)+
N∑

j,k=1

Im

((
c j1k (X∗

j Xk+X∗
k X j )−(c j1k dk−(X∗

k c
k1
j ))X j

)
v, v

)

−
N∑

j=1

Im
(
(X1d j )X jv, v

) − λ2CK ‖v‖2L2

≥
N∑

j=1

(Q jv, v) + λ3‖ |X1 f | 32 v‖2L2 +
N∑

j,k=1

Im
(
c j1k (X∗

j Xk + X∗
k X j )v, v

)

−
N∑

j=1

Im

( N∑

k=1

(
c j1k dk − (X∗

k c
k1
j )

)
X jv, v

)

−
N∑

j=1

Im
(
(X1d j )X jv, v

) − λ2CK ‖v‖2L2 , (2.7)

where Q j is as in (2.2).

Next, we define g j (x) := ∑N
k=1(c

j1
k dk − (X∗

k c
k1
j )), and have that, since g j and (X1d j )

are real valued functions, and since the c j1k take purely imaginary values, then

Im
(
g j X jv, v

) = − 1

2i

((
(X j g j ) + (d j g j )

)
v, v

)
≥ −CK ‖v‖2L2 , (2.8)

Im((X1d j )X jv, v) = − 1

2i

((
(X j X1d j ) + (X1d j )d j

)
v, v

)
≥ −CK ‖v‖2L2 , (2.9)

and

Im
(
c j1k (X∗

j Xk + X∗
k X j )v, v

)
= ( − ic j1k (X∗

j Xk + X∗
k X j )v, v

)

− i

2

(((
(X jc

j1
k ) + (X∗

j c
j1
k )

)
Xk +

(
(Xkc

j1
k ) + (X∗

k c
j1
k )

)
X j

)
v, v

)

− i

2

((
(X jc

j1
k )dk + (Xkc

j1
k )d j + (X∗

k X j c
j1
k + X∗

j Xkc
j1
k )

)
v, v

)
,

which gives

N∑

j,k=1

Im
(
c j1k (X∗

j Xk + X∗
k X j )v, v

) ≥
N∑

j,k=1

( − ic j1k (X∗
j Xk + X∗

k X j )v, v
)

− i

2

N∑

j=1

(c′′
j X jv, v) − CK ‖v‖2L2 (2.10)

where

c′′
j :=

N∑

k=1

(
(Xkc

j1
k ) + (X∗

k c
j1
k ) + (Xkc

k1
j ) + (X∗

k c
k1
j )

)
.

123



Carleman estimates for third order operators of KdV and… 2813

Inserting the last three inequalities, that is (2.10), (2.9) and (2.8), into (2.7), and using that
λ ≥ 1, by rearranging the indices we conclude

Im(P∗
1

f
v, v) ≥

N∑

j=1

(Q′
jv, v) + λ3‖ |X1 f | 32 v‖2L2 − λ2CK ‖v‖2L2 ,

with

Q′
j (x, D) = Q j (x, D) − i

N∑

k=1

c j1k (X∗
j Xk + X∗

k X j ) − ic′′
j X j

= (
λ(−i X1 f ) + id1/2

)
X∗

j X j −
N∑

k=1

ic j1k X∗
j Xk

− iλ(X j X1 f )X j + i/2
(
c′
j − c′′

j − (X1d j ) + 2(X jd1) + d1d j

)
X j , (2.11)

that isQ′
j differs fromQ j in the coefficients of the second term in (2.11), and in the appearance

of the function c′
j − c′′

j instead of c′
j in the last term in (2.11). This completes the proof. ��

Remark 2.7 The estimates proved so far do not necessitate of the nondegeneracy of X1. The
global nonvanishing requirement on X1 will come into play in the subsequent results.

In the next theorem we will consider both the case when the system of real smooth vector
fields {i Xi }Ni=1 satisfies (H1), and the case when the system has the additional property to be
locally elliptic, that is in an open set. Recall that the system is elliptic at a point x0 whenever
i X1(x0, D), . . . , i XN (x0, D) generate the whole tangent space at that point, namely, in our
case, Rn+1. When this happens, the operator given as the sum of the squares of the vector
fields, i.e.

∑N
j=1 X

∗
j X j , is elliptic in a sufficiently small neighborhood of x0. Of course,

the system is said to be elliptic in an open set U if it is elliptic at each point of U . The
global ellipticity property - the ellipticity at each point of Rn+1 - is stronger than the global
involutivity in (H1). We can have globally involutive systems which are not globally elliptic.
An easy example is given by the vector fields i X1 = ∂x1 and i X2 = x2∂x2 in R

2, which
commute and generate a globally involutive system, but form an elliptic system at any point
of R2\{x ∈ R

2; x2 = 0} and not on the whole R2.

Theorem 2.8 (Carleman estimate for P1 and P∗
1 ) Let f ∈ C∞(Rn+1), {i Xi }Ni=1 be a system

of real smooth vector fields satisfying (H1), and K a compact subset of Rn+1. Then,

(i) If f ∈ C∞(Rn) is such that there exists C0 > 0 for which

−i X1 f (x) ≥ C0 > 0, ∀x ∈ K ,

then there exist λ0 = λ0(K ) ≥ 1 and C = C(K ) > 0 such that, for every λ ≥ λ0,

‖e−λ f P∗
1 u‖2L2 , ‖e−λ f P1u‖2L2 ≥ Cλ‖e−λ f u‖2L2 , ∀u ∈ C∞

0 (K ).

(ii) If the system of vector fields {i Xi }ni=1 is elliptic in a neighborhood of K , and if there
exists C0 > 0 for which

−i X1 f (x) ≥ C0, ∀x ∈ K ,

then there exist λ0 = λ0(K ) ≥ 1 and C = C(K ) > 0 such that, for every λ ≥ λ0,

‖e−λ f P∗
1 u‖2L2 , ‖e−λ f P1u‖2L2 ≥ Cλ‖e−λ f u‖2H1 , ∀u ∈ C∞

0 (K ).
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Proof The proof relies on the use of Lemmas 2.5 and 2.6 when dealing with the statement
for P1 and for P∗

1 respectively. Below we shall give a detailed proof of the result for P1,
and we omit the one for P∗

1 . This is done because the proofs of the estimates for P∗
1 and

for P1 are exactly the same, up to the appearance of different constants depending on the
L∞(K )-norm of some smooth functions (because the difference between the estimates in
Lemmas 2.5 and 2.6 is just in the appearance of possibly different smooth coefficients in Q′

j
and Q j ). Since there is no substantial change in the two cases, we focus on P1.

By Lemma 2.5, for all λ ≥ 1, given a compact K of Rn on which −i X1 f ≥ C0 > 0, we
have

Im(e−λ f P1u, e−λ f u)

≥
N∑

j=1

(Q je
−λ f u, e−λ f u) + λ3‖ |X1 f | 32 e−λ f u‖2L2 − λ2CK ‖e−λ f u‖2L2 , ∀u ∈ C∞

0 (K ),

with

Q j = Q j (x, D) := (
λ(−i X1 f ) + id1/2

)
X∗

j X j +
N∑

k=1

ic j1k X∗
k X j

+
(

− iλ(X j X1 f ) + i/2(c′
j − (X1d j ) + 2(X jd1) + d1d j )

)
X j ,

where ic j1k , ic′
k , k = 1, . . . , N , are smooth and real valued functions. Therefore, once λ is big

enough, the proof of (i) and of (i i) depends on the estimate we can prove for the second order
term

∑n
j=1Re(Q je−λ f u, e−λ f u). Then, let us focus on this term and show how different

hypotheses lead to different lower bounds.
In the sequel we will use again the notation v := e−λ f u. First observe that, by Cauchy–

Schwarz inequality,

λ

N∑

j=1

Re
(
(−i X1 f )X

∗
j X jv, v

) ≥ λ

(
C0−δ0

2

) N∑

j=1

‖X jv‖2L2 − λN

2δ0
max

j=1,...,N
‖X j X1 f ‖L∞‖v‖2L2

≥ λ

(
C0 − δ0

2

) N∑

j=1

‖X jv‖2L2 − λc0‖v‖2L2 ,∀δ0 ∈ (0, 1],

with c0 = c0(δ0, {‖∂α f ‖L∞}|α|=0,1,2, {‖∇αA‖L∞}|α|=0,1,2), and

i

2

N∑

j=1

(d1X
∗
j X jv, v) −

N∑

j,k=1

ic j1k (X∗
k X jv, v)

= i

2

N∑

j=1

(
(d1X jv, X jv) − (X jv, (X jd1)v)

)
−

N∑

j,k=1

(ic j1k X jv, Xkv)

−
N∑

j

(
X jv,

N∑

k=1

(Xkic
j1
k )v

)

≥ −
(

‖d1‖L∞ + C1N + δ′
0

2

) N∑

j=1

‖X jv‖2L2 − CK

δ′
0

‖v‖2L2 ,
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with a new positive constantC1 := max j,k=1,...,N {|c j1k |}, and whereCK is a positive constant

depending on all the L∞-norms of the functions X jd1 and Xkc
j1
k . By similar considerations,

((
− iλ(X j X1 f ) + i/2

(
c′
j − (X1d j ) + 2(X jd1) + d1d j

))
X jv, v

)

≥ δ1
2

∑N
j=1 ‖X jv‖2

L2 − λ2 CK
δ1

‖v‖2
L2 , ∀δ1 ∈ (0, 1],

where CK is a different suitable positive constant depending on the L∞-norms of f , a jk , c′
j

and of their derivatives. Therefore,

N∑

j=1

(Q jv, v) ≥ λ

(
C0 − δ0

2
− δ′

0

2
− 1

λ
‖d1‖L∞ − 1

λ
C1N − δ1

2

)
‖X jv‖2L2 − λ2c1‖v‖2L2 ,

with c1 = c1(δ0, δ′
0, δ1, {‖∂α f ‖L∞}|α|=0,1,2, {‖∇αA‖L∞}|α|=0,1,2). Then, choosing λ >

4(C1N + ‖d1‖L∞)C−1
0 big enough, and δ0, δ

′
0, δ1 sufficiently small, so that

C0 − δ0 + δ′
0

2
− 1

λ
(C1N + ‖d1‖L∞) − δ1

2
≥ C0

2
,

we get

N∑

j=1

(Q jv, v) ≥ λ
C0

2

N∑

j=1

‖X jv‖2L2 − λ2CK ‖v‖2L2 ,

where CK is a new positive constant since we have fixed δ0, δ
′
0, δ1.

The estimate above yields

Im(e−λ f P1u, e−λ f u) ≥ λ
C0

2

N∑

j=1

‖X jv‖2L2 + λ3‖ |X1 f | 32 v‖2L2 − λ2CK ‖v‖2L2 ,

hence, if λ > max{4(C1N + ‖d1‖L∞)C−1
0 , 2CK /C3

0 } =: λ0 = λ0(K ), we have

Im(e−λ f P1u, e−λ f u) ≥ λ
C0

2

N∑

j=1

‖X jv‖2L2 + λ2
CK

2
‖v‖2L2 ,

where, recall, CK is a constant depending on some fixed constants N , δ0, δ
′
0, δ1 and on the

L∞-norms on K of f , a jk , c′
j , and of their derivatives.

Finally, by Cauchy-Schwarz inequality,

‖e−λ f P1u‖2L2 ≥ 2δ
(
λ
C0

2

N∑

j=1

‖X jv‖2L2 + (λ2
CK

2
− δ

2
)‖v‖2L2

)
,

which gives, taking δ small enough and not necessarily depending on K (since we can always
assume CK

2 · λ > 1 and take, for instance, δ = 1/2 < λ2 CK
4 ), we reach

‖e−λ f P1u‖2L2 ≥ λ
C0

2

N∑

j=1

‖X jv‖2L2 + λ2
CK

4
‖v‖2L2 , (2.12)

which proves part (i) of the theorem.
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To prove part (ii) of the statement, we apply the Gårding inequality on the first term on
the right hand side of (2.12), that is

N∑

j=1

‖X jv‖2L2 ≥ C‖v‖H1 , ∀v ∈ C∞
0 (K ).

This completes the proof. ��
Remark 2.9 (The case N = n = 1) Note that when N = n = 1 (H1) is trivially satisfied. For
the same reason, result (ii) does not apply to this case, since X1 alone cannot generate R2.

An immediate application of the Carleman estimates in Theorem 2.8 is the following local
solvability result.

Theorem 2.10 Let {i X j }Nj=1 be a system of vector fields satisfying (H1) such that X1(x, D) �=
0 for all x ∈ R

n+1. Let also P1 and P∗
1 be as in (1.1) and (1.2) respectively. Then the following

properties hold.

(i) P1 and P∗
1 are L2 − L2 locally solvable at any point of Rn+1.

(ii) If {i X j }Nj=1 is elliptic at x0 ∈ R
n+1, P1 and P∗

1 are H−1 − L2 locally solvable at x0.

Proof The proof is based on the use of Theorem 2.8 and of some standard functional analysis
argument. More specifically, the Hs − L2 local solvability of P1 at a point x ∈ R

n+1, is
equivalent to the validity of the following solvability estimate for the adjoint P∗

1 : there exists
C > 0 and a compact K containing x in its interior UK , such that

‖P∗
1 u‖L2 ≥ C‖u‖H−s , ∀u ∈ C∞

0 (UK ).

The solvability estimate, Hahn-Banach and Riesz representation theorems, alltogether give
the result (see, for instance, Lemma 1.2.30 in [33]). Since X1 is nondegenerate (see also
Remark 2.1), given C0 > 0 and x0 ∈ R

n+1, it is always possible to find a smooth function f
and a compact set K ⊂ R

n+1 containing x0 in its interior, such that i X1 f (x) ≥ C0 > 0 for
all x ∈ K . Moreover, if {i X j }Nj=1 is elliptic at x0, one can always choose K sufficiently small
so that the system of vector fields is elliptic in a neighborhood of K . Hence, by the Carleman
estimate for P∗

1 , for x0 ∈ R
n+1, and for the compact K chosen as above and containing x0

in its interior, there exists λ0(K ) > 1 and C > 0 such that, for all λ > λ0,

‖e−λ f P∗
1 ‖L2 ≥ C‖e−λ f u‖H−s , ∀u ∈ C∞

0 (K ), (2.13)

where s = 0 in case (i) and s = −1 in case (ii). By estimating from above and from below
e−λ f on K with positive constants, (2.13) easily implies the solvability estimate with s = 0
under the hypothesis in part (i), and with s = −1 under the hypothesis in part (ii). From the
solvability estimate, by the standard considerations mentioned at the beginning of the proof
(see [33]) we get the L2 − L2 and the H−1 − L2 local solvability of P1 at x0 according to
the hypotheses in (i) and (ii) respectively. Finally, since (2.13) with s = 0 does not depend
on the choice of x0, we conclude the L2 − L2 local solvability of P1 at any point of Rn+1.
This completes the proof (i) and of the theorem.

For the local solvability of P∗
1 , one repeats the same steps reversing the roles of P1 and

P∗
1 . ��

Remark 2.11 When the vector field i X1 is nondegenerate only on a compact K ⊂ R
n+1,

using the previous strategy we can reach the local solvability of P1 and of P∗
1 at any point of

the interior UK of K .
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Remark 2.12 Note that Theorem 2.10 says that we can have different types of local solvability
at different points. At any point we have the L2 − L2 local solvability, but only at elliptic
points - the points where the system is elliptic - we have a better local solvability, that is the
H−1 − L2.

3 Examples and applications: KdV and non KdV-type operators with
variable coefficients

In this section we would like to list a few examples of operators of P1-type. We pointed out
more than once that we are particularly interested in dispersive models, therefore we will
mainly focus on such cases here, even though the class is more general and we could exhibit
different type of operators.

Variable coefficient KdV operators. Let N = n = 1, Rn+1 = R
2 = Rt × Rx , and

X0(t, x, Dt , Dx ) = Dt , and X1(t, x, Dt , Dx ) = a(x)Dx ,

where a ∈ C∞(Rx ;R), a(x) �= 0 for all x ∈ R. Then

P1(t, x, Dt , Dx ) = Dt + (
a(x)Dx

)(
a(x)Dx

)∗(
a(x)Dx

)

= −i

(
∂t + (

a(x)∂x
)(
a(x)∂x

)∗(
a(x)∂x

))

which is a KdV operator with space-variable coefficients. Our solvability theorem applies
to this model, so we can assert that this operator, as well as i P1 of course, is L2 − L2

locally solvable at any point of R2. More generally, one can consider the coefficient a as a
function of both (t, x), hence a(t, x), or even just a time dependent function, provided that
it is everywhere nonvanishing. In this last case one can also describe some of the operators
treated in [1].

Variable coefficient ZK operators. Let N = n = 2, Rn+1 = R
3 = Rt × R

2
x , and

X0(t, x, Dt , Dx ) = Dt , and X j (t, x, Dt , Dx ) = X j (x, Dx ), j = 1, 2,

with X1, X2 such that X1
∗X1(x, Dx ) + X2

∗X2(x, D) is an elliptic operator on R2
x . In other

words, we are assuming the vector fields i X j (x, D) to be nondegenerate and linearly inde-
pendent at any point x ∈ R

2
x , so they form a global involutive distribution both in R2 and in

R
3. Under these assumptions the operator

P1 = Dt + X1(x, Dx )
(
X∗
1X1(x, Dx ) + X∗

2X2(x, D)
)

is a prototype of a variable coefficient ZK-operator to which our solvability theorem applies.
Hence, we have the L2 − L2 local solvability property for P1 in R

n+1 by Theorem 2.10.
Notice that the ”ellipticity in space” of X1

∗X1(x, Dx )+ X2
∗X2(x, D) implies the global

involutivity of the system {i X1, i X2}, thus any prototype of this sort fits in our class. On
the other hand, we assumed the ellipticity in space of X∗

1X1(x, Dx ) + X2
∗X2(x, D) just in

order to represent a variable coefficient analogue of the ZK operator, and not because P1-type
operators need to satisfy this requirement. In fact, we can take more general cases, provided
that the global involutivity is satisfied. In general, to describe a variable coefficient P1-type
ZK operator, one can take X1, X2 of the form
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X1(x, Dx ) = a11(x)D1 + a12(x)D2, a11(x) �= 0 or a12(x) �= 0 ∀x ∈ R
2,

X2(x, Dx ) = a21(x)D1 + a22(x)D2

[X1, X2](x, Dx ) = c1(x)X1(x, Dx ) + c2(x)X2(x, Dx ), c1, c2 ∈ C∞(R2; iR),

∀x ∈ R
2
x ,

with ai j ∈ C∞(R2;R) for all i, j = 1, 2, where the global involutivity is given by the third
condition. For instance, the example of globally involutive but not globally elliptic system
given after Remark 2.7, that is X1 = D1, X2 = x2D2, where [X1, X2] = 0, fits in these
cases. Here, by Theorem 2.10, we have L2 − L2 local solvability onR2, and H−1 − L2 local
solvability at the elliptic points, i.e. at any point of R2 \ {x ∈ R

2; x2 = 0}.
Non KdV-type operators. To give a more complete picture of the objects of this paper, we
provide immediate examples of non KdV-type operators of P1-type.

Let N ≤ n and R
n+1 = Rt × Rx . Let also {i X j }Nj=1 be a global involutive system of

real smooth vector fields in R
n
x (depending only on the space variables and on the space

derivatives), X1 nondegenerate on Rn+1, and X0 ≡ 0. Then

P1(t, x, Dt , Dx ) = P1(x, Dx ) = X1

N∑

j=1

X∗
j X j ,

is of P1-type both on R
n and on R

n+1 but not of KdV-type on R
n+1, since there is no time-

evolution here. Note that we could also take N ≤ n+1 and define an operator whose leading
part has variable coefficients depending both on space and time.

More degenerate variable coefficient KdV-type operators. Still in the case n = 2, one
can consider models where N = 1, i X1(x, Dt , Dx ) = X1(x, Dx ) is a nonvanishing real
vector field with smooth coefficients, and X0 = Dt . In such a case we have no ellipticity
in space for X∗

1X1, since X∗
1X1 cannot be elliptic under our assumption that i X1 has real

coefficients. Nevertheless, all the hypotheses, namely (H1) and the nondegeneracy of X1,
are satisfied, hence our results apply - the Carleman and the solvability theorem - and the
operator is locally solvable at any point of R3.

This example can be generalized in any dimension n ≥ 2. By taking {i X j (x, Dx )}Nj=1,
N ≤ n, being a globally involutive system of real smooth vector fields (indexed in such a
way that X1 is nondegenerate), and taking i X0 = ∂t , the corresponding operator P1 is built
from an operator L := ∑N

j=1 X
∗
j X j which is not necessarily elliptic in space.

In the rest of this section we will give concrete examples of KdV and non KdV P1-type
operators constructed via some Lie algebras, specifically stratified Lie algebras. These cases
are taken into account due to their global involutive structure. One can, of course, design
many other different examples.

KdV-type operators built via the Heisenberg Lie algebra. Let us start with the example
mentioned in the introduction and related to the Heisenberg group. We restrict ourselves to
N = n = 3 - hence P1 is defined on R4

t,x - which can be immediately generalized to the case
N = n = 2k + 1, for any positive integer k.

We take, as before, X0 = Dt and i X j , j = 1, 2, 3, as the vector fields giving the canonical
basis of the Lie algebra of H1. Recall that the Lie algebra h1 is stratified of step 2, and
that X1, X2 are the so-called ”generators” of the stratified Lie algebra. These vector fields,
together with their commutator, generate the whole Lie algebra h1 = Span{X1, X2, X3}. In
fact, [X1, X2] = X3 and [X1, X3] = [X2, X3] = 0 for all x ∈ R

3. This guarantees that the
vector fields X j , j = 1, 2, 3, form a global involutive structure. For completeness, we recall
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the expression of the vector fields below

i X1(t, x, Dt , Dx ) = i X1(x, Dx ) = ∂x1 − x2
2

∂x3 ,

i X2(t, x, Dt , Dx ) = i X2(x, Dx ) = ∂x2 + x1
2

∂x3 ,

i X3(t, x, Dt , Dx ) = i X3(x, Dx ) = ∂x3 .

Note that X j = X∗
j , thus P1 = P∗

1 in this case. Moreover, X j (x, D) is nondegenerate for all
j = 0, . . . , 3, implying that the operators

P1, j0(t, x, Dt , Dx ) = X j0(x, Dx )

3∑

j=1

X2
j (x, Dx ) + Dt , j0 = 1, 2, 3, (t, x) ∈ R

4,

are locally solvable at any point ofR4
t,x byTheorem 2.10. To define the same kind of operators

in higher dimension it suffices to use the Heisenberg Lie algebra hk of dimension 2k + 1,
and take N = 2k + 1 = n.

KdV-type operators built via the Heisenberg Lie algebra in higher dimensional spaces.
By taking the same vector fields as above generating h1, one can cook up more singular
operators in higher dimensional spaces. Take N = 3 < n, Rn+1 = Rt × R

3
x × R

n−3
y , and

P1, j0 as before, but now defined on Rn+1, that is

P1, j0(t, x, y, Dt , Dx , Dy) = X j0(x, Dx )

3∑

j=1

X2
j (x, Dx ) + Dt , j0 = 1, 2, 3,

(t, x, y) ∈ Rt × R
3
x × R

n−3
y .

Then we have that the system of vector fields {i X j (x, Dx )} j=1,2,3 is still globally involutive
in R

n+1
t,x,y , and the hypotheses of Theorem 2.10 are satisfied. Hence, we get local solvability

for these operators at any point of Rn+1
t,x,y .

Similar operators can be written by using the Heisenberg Lie algebra hk , for every k ≥ 1,
and N = 2k + 1 < n.

KdV-type operators built via stratified Lie algebras: general construction. Following
the previous constructions, we can formalize the procedure to build operators as above with
any stratified Lie algebra of step r on R

m . Let {i X j }mj=1 be the canonical basis of g (via the
expnential map), and

g = ⊕r
j=1g j , [g j , gk] ⊂ gk+ j ,

where g1 generates g as an algebra, that is, linear combinations of the elements of g1 and
of their iterated commutators up to length r , generate the whole g. In particular, assuming
n0 = 0, one has that

n j := dim(g j ) = dim(Span{i Xn j−1+1(x, Dx ), . . . , i Xn j (x, Dx )}), ∀ j ∈ {1, . . . , r},
and

r∑

j=1

n j = m.

Let now N = m ≤ n, Rn+1 = Rt × R
m
x × R

n−m
y , j0 = 1, . . . ,m, and
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P1, j0(t, x, y, Dt , Dx , Dy) = X j0(x, Dx )

m∑

j=1

X∗
j (x, Dx )X j (x, Dx ) + Dt ,

(t, x, y) ∈ Rt × R
3
x × R

n−3
y .

Then, once again, we have that {i X j }mj=1 is a global involutive system of vector fields on

R
n+1. Moreover, the vector fields, being elements of the canonical basis of the Lie algebra,

are all nondegenerate in R
n+1. Hence, for every j0 = 1, . . . ,m, the operator P1, j0 satisfies

the hypotheses of Theorem 2.10, leading to the local solvability property for all these models.

Non KdV-type operators built via Lie algebras. One can get immediate examples of non
KdV-type operators just by taking the previous examples with X0 ≡ 0.

Remark 3.1 In our examples above we have focused primarily on space-variable coefficient
KdV-type operators. We want to stress that several KdV-type operators, with coefficients
depending both on (t, x) or just on t , are still included in our class P1.

4 Final remarks and applications to dispersive equations

In this conclusive section we would like to discuss possible applications in the context of
dispersive equations of KdV-type, as well as some open connected questions.

Uniqueness problems. Uniqueness problems, or Hardy uncertainty principles (see [7]), for
dispersive equations, are strictly related to Carleman estimates.

In general, when dealing with dispersive equations, one aims at global in space and local
or global in time results. Global in time results are more challenging an not always attainable,
so it is a natural common rule to investigate local in time properties first, and, afterwards, to
extend, if possible, the result at all times.

The same considerations apply to Carleman estimates. This means that one needs global
in space and local in time estimates if one wants to apply them in the context of dispersive
equations. This is usually done via a combination of strategies. One of this strategies consists
in considering the operator with bounded space-variable coefficients with a certain decay
property. This condition is actually not just a technical condition, but is also related to the
validity of smoothingproperties for dispersive operators (see, for instance, [6], [29], [22], [37],
[34]). Once the Carleman estimate is made global (in space) through a series of conditions
in spirit as the one above, then one can attain uniqueness results via a precise cutting off
procedure according to the assumptions considered on the solutions.

That said, it should be possible to reach global (in all but at most one direction) Carleman
estimates for P1 and P∗

1 from our local estimates in Theorem 2.8. These global estimates
can be applied to study uniqueness problems for dispersive operators belonging to our class.
For what we just explained above, by introducing suitable conditions on the coefficients
of the operator and on the weight function f , one should be able to produce the desired
global inequality. However, even if the road map to get a global inequality is in the proof of
Theorem 2.8, its derivation and the application to uniqueness problems is nontrivial.

Let us also stress that, if one is interested in the study of local unique continuation proper-
ties, then our estimates are already strong enough to pursue this goal, and one should focus
more on the study of the geometric conditions leading to the result, that is, in other words,
on the choice of the suitable weight function f .

123



Carleman estimates for third order operators of KdV and… 2821

Other KdV-type models and relative questions. In our discussion, we have motivated our
analysis with the connection of the class P1 with KdV-type operators. However, it must be
said that we have a rigorous derivation of the ZK equation as a sort of generalization of
the KdV one in (space) dimension 2, but for the higher dimensional case the argument is
much harder and not established to the author knowledge. On the other hand, it is known that
third order equations play a central role in water waves, nonlinear optic and related fields.
A detailed interesting description of third order dispersive equations and of their physical
role is contained in [30], where a class of third order operators with constant coefficients is
studied. Let us remark that a subclass of the class in [30] of constant coefficient operators
is certainly contained in our general variable coefficient class P1. We also recall that P1 is
defined in any space dimension, while the class in [30] concerns the case R3 = Rt × R

2
x .

That said, it would be interesting to investigate Carleman estimates, local solvability, and
connected problems, for operators in the very general form

P2(x, D) :=
M∑

j=1

N∑

k=1

X j Xk
∗Xk + X0, 1 ≤ M ≤ N , x ∈ R

n+1,

or

P3(x, D) :=
M∑

j=1

N∑

k=1

X j Xk
∗Xk +

L∑

i,l=1

cil Xi
∗Xl + X0, 1 ≤ M ≤ N , L ≤ N , cil ∈ R,

x ∈ R
n+1,

under a sort of ellipticity requirement in the spirit of condition (1.5) in [30], condition also
appearing in the examples provided above to describe KdV-type operators. Note that these
classes, which generalize and contain P1, clearly still contain KdV-type operators, both with
constant and with variable coefficients, as well as the whole class studied in [30], at least in
the case described by P3. Due to these considerations, it is natural to wonder whether P2 or
P3 is the right generalization of (linear) KdV-type operators, or if P1 already provides the
best description, being clear that P2 and P3 are classes wider than P1. In any case, the validity
of Carleman estimates in this generality is still an open problem.
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