In this work we establish a subelliptic sharp Gårding inequality on compact Lie groups for pseudo-differential operators with symbols belonging to global subelliptic Hörmander classes. In order for the inequality to hold we require the global matrix-valued symbol to satisfy the suitable classical nonnegativity condition in our setting. Our result extends to $\mathscr{S}^m_{\rho,\delta}(G)$-classes, $0\leq \delta<\rho$, the one in [29] about the validity of the sharp Gårding inequality for the class $\mathscr{S}^m_{1,0}(G)$. We remark that the result we prove here is already new and sharp in the case of the torus.

Cardona, D., Federico, S., Ruzhansky, M. (2024). Subelliptic sharp Gårding inequality on compact Lie groups. PURE AND APPLIED ANALYSIS, 6(2), 455-485 [10.2140/paa.2024.6.455].

Subelliptic sharp Gårding inequality on compact Lie groups

Federico, Serena;
2024

Abstract

In this work we establish a subelliptic sharp Gårding inequality on compact Lie groups for pseudo-differential operators with symbols belonging to global subelliptic Hörmander classes. In order for the inequality to hold we require the global matrix-valued symbol to satisfy the suitable classical nonnegativity condition in our setting. Our result extends to $\mathscr{S}^m_{\rho,\delta}(G)$-classes, $0\leq \delta<\rho$, the one in [29] about the validity of the sharp Gårding inequality for the class $\mathscr{S}^m_{1,0}(G)$. We remark that the result we prove here is already new and sharp in the case of the torus.
2024
Cardona, D., Federico, S., Ruzhansky, M. (2024). Subelliptic sharp Gårding inequality on compact Lie groups. PURE AND APPLIED ANALYSIS, 6(2), 455-485 [10.2140/paa.2024.6.455].
Cardona, Duván; Federico, Serena; Ruzhansky, Michael
File in questo prodotto:
File Dimensione Formato  
Subelliptic_sharp_Gårding_inequality.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 511.15 kB
Formato Adobe PDF
511.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/970214
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact