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SUBELLIPTIC SHARP GÅRDING INEQUALITY ON
COMPACT LIE GROUPS

DUVÁN CARDONA, SERENA FEDERICO, AND MICHAEL RUZHANSKY

Abstract. In this work we establish a subelliptic sharp G̊arding inequality on
compact Lie groups for pseudo-differential operators with symbols belonging
to global subelliptic Hörmander classes. In order for the inequality to hold
we require the global matrix-valued symbol to satisfy the suitable classical
nonnegativity condition in our setting. Our result extends to Sm

ρ,δpGq-classes,

0 ď δ ă ρ, the one in [29] about the validity of the sharp G̊arding inequality
for the class Sm

1,0pGq. We remark that the result we prove here is already new
and sharp in the case of the torus.
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1. Introduction

1.1. Outline and historical remarks. In this work we establish the sharp
G̊arding inequality for pseudo-differential operators with symbols in the global
subelliptic Hörmander classes on compact Lie groups [4]. As a byproduct we
obtain the extension to the global Hörmander classes S m

ρ,δpGq, for all 0 ď δ ă
ρ ď 1, of the sharp G̊arding inequality proved in [29] for the Kohn-Nirenberg
classes S m

1,0pGq.
Before describing in detail the main result of this paper concerning operators

on compact Lie groups, let us briefly go back to the Euclidean case and describe
the celebrated microlocal result which inspired the analysis of the problem we
consider here.

G̊arding’s type inequalities have played a crucial role in the study of several
problems related with partial and pseudo-differential operators. These inequal-
ities are L2-lower bounds which can be applied, in different contexts, to obtain
results about the existence and uniqueness of solutions of differential and pseudo-
differential equations. The starting point in the investigation of these fundamen-
tal lower bounds was the celebrated work of G̊arding [12] in which he proved the
so called G̊arding inequality for elliptic operators:

Let P be an elliptic self-adjoint pseudo-differential operator of order m on an
open set Ω Ă Rn, then, for any µ ă m{2 and any compact K Ă Ω, there exist
two positive constants cµ,K and Cµ,K such that1

pPu, uq ě cµ,K}u}
2

H
m
2
´ Cµ,K}u}

2
Hµ , @u P C80 pKq. (1.1)

Inequality (1.1) was used by G̊arding to derive the existence of solutions of
the Dirichlet problem for elliptic operators as well as to study the distribution
of the eigenvalues. However, in order to deal with non-elliptic problems, some
refinements of the latter are needed. In particular, Hörmander proved in [14] the
following Sharp G̊arding inequality for operators with symbols having nonegative
real part:

Let P be a pseudo-differential operator of order m defined on an open set Ω Ă
Rn, and let p P Sm1,0pΩq be its symbol. If Repppx, ξqq ě 0 for all px, ξq P T ˚Ωz0,
then for any compact subset K Ă Ω there exists a constant CK ą 0 such that

RepPu, uq ě ´CK}u}
2
m´1

2
, @u P C80 pKq. (1.2)

After (1.2) some generalizations were proved, that is, specifically, the suitable
version for operators with symbols in Smρ,δpRnq, and the corresponding version for
systems (see, for instance, [34]).

Note that the previous inequalities are both based on a sign property of the
symbol, and that no geometric property of the characteristic set is taken into
account.

1We denote by Hs the standard Sobolev space of order s defined as the completion of C80 pRnq
with respect to the norm }u}Hs :“ }p1´∆q

s
2u}L2 , where ∆ is the standard Laplacian on Rn.
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Further improvements of (1.2) have been established by means of a deeper
analysis of the geometry of the characteristic set and of the invariants associated
with the operators, like, for instance, the principal and the subprincipal symbol.
In this direction we have the Melin inequality proved in [20] and the Hörmander
inequality proved in [16], the latter improved by Parenti and Parmeggiani in [23]
(see also [24]). A somehow different approach was adopted by Fefferman and
Phong in [8] where they derived the sharpest result only by requiring the nonneg-
ativity of the total symbol of the operator. For a survey about the fundamental
lower bounds mentioned above we refer to [27].

Let us stress that these refinements not only allow the study of nonelliptic
operators, but can also be used to obtain microlocal energy estimates leading to
results on propagation of singularities (see Hörmander [18]). Additionally, the
(sharp) G̊arding inequality and its generalizations become a fundamental tool
to analyze the existence of solutions of a wide class of boundary value problems
(like the δ-Neumann problem), and to investigate the global solvability of evolu-
tion problems and the local well-posedness of the Cauchy problem for evolution
equations.

Let us also mention that some results, both positive and negative, about the
validity of some of the fundamental lower bounds mentioned above are known for
systems as well, and we refer the interested reader to [25, 26] for an overview of
this topic. In the setting of compact Lie groups the validity of such estimates is
more delicate to analyze. Indeed, only some of the lower bounds presented above
have been proved so far. For instance, in the case of a compact Lie group G, and
more generally on manifolds, (1.1) remains valid for operators with symbols in
the usual Smρ,δpMq Hörmander classes, where 0 ď δ ă ρ ď 1, and ρ ě 1´ δ.

We recall that on closed manifolds pρ, δq-pseudo-differential operators are well
defined provided that 0 ď δ ă ρ ď 1, ρ ě 1´δ, and that, under these assumptions,
the global classes S m

ρ,δpGq defined in [28] coincide with the usual Hörmander
classes on compact manifolds. However bear in mind that the S m

ρ,δpGq-classes are
defined for all 0 ď δ ă ρ ď 1 without the restriction ρ ě 1´ δ.

On compact Lie groups, (1.1) for global symbols in the classes S m
ρ,δpGq, for

0 ď δ ă ρ ď 1 (the whole range), was proved by the third author and J. Wirth
in [31] and extended for subelliptic classes of pseudo-differential operators by the
first and third author in [4, Page 96]. We refer the reader to [5, Page 27] for
G̊arding type inequalities on smooth manifolds, with or without boundary, using
global symbol criteria.

As for the sharp Gärding inequality in the general manifold setting, since a
condition on the whole symbol (and not only on the principal symbol) is needed,
this makes the result far reaching in this generality (symbols are not invariantly
defined on manifolds, while the principal symbol is). However, by using the
description of Hörmander classes Ψm

ρ,δpG, locq, 0 ď δ ă ρ ď 1, ρ ě 1´ δ, in terms

of global symbols defined on the phase space Gˆ pG. Here, pG is the unitary dual 2

of G, (see (2.14) for details about these classes of operators), the third author and

2The unitary dual of G consists of all equivalence classes rξs of irreducible, unitary continuous
representations of G, ξ P EndpG,Hξq on a finite dimensional vector space Hξ – Cdξ .
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Turunen proved in [29] the following sharp Gärding inequality on any compact
Lie group:

Let A P Ψm
1,0pG, locq be such that the almost positivity condition apx, rξsq ě 0

on the global (matrix-valued) symbol of A holds true, then

RepAu, uqL2pGq ě ´C}u}
H
m´1

2 pGq
, @u P C8pGq. (1.3)

We remark again that, in contrast with (1.1), this result requires a condition
on the global symbol of A. This is a nontrivial difference since results involving
conditions on the principal symbol only can be easily extended to manifolds,
while results requiring conditions on the total symbol are, in general, not (yet)
available in the manifold setting.

In the present paper we will focus on the validity of what we shall call subel-
liptic sharp G̊arding inequality, that is, on the suitable formulation of the sharp
G̊arding inequality on compact Lie groups for pseudo-differential operators with
symbols belonging to global subelliptic classes. The aforementioned subelliptic
classes, and the corresponding pseudo-differential calculus, are developed in [4]
by using the sub-Riemannian structure of an arbitrary compact Lie group G and
the matrix-valued quantization developed in [28].

Since any sub-Riemannian structure on G is encoded in terms of a positive sub-
Laplacian L over a compact Lie group G, the global subelliptic Hörmander classes

of symbols in [4] were denoted by Sm,Lρ,δ pGˆ
pGq, where m P R and 0 ď δ ă ρ ď 1.

1.2. The subelliptic sharp G̊arding inequality. The statement of our main
result, that is of the subelliptic sharp G̊arding inequality on a compact Lie group
G, is given in Theorem 1.1 below. Here and in the rest of the paper we shall
denote by Hs,LpGq, for s P R, the subelliptic Sobolev space of order s associated
with a fixed positive sub-Laplacian L, that is, the space defined as the completion
of C8pGq with respect to the norm }u}Hs,LpGq :“ }p1` Lq s2u}L2pGq.

Theorem 1.1 (Subelliptic sharp G̊arding inequality). Let G be a compact Lie
group and let L “ LX3 be the (positive) sub-Laplacian associated with a system
X “ tXiu

k
i“1 of left-invariant vector fields satisfying Hörmander’s condition of

step κ 4. For 0 ă ρ ď 1 and 0 ď δ ă p2κ´ 1q´1ρ, and for m P R, let

A ” apx,Dq : C8pGq Ñ D 1
pGq

be a continuous linear operator with global symbol a P Sm,Lρ,δ pG ˆ
pGq. Then, if

apx, rξsq ě 0 for all px, rξsq P Gˆ pG, there exists a positive constant C such that

RepAu, uq ě ´C}u}2

H
m´ 1

κ pρ´p2κ´1qδq
2 ,L

pGq

, (1.4)

for all u P C8pGq, where p¨, ¨q stands for the L2-scalar product.

3LX :“ ´X2
1 ´X

2
2 ´ ¨ ¨ ¨ ´X

2
k .

4which means that the vector fields X1, ¨ ¨ ¨ , Xk, together with their commutators of length
at most κ span the Lie algebra g of G (under the identification g – TeG, with e P G being the
neutral element). If LX is a positive Laplacian, we trivially have κ “ 1.
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As a consequence of the previous result we obtain in Corollary 1.2 below the
elliptic sharp G̊arding inequality for operators with symbols in the Hörmander
classes S m

ρ,δpGq (corresponding to the case when κ “ 1).
Note that Corollary 1.2 extends the main result in [29] in that the inequality

is proved for operators with symbols in the particular class S m
1,0pGq.

Corollary 1.2 (Elliptic sharp G̊arding Inequality). For 0 ď δ ă ρ ď 1, let
A ” apx,Dq : C8pGq Ñ D 1pGq be a continuous linear operator with symbol

a P S m
ρ,δpGq, m P R. Let us assume that apx, rξsq ě 0 for every px, rξsq P G ˆ pG.

Then, there exists C ą 0, such that

RepAu, uq ě ´C}u}2
H
m´pρ´δq

2 pGq
(1.5)

for all u P C8pGq.

Let us briefly discuss some immediate consequences of our main Theorem 1.1.

Remark 1.3. Notice that when LX “ ∆ is the Laplacian on the group (that is
X “ tXiu

n
i“1 is a basis of the Lie algebra g, or, equivalently, κ “ 1), then Theorem

1.1 provides the sharp G̊arding inequality for operators with nonnegative symbols
in the classes S m

ρ,δpGq with 0 ď δ ă ρ ď 1 (see Corollary 1.2). This, in particular,
shows that our result extends the one in [29] where the elliptic Sharp G̊arding
inequality (namely for the standard global non subelliptic symbols defined in
[28]) was proved only for pρ, δq “ p1, 0q. More remarkably, the result applies to
all S m

ρ,δpGq classes of global symbols with 0 ď δ ă ρ ď 1, and not only to those
where ρ ě 1´ δ and corresponding to the standard Hörmander classes.

Remark 1.4. Observe that the elliptic Sharp G̊arding inequality for S m
ρ,δpGq-

classes with pρ, δq in the whole admissible range (see Corollary 1.2), is already a
new result in the case of the torus G “ Tn. As remarked above, the standard
local theory allows to consider a restricted range for ρ and δ, therefore our result
is much better that the one possibly obtainable trough the local theory, since here
the parameters ρ and δ can be taken in the full range 0 ď δ ă ρ ď 1, allowing
also the case where ρ ă 1´ δ.

As regards the purely subelliptic setting, the appearence of the parameter
κ (which is related to the subelliptic order of the fixed sub-Laplacian) in the
subelliptic Sobolev norms in (1.4), is dictated by the combination of the noncom-
mutativity of the group and the noncommutativity property of the symbols of
sub-Laplacians. Indeed, while the Laplacian is a central operator having matrix-
valued global symbol commuting with any other symbol, no sub-Laplacian has
the same commutativity properties. Therefore, in order not to restrict our analy-
sis to very particular subclasses of symbols, we combined elliptic with subelliptic
strategies.

Note that, as observed by the third author and Fischer in [10], the same problem
arises in the nilpotent Lie group setting. In fact, due the intrinsic noncommu-
tativity and subellipticity of the setting, in [10] the sharp G̊arding inequality in
the nilpotent setting is announced for very particular operators, that is, roughly
speaking, for those commuting with the fixed sub-Laplacian.
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We want to stress that no such commutativity condition is assumed in Theorem
1.1. However there is a price to pay to work in this general framework, price that
is given by a restriction on the classes to which the result applies, namely those
such that 0 ď δ ă p2κ ´ 1q´1ρ. Note that the case pρ, δq “ p1, 0q is covered by
our result.

Let us mention that even imposing a commutativity condition in the same
spirit as in [10], the use of the global pseudo-differential subelliptic calculus does
not lead to the expected result (that is (1.4) without the appearence of κ in the
Sobolev norm), and that the expected result for very special classes can most
probably be reached via the global functional calculus.

More remarks about the strength of our result in the purely subelliptic setting
are given in Section 4. There we also show that our subelliptic result does not
follow from the elliptic one.

We now conclude this introduction by giving the plan of the paper.

‚ In Section 2 we recall some basic facts about pseudo-differential operators
on compact Lie groups, we recall the subelliptic global symbol classes in
[4] that are the object of our analysis. At the end of the section an analysis
of amplitude subelliptic operators is consistently developed.

‚ In Section 3 we focus on the proof of the main theorem about the subel-
liptic sharp G̊arding inequality.

‚ Finally, Section 4 is devoted to some remarks about our result in the
purely subelliptic setting.

2. Sub-Laplacians and pseudo-differential operators on compact
Lie groups

2.1. Pseudo-differential operators via localisations. Pseudo-differential op-
erators on compact manifolds, and consequently on compact Lie groups, can be
defined by using local coordinate charts (see Hörmander [17] and also Taylor [33]
for a good introductory background on the subject).

Let us briefly introduce these classes starting with the definition in the Eu-
clidean setting. Let U be an open subset of Rn. We say that the “symbol”
a P C8pU ˆ Rn,Cq belongs to the Hörmander class of order m and of pρ, δq-
type, Smρ,δpU ˆ Rnq, 0 ď ρ, δ ď 1, if for every compact subset K Ă U and for all
α, β P Nn

0 , the symbol inequalities

|B
β
xB

α
ξ apx, ξq| ď Cα,β,Kp1` |ξ|q

m´ρ|α|`δ|β|,

hold true uniformly in x P K for all ξ P Rn. Then, a continuous linear operator
A : C80 pUq Ñ C8pUq is a pseudo-differential operator of order m of pρ, δq-type,
if there exists a symbol a P Smρ,δpU ˆ Rnq such that

Afpxq “

ż

Rn

e2πix¨ξapx, ξqpFRnfqpξqdξ,
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for all f P C80 pUq, where

pFRnfqpξq :“

ż

U

e´i2πx¨ξfpxqdx

is the Euclidean Fourier transform of f at ξ P Rn.
Once the definition of Hörmander classes on open subsets of Rn is established,

it can be extended to smooth manifolds as follows. Given a C8-manifold M, a
linear continuous operator A : C80 pMq Ñ C8pMq is a pseudo-differential operator
of order m of pρ, δq-type, with ρ ě 1 ´ δ, and 0 ď δ ă ρ ď 1, if for every local
coordinate patch ω : Mω Ă M Ñ Uω Ă Rn, and for every φ, ψ P C80 pUωq, the
operator

Tu :“ ψpω´1
q
˚Aω˚pφuq, u P C8pUωq,

5

is a standard pseudo-differential operator with symbol aT P S
m
ρ,δpUωˆRnq. In this

case we write A P Ψm
ρ,δpM, locq.

2.2. The positive sub-Laplacian and pseudo-differential operators via
global symbols. Let G be a compact Lie group with Lie algebra g » TeG,
where e is the neutral element of G, and let

X “ tX1, ¨ ¨ ¨ , Xku Ă g

be a system of C8-vector fields. For all I “ pi1, ¨ ¨ ¨ , iωq P t1, 2, ¨ ¨ ¨ , ku
ω of length

ω ě 1, we denote by

XI :“ rXi1 , rXi2 , ¨ ¨ ¨ rXiω´1 , Xiω s ¨ ¨ ¨ ss

a commutator of length ω, where XI :“ Xi when ω “ 1 and I “ piq. The system
X is said to satisfy Hörmander’s condition of step (or order) κ if g “ spantXI :
|I| ď κu, that is, in other words, the vector fields Xj, j “ 1, . . . , k, together with
their commutators up to length κ, generate the whole Lie algebra g.

Note that we are assuming that there is no subsystem Y “ tY1, ¨ ¨ ¨ , Y`u Ă X,
` ă k, of smooth vector fields such that g “ spantYI : |I| ď κu. In this case we
call X a system of Hörmander’s vector fields.

Given a system X “ tX1, ¨ ¨ ¨ , Xku of Hörmander’s vector fields, then the
operator defined as

L ” LX :“ ´pX2
1 ` ¨ ¨ ¨ `X

2
kq,

is a hypoelliptic operator by Hörmander theorem on sums of the squares of vector
fields (see Hörmander [15]). In particular the operator L is also subelliptic, and
it is called the subelliptic Laplacian associated with the system X, or simply
sub-Laplacian. The subellipticity of L follows from the validity of the estimate
[15]

}u}HspGq ď Cp}Lu}L2pGq ` }u}L2pGqq, (2.1)

with s “ 2{κ, while the Sobolev space Hs of order s is defined as the completion
of C80 pRnq with respect to the norm

}u}HspGq :“ }p1´∆q
s
2u}L2pGq,

where ∆ is the standard Laplace-Beltrami operator on G.

5As usually, ω˚ and pω´1q˚ are the pullbacks, induced by the maps ω and ω´1 respectively.
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It is clear from the definition that one can define different sub-Laplacians by
using different systems of Hörmander’s vector fields (and that satisfy Hörmander
condition of different step).

We will not treat other aspects of the analysis of sub-Laplacians here, we refer
the interested reader to Agrachev et al. [1], Bismut [3], Domokos et al. [7], and to
the fundamental book of Montgomery [21]. For some applications of Hörmander’s
vector fields we refer to the book of Bramanti [2].

Let us now introduce the Hausdorff dimension associated with the sub-Laplacian
L. For all x P G, let Hω

xG be the linear subspace of the tangent space TxG gen-
erated by the Xi’s and by all the Lie brackets

rXj1 , Xj2s, rXj1 , rXj2 , Xj3ss, ¨ ¨ ¨ , rXj1 , rXj2 , rXj3 , ¨ ¨ ¨ , Xjω sss,

with ω ď κ. Then clearly Hörmander condition can be stated as Hκ
xG “ TxG for

all x P G, where the following inclusions hold

H1
xG Ă H2

xG Ă H3
xG Ă ¨ ¨ ¨ Ă Hκ´1

x G Ă Hκ
xG “ TxG, x P G.

Note that the dimension of every Hω
xG is constant in x P G, so we set dimHωG :“

dimHω
xG, for all x P G, and have that the Hausdorff dimension can be defined

as (see e.g. [19, p. 6]),

Q :“ dimpH1Gq `
κ´1
ÿ

i“1

pi` 1qpdimH i`1G´ dimH iGq. (2.2)

As already mentioned in the introduction, we will make use of the quantization
process developed by the third author and V. Turunen in [28]. We briefly recall
below how this global quantization is defined.

Let A be a continuous linear operator from C8pGq into D 1pGq, and let pG be
the algebraic unitary dual of G. Then, there exists a function

a : Gˆ pGÑ Y`PNC`ˆ`, (2.3)

that we call the symbol of A, such that apx, ξq :“ apx, rξsq P Cdξˆdξ for every

equivalence class rξs P pG, where ξ : GÑ HompHξq, Hξ – Cdξ , and such that

Afpxq “
ÿ

rξsP pG

dξTrrξpxqapx, ξq pfpξqs, @f P C8pGq. (2.4)

Note that we have denoted by

pfpξq ” pFfqpξq :“

ż

G

fpxqξpxq˚dx P Cdξˆdξ , rξs P pG,

the Fourier transform of f at ξ – pξijq
dξ
i,j“1, where the matrix representation of ξ is

induced by an orthonormal basis of the representation space Hξ. Correspondingly,
one denotes the inverse Fourier transform of gpξq P Cdξˆdξ as

pF´1gqpxq :“
ÿ

rξsP pG

dξTrpξpxqgpξqq, x P G.
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The function a in (2.3) satisfying (2.4) is unique, and satisfies the identity

apx, ξq “ ξpxq˚pAξqpxq, Aξ :“ pAξijq
dξ
i,j“1, rξs P

pG.

Note that the previous identity is well defined. Indeed, it is well known that the
functions ξij, which are of C8-class, are the eigenfunctions of the positive Laplace
operator LG, that is LGξij “ λrξsξij for some non-negative real number λrξs ě 0
depending only of the equivalence class rξs and not on the representation ξ.

In general, we refer to the function a as the (global or full) symbol of the
operator A, and we will use the notation A “ Oppaq to indicate that a :“ σA is
the symbol associated with the operator A.

In order to classify symbols in the Hörmander classes, in [28] the authors defined

the notion of difference operators, which endows pG with a difference structure.

Following [32], a difference operator Qξ : D 1p pGq Ñ D 1p pGq of order k is defined as

Qξ
pfpξq “ xqfpξq, rξs P pG, (2.5)

for some function q vanishing of order k at the neutral element e. We will denote

by diffkp pGq the class of all difference operators of order k. For a fixed smooth
function q, the associated difference operator will be denoted by ∆q ” Qξ. A
system of difference operators (see e.g. [32])

∆α
ξ :“ ∆α1

qp1q
¨ ¨ ¨∆αi

qpiq
, α “ pαjq1ďjďi, (2.6)

with i ě n, is called admissible if

rankt∇qpjqpeq : 1 ď j ď iu “ dimpGq, and ∆qpjq P diff1
p pGq. (2.7)

An admissible collection is said to be strongly admissible if, additionally,

i
č

j“1

tx P G : qpjqpxq “ 0u “ teu. (2.8)

Remark 2.1. Matrix components of unitary representations induce difference
operators. Indeed, if ξ1, ξ2, ¨ ¨ ¨ , ξk, are fixed irreducible and unitary representa-
tion of G, which not necessarily belong to the same equivalence class, then each
coefficient of the matrix

ξ`pgq ´ Idξ` “ rξ`pgqij ´ δijs
dξ`
i,j“1, g P G, 1 ď ` ď k, (2.9)

that is each function q`ijpgq :“ ξ`pgqij ´ δij, g P G, defines a difference operator

Dξ`,ij :“ F pξ`pgqij ´ δijqF
´1. (2.10)

We can fix k ě dimpGq of these representations in such a way that the corre-
sponding family of difference operators is admissible, that is it satisfies (2.8). To
define higher order difference operators of this kind, let us fix a unitary irreducible
representation ξ`. Since the representation is fixed we omit the index ` of the rep-
resentations ξ` in the notation that will follow. Then, for any given multi-index

α P N
d2ξ`
0 , with |α| “

řdξ`
i,j“1 αij, we write

Dα :“ Dα11
11 ¨ ¨ ¨D

αdξ`
dξ`

dξ`dξ`
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for a difference operator of order |α|.

The difference operators endow the unitary dual pG with a difference structure.
For difference operators of the previous form, the following finite Leibniz-like
formula holds true (see [30] for details). Note that below we are still assuming
that the representation ξ` is fixed.

Proposition 2.2 (Leibniz rule for difference operators). Let G be a compact Lie

group and let Dα, α P Ndξ`
0 , be the family of difference operators defined in (2.10).

Then, the following Leibniz rule

pDαa1a2qpx0, ξqpx0, ξqq “
ÿ

|γ|,|ε|ď|α|ď|γ|`|ε|

Cε,γpDγa1qpx0, ξqpDεa2qpx0, ξq, x0 P G,

holds for all a1, a2 P C
8pGq ˆS 1p pGq, where the summation is taken over all ε, γ

such that |ε|, |δ| ď |α| ď |γ| ` |ε|.

Note that for different kind of difference operators, namely for those given by
compositions of difference operators of higher order associated with different rep-
resentations, a Leibniz-like formula still holds true by iteration. For more details
about difference operators and Leibniz-like formulas for admissible collections see
also Corollary 5.13 in [9].

We are now going to introduce the global Hörmander classes of symbols defined
in [28]. First let us recall that every left-invariant vector field Y P g can be
identified with the first order differential operator BY : C8pGq Ñ D 1pGq given by

BY fpxq “ pYxfqpxq “
d

dt
fpx expptY qq|t“0.

If tX1, ¨ ¨ ¨ , Xnu is a basis of the Lie algebra g, then we will use the standard
multi-index notation

B
α
X “ Xα

x “ B
α1
X1
¨ ¨ ¨ B

αn
Xn
,

for a canonical left-invariant differential operator of order |α|.
By using this property, together with the following notation for the so-called

elliptic weight

xξy :“ p1` λrξsq
1{2, rξs P pG,

we can finally give the definition of global symbol classes.

Definition 2.3. Let G be a compact Lie group and let 0 ď δ, ρ ď 1. Let

σ : Gˆ pGÑ
ď

rξsP pG

Cdξˆdξ ,

be a matrix-valued function such that for any rξs P pG, σp¨, rξsq is of C8-class,
and such that, for any given x P G there is a distribution kx P D 1pGq, smooth in

x, satisfying σpx, ξq “ pkxpξq, rξs P pG. We say that σ P S m
ρ,δpGq if, for all β and γ

multi-indices and for all px, rξsq P Gˆ pG, the following symbol inequalities

}B
β
X∆γ

ξσpx, ξq}op ď Cα,βxξy
m´ρ|γ|`δ|β|, (2.11)
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where } ¨ }op denotes the `2 Ñ `2 operator norm of the linear finite dimensional
mapping (matrix multiplication by) σpx, ξq, that is,

}σpx, ξq}op “ supt}σpx, ξqv}`2 : v P Cdξ , }v}`2 “ 1u. (2.12)

For σA P S m
ρ,δpGq we will write A P Ψm

ρ,δpGq ” OppS m
ρ,δpGqq.

Remark 2.4. Note that, since rξs P pG is unitary, then if pkxpξq “ σpx, ξq and kx
is integrable, then

}σpx, ξq}op ď }kx}L1pGq, @px, rξsq P Gˆ pG. (2.13)

The global Hörmander classes on compact Lie groups can be used to describe
the Hörmander classes defined by local coordinate systems. We present the cor-
responding statement as follows.

Theorem 2.5 (Equivalence of classes, [9, 28, 30]). Let A : C8pGq Ñ D 1pGq
be a continuous linear operator and let 0 ď δ ă ρ ď 1, with ρ ě 1 ´ δ. Then,
A P Ψm

ρ,δpG, locq, if and only if σA P S m
ρ,δpGq. Consequently,

OppS m
ρ,δpGqq “ Ψm

ρ,δpG, locq, 0 ď δ ă ρ ď 1, ρ ě 1´ δ. (2.14)

2.3. Odd and even functions on compact Lie groups. Since we will use
some properties of odd and even functions on G in this paper, for completeness
we recall these definitions below.

Definition 2.6. On a group G, a function f : GÑ C is

‚ even, if fpx´1q “ fpxq, for every x P G;
‚ central, if fpxyq “ fpyxq, for every x, y P G;
‚ odd, if fpx´1q “ ´fpxq, for every x P G.

Next, we summarize the action of vector fields on even and odd functions (see
Proposition 3.11 of [29]).

Proposition 2.7. Let G be a Lie group and f P C8pGq. Let Xi, 1 ď i ď s, be
an arbitrary system of vector fields in g. Then

BX1 ¨ ¨ ¨ BXsfpx
´1
q “ p´1qsBXsBXs´1 ¨ ¨ ¨ BX1fpxq, (2.15)

if f is an even central function, and

BX1 ¨ ¨ ¨ BXsfpx
´1
q “ p´1qs`1

BXs ¨ ¨ ¨ BX1fpxq

if f is an odd central function.

2.4. Subelliptic Hörmander classes on compact Lie groups. In order to
define the subelliptic Hörmander calculus, we will use a suitable basis of the Lie
algebra arising from Taylor expansions. We explain the choice of this basis by
means of the following lemma (see Lemma 7.4 in [9]).

Lemma 2.8. Let G be a compact Lie group of dimension n. Let D “ t∆qpjqu1ďjďn

be a strongly admissible collection of difference operators (for the definition see
(2.7) and (2.8)). Then there exists a basis XD “ tX1,D, ¨ ¨ ¨ , Xn,Du of g such that

Xj,Dqpkqp¨
´1
qpeq “ δjk.
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Moreover, by using the multi-index notation

B
pβq
X “ B

β1
X1,D

¨ ¨ ¨ B
βn
Xn,D

,

for any β P Nn
0 , where

BXi,Dfpxq “
d

dt
fpx expptXi,Dqq|t“0, f P C

8
pGq,

and denoting by

Rf
x,Npyq “ fpxyq ´

ÿ

|α|ăN

qα1

p1qpy
´1
q ¨ ¨ ¨ qαn

pnqpy
´1
qB
pαq
X fpxq

the Taylor remainder, we have that

|Rf
x,Npyq| ď C|y|N max

|α|ďN
}B
pαq
X f}L8pGq,

where the constant C ą 0 is dependent on N, G and D (but not on f P C8pGqq.

In addition we have that B
pβq
X |x1“xR

f
x1,N

“ R
B
pβq
X f

x,N , and

|B
pβq
X |y1“yR

f
x,Npy1q| ď C|y|N´|β| max

|α|ďN´|β|
}B
pα`βq
X f}L8pGq,

provided that |β| ď N.

Using the notation above, and denoting by ∆α
ξ :“ ∆α1

qp1q
¨ ¨ ¨∆αn

qpnq
, we can in-

troduce the subelliptic Hörmander class of symbols of order m P R of type

pρ, δq. We will use the notation xM for the matrix-valued symbol of the oper-

ator M :“ p1` Lq 12 , and, for every rξs P pG and s P R, we define

xMpξqs :“ diagrp1` νiipξq
2
q
s
2 s1ďiďdξ ,

where pLpξq “: diagrνiipξq
2s1ďiďdξ is the symbol of the sub-Laplacian L at rξs,

as the symbol of the operator Ms :“ p1 ` Lq s2 P OppSs,L1
κ
,0
pG ˆ pGqq (see after

Definition 2.9 for the notation OppSs,Lρ,δ pGˆ
pGqq).

Definition 2.9 (Subelliptic Hörmander classes). Let G be a compact Lie group
and let 0 ď δ, ρ ď 1. Let us consider a sub-Laplacian L “ ´pX2

1 `¨ ¨ ¨`X
2
kq on G,

where the system of vector fields X “ tXiu
k
i“1 satisfies the Hörmander condition

of step κ. We say that σ P Sm,Lρ,δ pGˆ
pGq if for all α, β P Nn

0

pα,β,ρ,δ,m,leftpσq
1 :“ sup

px,rξsqPGˆ pG

}xMpξqpρ|α|´δ|β|´mqB
pβq
X ∆α

ξ σpx, ξq}op ă 8, (2.16)

pα,β,ρ,δ,m,rightpσq
1 :“ sup

px,rξsqPGˆ pG

}pB
pβq
X ∆α

ξ σpx, ξqq
xMpξqpρ|α|´δ|β|´mq}op ă 8, (2.17)

where } ¨ }op is as in (2.12).

By following the usual nomenclature, we define:

OppSm,Lρ,δ pGˆ
pGqq :“ tA : C8pGq Ñ D 1

pGq : σA ” pApx, ξq P Sm,Lρ,δ pGˆ
pGqu,
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with
Afpxq “

ÿ

rξsP pG

dξTrpξpxq pApx, ξq pfpξqq, f P C8pGq, x P G.

Remark 2.10. Note that if we take L as the bi-invariant Laplace-Beltrami op-
erator in Definition 2.3 (instead of a sub-Laplacian on G), then Mspξq “ xξy

sIdξ
and one can prove that Definition 2.3 and 2.9 give rise to equivalent classes of
symbols. If L is a sub-Laplacian on G instead, the two definitions 2.3 and 2.9 can
not be interchanged. The operator L is now subelliptic, which is much less than
being elliptic (especially in a noncommutative setting), and the symbol Mspξq
is not a multiple of the identity matrix anymore. This produces additional non-
commutative effects that require more care in the definition of the classes, which
is the reason why we need the (apparently) more involved conditions (2.16) and
(2.17).

The decay properties of subelliptic symbols are summarized in the following
lemma (see [4, Chapter 4]).

Lemma 2.11. Let G be a compact Lie group and let 0 ď δ, ρ ď 1. If a P Sm,Lρ,δ pGˆ
pGq, then for every α, β P Nn

0 , there exists Cα,β ą 0 satisfying the estimates

}B
pβq
X ∆α

ξ apx, ξq}op ď Cα,β sup
1ďiďdξ

p1` νiipξq
2
q
m´ρ|α|`δ|β|

2 ,

uniformly in px, rξsq P Gˆ pG.

In the next theorem we describe some fundamental properties of the subelliptic
calculus [4].

Theorem 2.12. Let 0 ď δ ă ρ ď 1, and let Ψm,L
ρ,δ :“ OppSm,Lρ,δ pGˆ

pGqq, for every
m P R. Then,

- The mapping A ÞÑ A˚ : Ψm,L
ρ,δ Ñ Ψm,L

ρ,δ is a continuous linear mapping
between Fréchet spaces and the symbol of A˚, σA˚px, ξq satisfies the as-
ymptotic expansion,

xA˚px, ξq „
8
ÿ

|α|“0

∆α
ξ B
pαq
X p pApx, ξq˚q.

This means that, for every N P N, and for all ` P N,

∆α`
ξ B

pβq
X

¨

˝
xA˚px, ξq ´

ÿ

|α|ďN

∆α
ξ B
pαq
X p pApx, ξq˚q

˛

‚P S
m´pρ´δqpN`1q´ρ``δ|β|,L
ρ,δ pGˆ pGq,

where |α`| “ `.

- The mapping pA1, A2q ÞÑ A1 ˝ A2 : Ψm1,L
ρ,δ ˆ Ψm2,L

ρ,δ Ñ Ψm1`m2,L
ρ,δ is a

continuous bilinear mapping between Fréchet spaces, and the symbol of
A “ A1 ˝ A2 is given by the asymptotic formula

σApx, ξq „
8
ÿ

|α|“0

p∆α
ξ
pA1px, ξqqpB

pαq
X

pA2px, ξqq,
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which, in particular, means that, for every N P N, and for all ` P N,

∆α`
ξ B

pβq
X

¨

˝σApx, ξq ´
ÿ

|α|ďN

p∆α
ξ
pA1px, ξqqpB

pαq
X

pA2px, ξqq

˛

‚

P S
m1`m2´pρ´δqpN`1q´ρ``δ|β|,L
ρ,δ pGˆ pGq,

for all α` P Nn
0 with |α`| “ `.

- For 0 ď δ ă ρ ď 1, (or for 0 ď δ ď ρ ď 1, δ ă 1{κ) let us consider a

continuous linear operator A : C8pGq Ñ D 1pGq with symbol σ P S0,L
ρ,δ pGˆ

pGq. Then A extends to a bounded operator from L2pGq to L2pGq.

Remark 2.13. Let us remark that for all m ą 0, we have

S
m
κ

ρ, δ
κ

pGq Ă Sm,Lρ,δ pGˆ
pGq.

To show this property we will make use of the estimate

xξy
1
κ À p1` νiipξq

2
q
1
2 À xξy (2.18)

proved in Proposition 3.1 of [13]. Indeed, for σ P S
m
κ

ρ, δ
κ

pGq, we have that

}B
pβq
X ∆α

ξ σpx, ξq}op À xξy
m
κ
´ρ|α|` δ

κ
|β|,

and, consequently, we have

}xMpξq´m`ρ|α|´δ|β|B
pβq
X ∆α

ξ σpx, ξq}op ď sup
1ďiďdξ

xνiipξqy
´m`ρ|α|´δ|β|

xξy
m
κ
´ρ|α|` δ

κ
|β|.

From the previous inequality, for ´m` ρ|α| ` δ|β| ă 0, we obtain

xνiipξqy
´m`ρ|α|´δ|β|

xξy
m
κ
´ρ|α|` δ

κ
|β|
À xξy

´m`ρ|α|´δ|β|
κ xξy

m
κ
´ρ|α|` δ

κ
|β|
À 1,

while for ´m´ ρ|α| ` δ|β| ě 0, we have

xνiipξqy
´m`ρ|α|´δ|β|

xξy
m
κ
´ρ|α|` δ

κ
|β|
À xξy´m`ρ|α|´δ|β|xξy

m
κ
´ρ|α|` δ

κ
|β|
À 1,

proving that σ P Sm,Lρ,δ pGˆ
pGq.

Remark 2.14. The last assertion in Theorem 2.12 remains valid if we consider
0 ď δ ď ρ ď 1, δ ă 1{κ. This is the subelliptic Calderón-Vaillancourt theorem
proved in [4], which gives the boundedness of pseudo-differential operators in the
subelliptic calculus in subelliptic Sobolev spaces (see Theorem 2.19).

Proposition 2.15. Let A : C8pGq Ñ D 1pGq be a continuous linear operator

with symbol a P Sm,Lρ,δ pG ˆ
pGq, 0 ď δ ă ρ ď 1. Then A : Hs,LpGq Ñ Hs´m,LpGq

extends to a bounded operator for all s P R.

Proof. In view of the closed graph Theorem, we only need to show that there
exists C ą 0 such that

}Au}Hs´m,LpGq “ }Ms´mAu}L2pGq ď C}u}Hs,LpGq, u P C
8
pGq. (2.19)



SUBELLIPTIC SHARP GÅRDING INEQUALITY 15

where Ms :“ p1 ` Lq s2 . By replacing u by M´su, we can see that (2.19) is
equivalent to the following estimate

}Ms´mAM´su}L2pGq ď C}u}L2pGq, u P C
8
pGq, (2.20)

which, once again by the closed graph theorem, is equivalent to show that As :“
Ms´mAM´s admits a bounded extension from C8pGq to L2pGq. By the subel-

liptic calculus As P S
0,L
ρ,δ pG ˆ

pGq. This, finally, gives the existence of a bounded
extension of As as a consequence of the subelliptic Calderón-Vaillancourt Theo-
rem. �

Remark 2.16. The singularity orders for the right-convolution kernels of subel-
liptic operators can be classified in terms of the Hausdorff dimension Q of the Lie
group G with respect to L. Indeed, if A : C8pGq Ñ D 1pGq is a continuous linear

operator with symbol σ P Sm,Lρ,δ pG ˆ
pGq, then the right-convolution kernel of A,

x ÞÑ kx : G Ñ C8pGzteuq, defined by kx :“ F´1σpx, ¨q, satisfies the following
estimates for |y| ă 1 (see Proposition 4.24 of [4]):

$

’

’

’

’

&

’

’

’

’

%

|kxpyq| ď Cσ|y|
´
Q`m
ρ , if m ą ´Q

|kxpyq| ď Cσ| log |y||, if m “ ´Q

|kxpyq| ď Cσ, if m ă ´Q.

Note that the kernel estimates in [9] differ from the estimates above in that Q
is replaced by n “ dimpGq.

Let us also remark that for m`Q ą 0, in the context of the pseudo-differential
classes defined by Nagel and Stein [22] for sub-Riemannian structures, the kernel
estimates for the corresponding classes have been obtained in terms of the Carnot-
Carathéodory distance |y|cc “ dccpy, eq whose orders should be better than the
one reported in Proposition 4.24 of [4] in terms of the geodesic distance on G.
This is because of the topological inequalities

|y| À |y|cc À |y|
1
κ , |y| ă 1. (2.21)

Indeed, operators of order m in the calculus of Nagel and Stein [22] (and of

type p1, 0q have operators whose kernel behave like |y|
´pQ`mq
cc À |y|´pQ`mq, when

m ą ´Q and |y| ă 1. Note that for m “ ´Q, operators of order ´Q behaves like
| log |y|cc| À | log |y||, for |y| ă 1.However, for our purposes, the kernel estimates in
[4] are good enough to describe the subelliptic calculus in terms of the differences
operators ∆α

ξ .

2.5. Amplitude operators and kernel estimates. A fundamental tool to
prove our main result below is given by the so called subelliptic amplitude oper-
ators. Amplitude operators on graded Lie groups have been investigated in [11,
Page 374]. In the subelliptic setting on compact Lie groups one defines these
objects via the subelliptic amplitudes defined as follows.

Definition 2.17 (Subelliptic amplitudes and amplitude operators). A function

a : G ˆ G ˆ pG Ñ
Ť

rξsP pGCdξˆdξ is an amplitude symbol if for every rξs P pG,
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ap¨, ¨, rξsq is smooth. In addition, a belongs to the subelliptic amplitude class of

order m and type pρ, δq, Am,L
ρ,δ pGˆGˆ

pGq if

sup
px,y,rξsqPGˆGˆ pG

}xMpξqpρ|α|´δp|β|`|γ|q´mqB
pβq
X B

pγq
Y ∆α

ξ apx, y, ξq}op ă 8, (2.22)

and

sup
px,y,rξsqPGˆGˆ pG

}pB
pβq
X B

pγq
Y ∆α

ξ apx, y, ξqq
xMpξqpρ|α|´δp|β|`|γ|q´mq}op ă 8. (2.23)

The amplitude operator AOppaq associated with an amplitude a P Am,L
ρ,δ pGˆGˆ

pGq is defined as

Afpxq ” AOppaqfpxq :“
ÿ

rξsP pG

dξTr

¨

˝ξpxq

ż

G

apx, y, ξqξpyq˚fpyqdy

˛

‚,

where f P C8pGq.

Given a left-invariant amplitude operator A “ AOppaq, a P Am,L
ρ,δ pGˆGˆ

pGq,
it can be written in terms of their right-convolution kernels as in the classical
way. We give the definition below for completeness.

Definition 2.18. Let apx, y, ξq be a subelliptic amplitude and let A “ AOppaq
be the corresponding amplitude operator. We define the right convolution kernels
of A as the unique map kA,¨,¨ : GˆG Q px, yq ÞÑ kA,x,y P S 1pGq such that

pkA,x,ypξq “ apx, y, ξq.

Moreover we have

Afpxq “ AOpfpxq “

ż

G

fpyqkA,x,ypy
´1xqdy.

Remark 2.19. As the right-convolution kernels of subelliptic pseudo-differential
operators enjoy the estimates in Remark 2.16, the same holds for the kernel of
subelliptic amplitude operators. Indeed, following the strategy in Proposition

4.24 of [4], one has that, for a P Am,L
ρ,δ pG ˆ G ˆ pGq and |z| ă 1, the kernel of

A “ AOppaq satisfies

$

’

’

’

’

&

’

’

’

’

%

|kA,x,ypzq| ď Cσ|z|
´
Q`m
ρ , if m ą ´Q

|kA,x,ypzq| ď Cσ| log |y||, if m “ ´Q

|kA,x,ypzq| ď Cσ, if m ă ´Q.

The estimates in Remark 2.19, and the following Lemma 2.20, will be needed
to prove Proposition 2.21 below. Proposition 2.21 is crucial to prove our main
theorem, since it allows to connect amplitude operators to pseudo-differential
operators through an asymptotic expansion.
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Lemma 2.20. If a P Am,L
ρ,δ pGˆGˆ

pGq, then the symbol

σpx, ξq :“ apx, x, ξq

belongs to the subelliptic class Sm,Lρ,δ pGˆ
pGq.

Proposition 2.21. Let 0 ď δ ă ρ ď 1, and let a P Am,L
ρ,δ pGˆGˆ

pGq. Then A ”

AOppaq is a subelliptic pseudo-differential operator with symbol σA P S
m,L
ρ,δ pGˆ

pGq,
that is A ” Oppσq, which obeys to the formula

σApx, ξq „
ÿ

αPNn0

pB
pαq
Y ∆α

ξ apx, y, ξqq|y“x, (2.24)

in the sense that, for all N P N, and for all ` P N,

∆α`
ξ B

pβq
X

¨

˝σApx, ξq ´
ÿ

|α|ďN

pB
pαq
Y ∆α

ξ apx, y, ξqq|y“x

˛

‚P S
m´pρ´δqpN`1q´ρ``δ|β|,L
ρ,δ ,

(2.25)

for every α` P Nn
0 with |α`| “ `.

Proof. The proof of the asymptotic expansion (2.24) is similar to the one for the
analogous statement for elliptic Hörmander classes. Indeed, as in [29, Page 2891],
we have that the symbol σA of an amplitude operator A is given (by definition of
symbol of an operator A, see [28]) by

σApx, ξq :“ ξ˚pxqpAξqpxq “

ż

G

ξpzq˚
ÿ

rηsP pG

dηTrrηpzqapx, xz´1, ηqsdz.

Moreover, by using the Taylor expansion (see Lemma 2.8)

apx, xz´1, ηq „
ÿ

αPNn0

pB
pαq
Y apx, y, ξqq|y“xqpαqpzq,

in the previous formula for σA, we get that

σApx, ξq „
ÿ

αPNn0

ż

G

ξpzq˚
ÿ

rηsP pG

dηTrrηpzqB
pαq
Y apx, y, ξqq|y“xqpαqpzqsdz

“
ÿ

αPNn0

ż

G

ξpzq˚
ÿ

rηsP pG

dηTrrηpzqB
pαq
Y apx, y, ξqq|y“xqpαqpzqsdz

“
ÿ

αPNn0

ż

G

ξpzq˚qpαqpzq
ÿ

rηsP pG

dηTrrηpzqB
pαq
Y apx, y, ξqq|y“xsdz

“
ÿ

αPNn0

ż

G

ξpzq˚qpαqpzq
ÿ

rηsP pG

dηTrrηpzqB
pαq
Y apx, y, ξqq|y“xsdz

“
ÿ

αPNn0

pB
pαq
Y ∆α

ξ apx, y, ξqq|y“x.
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Now we analyze the remainder term of the asymptotic expansion above. Our goal
is to prove that

∆α`
ξ B

pβq
X

¨

˝σpx, ξq ´
ÿ

|α|ďN

pB
pαq
Y ∆α

ξ apx, y, ξqq|y“x

˛

‚P S
m´pρ´δqpN`1q´ρ``δ|β|,L
ρ,δ (2.26)

for all α` with |α`| “ `. Note that B
pβq
X is a left-invariant differential operator,

and that it can be written in terms of right invariant differential operators of the
same order. Vice versa, right-invariant differential operators can be written as
linear combination of left-invariant ones. For this reason, one has the same kernel
estimates both for left and right- differentiations of kernels in the group variable
x. Here, we observe that when turning right-invariant vector fields into linear
combinations of left-invariant vector fields, and vice versa, we are using that G
is compact.

For technical reasons we shall prove (2.26) with B
pβq
X replaced by B

pβq

X̃
, that is

with a right-differentiation. This is done in order to shorten the argument which
can be performed with left-differentiations passing from left to right-invariant
differential operators.

Below we will prove (2.26) (with B
pβq

X̃
) in two steps. First we prove that for any

given α`, β and N0 P N there exists N “ Npβ, `,N0q ą N0 such that

}∆α`
ξ B

pβq
X pIpx, ξqq

xMpξq´pm´pρ´δqpN0`1q´ρ``δ|β|q
}op ă 8, (2.27)

for all px, rξsq P Gˆ pG, where

Ipx, ξq “ σpx, ξq ´
ÿ

|α|ďN

pB
pαq
Y ∆α

ξ apx, y, ξqq|y“x.

In the second step we show that (2.27) is true for N “ N0, which, for the
arbitrariness of N0, α`, β, will prove the result.

Proof of Step 1. For any given px, yq P G ˆ G let kA,x,y be the right-convolution
kernel of A (see Definition 2.18), that is

apx, y, ξq “ pkA,x,ypξq, rξs P pG.

Denote also by kσA,x the right-convolution kernel of A, that is the distribution

that satisfies σApx, ξq “ pkσA,xpξq for all rξs P pG. Because of the identities

Afpxq ” AOppaqfpxq “

ż

G

fpyqkA,x,ypy
´1xqdy “

ż

G

fpxz´1
qkA,x,xz´1pzqdz,

and

Afpxq ” Oppσqfpxq “

ż

G

fpyqkσA,xpy
´1xqdy “

ż

G

fpxz´1
qkσ,xpzqdz,

we have

kA,x,ypy
´1xq “ kσA,xpy

´1xq, kA,x,xz´1pzq “ kσA,xpzq,
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for all x, y, z P G. Moreover, by the Taylor expansion of kx,xz´1 at xz´1 “ x, or,
equivalently, of kx,xz´1 at z´1 “ e (see Lemma 2.8), we can write

kσA,xpzq “ kA,x,xz´1pzq “
ÿ

|α|ăN

qαpzqB
pαq
Z1
kA,x,z1pzq|z1“x `R

kA,x,¨pzq
x,N pzq,

“
ÿ

|α|ăN

qαpzqB
pαq
Z1
kA,x,xz´1

1
pzq|z´1

1 “e `R
kA,x,x¨pzq
e,N pzq,

where the remainder term satisfies the estimate

|R
kA,x,¨pzq
x,N pzq| “ |R

kA,x,x¨pzq
e,N pzq| ď C|z|N max

|α|ďN
}B
pαq
Z1
kA,x,z1pzq}L8z1 pGq.

Below we shall write the reminder term in a way or the other to make some
computations easier to follow.

Observe first that the inverse Fourier transform F´1
ξ ÞÑz of the term in (2.26) is

given by

qα`pzqB
pβq

X̃

¨

˝kσA,xpzq ´
ÿ

|α|ďN

qαpzqB
pαq
Z1
kA,x,z1pzq|z1“x

˛

‚“ qα`pzqB
pβq

X̃
R
kA,x,¨pzq
x,N pzq.

Now let M 1 “M 1pN, β, `q be the smallest nonnegative integer such that

M 1
ą ρ`´ δ|β| ´m` pρ´ δqpN0 ` 1q, (2.28)

then we have

}∆α`
ξ B

pβq

X̃

¨

˝σApx, ξq ´
ÿ

|α|ďN

pB
pαq
Y ∆α

ξ apx, y, ξqq|y“x

˛

‚
xMpξqpρ`´δ|β|´pm´pρ´δqpN0`1qqq

}op

“ }∆α`
ξ B

pβq

X̃

¨

˝σApx, ξq ´
ÿ

|α|ďN

pB
pαq
Y ∆α

ξ apx, y, ξqq|y“x

˛

‚

ˆ xMpξqM
1
xMpξqpρ`´δ|β|´pm´pρ´δqpN0`1qqq´M 1

}op

ď }∆α`
ξ B

pβq

X̃

¨

˝σApx, ξq ´
ÿ

|α|ďN

pB
pαq
Y ∆α

ξ apx, y, ξqq|y“x

˛

‚
xMpξqM

1

}op

À
by (2.13)

}p1` Lzq
M 1

2 rqα`pzqB
pβq

X̃
R
kA,x,¨pzq
x,N pzqs}L1pG,dzq.

Now, the application of Leibniz rule gives

}p1` Lzq
M 1

2 rqα`pzqB
pβq

X̃
R
kA,x,¨pzq
x,N pzqs}L1pG,dzq “ }p1` Lzq

M 1

2 rR
qα` pzqB

pβq

X̃
kA,x,xpzq

x,N pzqs}L1pG,dzq

À
ÿ

1ďi1ďi2ď¨¨¨ďikďk ,|γ|ďM 1

}Xγ1
i1,z
¨ ¨ ¨Xγk

ik,z
rR

qα` pzqB
pβq

X̃
kA,x,¨pzq

x,N pzqs}L1pG,dzq
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À
ÿ

|γ1|`|γ2|“|γ|
|γ|ďM 1

}B
pγ1q
Z1
rR
B
pγ2q
Z2

qα` pz2qB
pβq

X̃
kA,x,¨pz2q

x,N pz1q|z1“z2“zs}L1pG,dzq,

where we have used the notation

R
B
pγ2q
Z2

qα` pz2qB
pβq

X̃
kA,x,¨pz2q

x,N pz1q|z1“z2“z

“

´

B
pγ2q
Z2

qα`pz2qB
pβq

X̃
kA,x,xz´1

1
pz2q ´

ÿ

|η|ăN

qηpzqB
pβq

X̃
B
pηq
Z1
B
pγ2q
Z2

qα`pz2qkA,x,xz´1
1
pz2q

¯

|z1“e,z2“z

“ R
B
pγ2q
Z2

qα` pz2qB
pβq

X̃
kA,x,x¨pz2q

e,N pz1q|z1“z2“z.

By the estimates in Lemma 2.8 and in Remark 2.19 we have

ÿ

|γ1|`|γ2|“|γ|
|γ|ďM 1

}B
pγ1q
Z1
rR
B
pγ2q
Z2

qα` pz2qB
pβq

X̃
kA,x,¨pz2q

x,N pz1q|z1“z2“zs}L1pG,dzq

À
ÿ

|γ1|`|γ2|“|γ|
|γ|ďM 1

ż

G

|z|N´|γ1| max
|α|ďN´|γ1|

}B
pα`γ1q
Z1

pB
pγ2q
Z qα`pzqB

pβq

X̃
kA,x,xz´1

1
pzqq}L8z1 pGq dz

À
ÿ

|γ1|`|γ2|“|γ|
|γ|ďM 1

ÿ

|β1|`|β2|“|β|

ż

G

|z|N´|γ1| max
|α|ďN´|γ1|

}B
pα`γ1q
Z1

pB
pγ2q
Z qα`pzqB

pβ1q

X̃
B
pβ2q

X̃1
kA,x,x1pzqq|x1“xz1}L8z1 pGq dz

À

$

’

’

’

’

&

’

’

’

’

%

ř

|γ1|`|γ2|“|γ|
|γ|ďM 1

ş

G
|z|N´|γ1||z|´

Q`m`δp|β|`|α|`|γ1|q´ρ``|γ2|
ρ dz if Q` s1 ą 0

ř

|γ1|`|γ2|“|γ|
|γ|ďM 1

ş

G
|z|N´|γ1|| ln |z|| dz if Q` s1 “ 0

ř

|γ1|`|γ2|“|γ|
|γ|ďM 1

ş

G
|z|N´|γ1| dz if Q` s1 ă 0

where

s1 “ m` δp|β| ` |α| ` |γ1|q ´ ρ`` |γ2|.

To conclude the result now we just have to make sure that the integrals in the
last inequality are bounded in each case, which can be done by suitable choosing
N , with N ąM 1, M 1 “M 1pβ, `,N0q).

If Q ` s1 ď 0 it suffices to choose N such that N ´ |γ1| ´ 1 ą ´n, that is
N ąM 1 ` 1´ n, to have the convergence of the integral.

If Q`s1 ą 0, then we need to choose N such that ρpN´|γ1|q´pQ`s
1q ą ´ρn,

that is

ρpN ´ |γ1|q ´ pQ`m` δp|β| ` |α| ` |γ1|q ´ ρ`` |γ2|q ` ρn ą 0. (2.29)

Since

ρpN ´ |γ1|q ´ pQ`m` δp|β| ` |α| ` |γ1|q ´ ρ`` |γ2|q ` ρn

ą ρpN ´ |γ1|q ´ pQ`m` δp|β| `Nq ´ ρ`` |γ2|q ` ρn

ě pρ´ δqN ´M 1
´Q´ pm` δ|β| ´ ρ`q ` ρn,
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then in order to have (2.29) satisfied it suffices to choose N such that

pρ´ δqN ´M 1
´Q´ pm` δ|β| ´ ρ`q ` ρn ą 0,

that is N sufficiently large such that

N ą
M 1 `Q`m` δ|β| ´ ρ`´ ρn

ρ´ δ
.

Finally, by choosing N “ Npβ, `,N0q ą N0 and such that

N ą maxtM 1
´ n` 1,

M 1 `Q`m` δ|β| ´ ρ`´ ρn

ρ´ δ
u

we can make sure that the integrals above are bounded and conclude the proof
of step 1.

Proof of Step 2 By step 1 we know that for any fixed β, α`, N0 there exists N “

Npβ, `,N0q ą N0

}∆α`
ξ B

pβq
X

´

σpx, ξq ´
ÿ

|α|ďN

pB
pαq
Y ∆α

ξ apx, y, ξqq|y“x

¯

xMpξq´pm´pρ´δqpN0`1q´ρ``δ|β|q
}op

is finite. Now we want to prove that

}∆α`
ξ B

pβq
X

´

σpx, ξq ´
ÿ

|α|ďN0

pB
pαq
Y ∆α

ξ apx, y, ξqq|y“x

¯

xMpξq´pm´pρ´δqpN0`1q´ρ``δ|β|q
}op

(2.30)

is finite, which, for the arbitrariness of the parameters will give the result.
Note that, for N “ Npβ, `,N0q ą N0 as in step 1, we have

}∆α`
ξ B

pβq
X

´

σpx, ξq ´
ÿ

|α|ďN0

pB
pαq
Y ∆α

ξ apx, y, ξqq|y“x

¯

xMpξq´pm´pρ´δqpN0`1q´ρ``δ|β|q
}op

“ }∆α`
ξ B

pβq
X

´

σpx, ξq ´
ÿ

|α|ďN

pB
pαq
Y ∆α

ξ apx, y, ξqq|y“x

`
ÿ

N0ă|α|ďN

pB
pαq
Y ∆α

ξ apx, y, ξqq|y“x

¯

xMpξq´pm´pρ´δqpN0`1q´ρ``δ|β|q
}op

ď }∆α`
ξ B

pβq
X

´

σpx, ξq ´
ÿ

|α|ďN

pB
pαq
Y ∆α

ξ apx, y, ξqq|y“x

¯

xMpξq´pm´pρ´δqpN0`1q´ρ``δ|β|q
}op

(2.31)

` }
ÿ

N0ă|α|ďN

∆α`
ξ B

pβq
X

´

pB
pαq
Y ∆α

ξ apx, y, ξqq|y“x

¯

xMpξq´pm´pρ´δqpN0`1q´ρ``δ|β|q
}op, .

(2.32)

The choice of N gives that (2.31) is finite, while to obtain the boundedness
of (2.32) it is enough to observe that, since N0 ă |α| ď N , the properties of
amplitudes and Lemma 2.20 give

pB
pαq
Y ∆α

ξ apx, y, ξqq|y“x P S
m´pρ´δqpN0`1q,L
ρ,δ pGˆ pGq,
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and therefore (2.32) is finite too. This finally proves (2.30) and concludes the
proof due to the arbitrariness of α`, β,N0. �

3. Proof of the main Theorem 1.1

Notations. In this section the following notations will be adopted:

- qγpxq :“ qγ1
p1qpxq . . . q

γn
pnqpxq, for any given γ P Nn

0 ;

- X “ tX1, ¨ ¨ ¨ , Xku will be a system of vector fields satisfying Hörmander
condition of step κ;

- ξ :“ rξs for the elements of pG (below we will always work in pG, so the
notation should not be confusing);

- L :“ LX will be the positive sub-Laplacian associated with the system X;

- M will be the operator defined as M :“ pI`Lq1{2, while xMpξq will denote

the corresponding matrix-valued symbol xMpξq “ diagrxνiipξqys1ďiďdξ , where

xνiipξqy :“ p1` νiipξq
2q1{2;

- } ¨ }m,L will denote the norm in the Sobolev space Hm,LpGq associated
with the subelliptic operator L on G;

- }¨}op will denote the `2 Ñ `2 operator norm of the linear finite dimensional
mapping (matrix multiplication by) σApx, ξq, that is,

}σApx, ξq}op “ supt}σApx, ξqv}`2 : v P Cdξ , }v}`2 “ 1u.

Remark 3.1. The proof of the main theorem relies on the construction of a

positive pseudo-differential operator P P OppSm,L
ρ, ρ`δ

2

pGˆ pGqq such that A´P “ Q,

with A as in the hypotheses of Theorem 1.1, and

Q : H
m´ 1

κ pρ´p2κ´1qδq

2
, L
pGq Ñ H

´pm´ 1
κ pρ´p2κ´1qδqq

2
, L
pGq

being a bounded operator. In fact, if such a decomposition were true, then this
would immediately lead to the desired inequality by simply observing that

RepAu, uq “ RepPu, uq ` RepQu, uq ě ´C}u}m´ 1
κ pρ´p2κ´1qδq

2
, L
,

for all u P C8pGq.

As in the proof of the Sharp G̊arding inequality on compact Lie groups (see
[29]), the key point here is the construction of the so called weight function wξ,
which, essentially, corresponds to the construction of the operator P with the
properties mentioned in Remark 3.1.

The aforementioned construction follows the lines of the Euclidean case. How-
ever, the adaptation to the Lie-group setting is linked to the deep group structure.
Indeed, a crucial key point in our proof will be the choice of the suitable power
of xξy inside the expression of wξ, choice that depends on the relation between
the eigenvalues of the Laplacian and those of the sublaplacian on the group.

We remark that the use of an elliptic weight wξ, namely depending on xξy, in-

stead of a subelliptic one, that is depending on xMpξq, is fundamental here. This,
in particular, is due to the fact that while the Laplacian is a central operator on
the group and its (matrix valued) symbol commutes with all the other symbols,
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the same property does not hold for any sublaplacian on the group. The noncom-
mutativity property of the symbol of sub-Laplacians, toghether with the intrinsic
noncommutativity of the group, causes several technical issues not allowing the
use of a subelliptic weight.

Notice also that similar anomalies occur in the nilpotent Lie group setting,
where, again, sub-Laplacians (and more generally Rockland operators), do not
have symbols with the same commutaivity property as the symbol of the Lapla-
cian on compact Lie groups. This main difference, as remarked in [10], is very
likely the reason why the full sharp G̊arding inequality, that is for any operator
with nonnegative symbol, has not been proved yet in the nilpotent Lie group
setting (see [10] where the result for specific operators has been announced).

Taking into account the previous clarifications, we can now build the proof of
Theorem 1.1 starting from the construction of the weight function wξ.

Let us consider G as a closed subgroup of GLpN,Rq Ă RNˆN for some N P N,
so that its Lie algebra g is an n-dimensional vector subspace such that

rA,Bs :“ AB ´BA P g

for every A,B P g. Let e P G be the neutral element, U Ă G a neighborhood of
e, and V Ă g a neighborhood of 0 P g such that the matrix exponential mapping

exp : V Ñ U

is a diffeomorphism. We define on g the central norm | ¨ | (that we shall use only
in the definition of the function wξ below) as follows

|X| :“

ż

G

|uXu´1
|0du, (3.1)

where the product under the integral is the product of matrices, and where | ¨ |0
stands for the Euclidean norm on g. Note that exp´1 is central with respect to the
norm (3.1), i.e., | exp´1pxyq| “ | exp´1pyxq|, and that the norm (3.1) is invariant
by the adjoint representation.

We now assume that the neighborhood V of 0g is the open ball V “ Bp0, rq “
tZ P Rn : |Z| ă ru, with r ą 0, and consider a real smooth function φ : r0, rq Ñ
r0,8q, radial on g, supported on V , and such that φpsq “ φp|Z|q “ 1 for s ą 0
small. Then we define the function

wξpxq :“ φp| exp´1
pxq|xξy

pρ`δq
2κ qψpexp´1

pxqqxξy
npρ`δq

4κ (3.2)

with

ψpY q “ C0| detD exppY q|´1{2fpY q´1{2, C0 “ p

ż

Rn

φp|Z|q2dZq´1{2,

where, recall, ρ ` δ ă 2, xξy “ p1 ` λ2
ξq

1
2 , i.e. σI´∆pξq “ xξy2Idξ , D exp is the

Jacobian matrix of exp, and fpY q is the density with respect to the Lebesgue
measure of the pull-back on g of the Haar measure on G by the exponential
mapping.

Note that, given the geodesic distance d, we have dpx, eq » | exp´1pxq| and

suppwξ “ tx P G : dpx, eq ď rxξy´
pρ`δq
2κ u Ă Ue.
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Remark 3.2. Observe that from Remark 2.13 and the fact that xξy
npρ`δq

4κ Idξ P

S
npρ`δq

4κ
1,0 pGq, we deduce that xξy

npρ`δq
4κ Idξ P S

npρ`δq
4

,L
1,0 pG ˆ pGq Ă S

npρ`δq
4

,L
ρ,0 pG ˆ pGq,

for all ρ P p0, 1s.

We are now ready to state a key lemma about the basic properties of the
function wξ.

Lemma 3.3. Let wξ be as above. Then wξpeq “ C0xξy
npρ`δq

4κ , wξ is central and

inversion invariant, and dpx, eq ď rxξy´
pρ`δq
2κ on supp pwξq. Moreover, }wξ}L2pGq “

1 for all ξ P pG, and px, ξq ÞÑ wξpxqIdξ P S
npρ`δq

4κ

1, pρ`δq
2κ

pGq Ă S
npρ`δq

4
,L

ρ, pρ`δq
2

pG ˆ pGq, for all

ρ P p0, 1s and 0 ď δ ă ρ.

Proof. Notice that, due to the properties of φ, we immediately have that wξpeq “

C0xξy
npρ`δq

4κ , wξ is central and inversion invariant, and dpx, eq ď rxξy´
pρ`δq
2κ on

suppwξ. As for the }wξ}L2pGq, we have
ż

G

|wξpxq|
2dx “ xξy

npρ`δq
2κ

ż

Rn

φξp|Y |xξy
pρ`δq
2κ q

2
|ψp|Y |q|2|detD exppY q|fpY qdY

“

ż

Rn

φξp|Z|q
2
|ψp|Z|xξy´

pρ`δq
2κ q|

2
|detD exppZxξy´

pρ`δq
2κ q|fpZxξy´

pρ`δq
2κ qdZ

“ C2
0

ż

Rn

φξp|Z|q
2dZ “ 1,

where in the second line we applied the change of variables Z “ Y xξy
pρ`δq
2κ , while

in the third line we simply used the expression of ψ.
We are now left with the proof of

px, ξq ÞÑ wξpxqIdξ P S
npρ`δq

4κ

ρ, pρ`δq
2κ

pGq Ă S
npρ`δq

4
,L

ρ, pρ`δq
2

pGˆ pGq. (3.3)

From the compactness of G, proving (3.3) is equivalent to showing that, for every

multi-index β and for any fixed x P G, pB
pβq
X wξqpxqIdξ P S

npρ`δq
4κ

`
pρ`δq
2κ

|β|

ρ,0 pGq (see
Lemma 3.3 in [29]). First observe that

B
pβq
X wξpxqIdξ “

ÿ

α;|α|ď|β|

Cα,β

”

B
pαq
X φp| exp´1

pxq|xξy
pρ`δq
2κ q

ı

B
pβ´αq
X ψpexp´1

pxqqxξy
npρ`δq

4κ Idξ

“
ÿ

α;|α|ď|β|

Cα,βφαp| exp´1
pxq|xξy

pρ`δq
2κ qxξy

pρ`δq|α|
2κ χβ´αpexp´1

pxqqxξy
npρ`δq

4κ Idξ ,

where φα, χβ´α are suitable functions such that φα P C
8
0 pRq and is constant near

the origin, while χβ´α P C
8
0 pV q. Since

xξy
npρ`δq

4κ
`
pρ`δq|α|

2κ Idξ P S
npρ`δq

4κ
`
pρ`δq
2κ

|β|

1,0 pGq,

then, for every (fixed) x P G,

B
β
xwξpxqIdξ P S

npρ`δq
4κ

`
pρ`δq
2κ

|β|

1,0 pGq
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if φαp| exp´1pxq|xξy
pρ`δq
2κ qχβ´αpexp´1pxqq P S 0

1,0pGq for all α and β as above.
Therefore, to complete the proof it is enough to check that these last terms
are standard global symbols of order 0.

Now, given x P G, it is easy to see that

φαp| exp´1
pxq|xξy

pρ`δq
2κ qχβ´αpexp´1

pxqq ď C. (3.4)

In fact, if x is such that exp´1pxq “ 0, then φα is constant and the inequality
follows. If, instead, exp´1pxq ‰ 0, then, since φα is compactly supported in ξ, we
get that the symbol in the left hand side of (3.4) is compactly supported, then
smoothing, and the inequality follows. This concludes the proof of (3.3) from
which the result follows. �

Remark 3.4. Note that from Remark 2.13, for all m ą 0, we have S
m
κ

ρ, δ
κ

pGq Ă

Sm,Lρ,δ pGˆ
pGq. This fact, together with the property px, ξq ÞÑ wξpxqIdξ P S

npρ`δq
4κ

ρ, pρ`δq
2κ

pGq,

immediately gives px, ξq ÞÑ wξpxqIdξ P S
npρ`δq

4
,L

ρ, pρ`δq
2

pGq. Note also that the symbol

wξpxqIdξ commutes with any subelliptic symbol bpx, ξq, for all ξ P pG.

Proposition 3.5. Let σA P S
m,L
ρ,δ pGˆ

pGq and let ppx, y, ξq be the amplitude

ppx, y, ξq :“

ż

G

wξpxz
´1
qwξpyz

´1
qσApz, ξqdz, (3.5)

where wξ is as in (3.2). Then p P Am,L
ρ, pρ`δq

2

pGˆGˆ pGq and the amplitude operator

P “ AOpppq given by

Pupxq “

ż

G

ÿ

rξsP pG

dξTr
`

ξpy´1xqppx, y, ξq
˘

upyqdy

is positive.

Proof. Recall that p P Am,L
ρ, pρ`δq

2

pGˆGˆ pGq if

sup
px,y,rξsqPGˆGˆ pG

}xMpξq´m`ρ|α|´
pρ`δq

2
p|β|`|γ|q

B
pβq
X B

pγq
Y ∆α

ξ ppx, y, ξq}op ă 8,

and that, by Leibniz rule, B
pβq
X B

pγq
Y ∆α

ξ ppx, y, ξq is a sum of terms of the form
ż

G

p∆η
ξB
pβq
X wξpxz

´1
qqp∆λ

ξB
pγq
Y wξpyz

´1
qqp∆µ

ξσApz, ξqqdz,

where |η ` λ` µ| ě |α|. Moreover, due to the properties of wξ, we have

}p∆η
ξB
pβq
X wξpxz

´1
qqp∆λ

ξB
pγq
Y wξpyz

´1
qq}op

ď Cxξy
npρ`δq

4κ
´ρ|η|` pρ`δq

2
|β|
κ xξy

npρ`δq
4κ

´ρ|λ|` pρ`δq
2

|γ|
κ

ď Cxξy
npρ`δq

2κ sup
i“1,...,dξ

xνiipξqy
´ρp|λ|`|η|q` pρ`δq

2
p|β|`|γ|q,
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therefore, since suppwξ “ tz; dpz, eq ď rxξy´
pρ`δq
2κ u is contained in a set of measure

rxξy´
pρ`δqn

2κ , we get

}

ż

G

xMpξq´ρ|µ|`ρ|α|´
pρ`δq

2
p|β|`|γ|q

p∆η
ξB
pβq
X wξpxz

´1
qqp∆λ

ξB
pγq
Y wξpyz

´1
qq

ˆxMpξq´m`ρ|µ|p∆µ
ξσApz, ξqqdz}op

ď Cxξy´
npρ`δq

2κ }∆η
ξB
pβq
X wξpxz

´1
q∆λ

ξB
pγq
Y wξpyz

´1
qqxMpξq´ρ|µ|`ρ|α|´

pρ`δq
2
p|β|`|γ|q

}op

ˆ}xMpξq´m`ρ|µ|p∆µ
ξσApz, ξqq}op

ď Cxξy´
npρ`δq

2κ xξy
npρ`δq

2κ }xξy´ρp|λ|`|η|q`
pρ`δq
2κ

p|β|`|γ|q
xMpξq´ρ|µ|`ρ|α|´

pρ`δq
2
p|β|`|γ|q

}op

ď C sup
i“1,...,dξ

xνiipξqy
ρ|α|´ pρ`δq

2
p|β|`|γ|q´ρp|η|`|λ|`|µ|q` pρ`δq

2
p|β|`|γ|q

ď C.

Finally, since }xMpξq´m`ρ|α|´
pρ`δq

2
p|β|`|γ|qB

pβq
X B

pγq
Y ∆α

ξ ppx, y, ξq}op is estimated by a
sum of terms of the previous form, the first result follows.

To see that P is positive, on denoting by

Mpz, ξq :“

ż

G

wξpyz
´1
qξpyz´1

qupyqdy,

we have

pPu, uq “

ż

G

ż

G

ÿ

rξsP pG

dξTrpξpxqppx, y, ξqupyqξpyq˚dyqupxqdx

“

ż

G

ż

G

ÿ

rξsP pG

dξTr

¨

˝ξpxq

ż

G

wξpxz
´1
qwξpyz

´1
qσApz, ξqdzupyqξpyq

˚dy

˛

‚upxqdx

“

ż

G

ÿ

rξsP pG

dξTr

¨

˝

¨

˝

ż

G

ξpxz´1
qwξpxz

´1
qupxqdx

˛

‚ξpzqσApz, ξqξpzq
˚

ˆ

¨

˝

ż

G

wξpyz
´1
qξpyz´1

q
˚upyqdy

˛

‚

˛

‚dz

“

ż

G

ÿ

rξsP pG

dξTr pMpz, ξqξpzqσApx, ξqξpzq
˚Mpz, ξq˚q dz,

which is non-negative due to the non-negativity of σA and the fact that the
positivity of matrices is invariant under unitary transformations. This concludes
the proof. �

Lemma 3.6. Let s P R and p P Am,L
ρ, pρ`δq

2

pGˆGˆ pGq as in (3.5). Let us assume

that 0 ď δ ă ρ ď 1. Then the operator with symbol ppx, x, ξq´σApx, ξq is bounded

from Hs,LpGq to Hs´pm´ 1
κ
pρ´p2κ´1qδqq,LpGq.
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Proof. By the properties of pseudo-differential operators with symbols in subel-
liptic classes, in order to prove the theorem it suffices to show that

ppx, x, ξq´σApx, ξq P S
m´ 1

κ
pρ´p2κ´1qδq,L

ρ,maxtδ, pρ`δq
2
u

pGˆ pGq “ S
m´ 1

κ
pρ´p2κ´1qδq,L

ρ, pρ`δq
2

pGˆ pGq. (3.6)

Note that, since }wξ}L2pGq “ 1, we have

ppx, x, ξq ´ σApx, ξq “

ż

G

wξpxz
´1
q
2σApz, ξqdz ´ σApx, ξq

“

ż

G

wξpzq
2
pσApz

´1x, ξq ´ σApx, ξqqdz,

where, recall, suppwξ “ tz P G : dpz, eq ď rxξy´
pρ`δq
2κ u. Then we consider the

Taylor expansion of order one of σApz
´1x, ξq with respect to z´1 at z´1 “ e,

namely,

σApz
´1x, ξq “ σApx, ξq `

ÿ

|γ|“1

B
pγq
X σApx, ξqqγpzq `

ÿ

|γ|“2

qγpzqσA,γpz
´1x, ξq,

where the last term in the right hand side represents the remainder of Taylor
expansion of order 1. Note also that we can choose the polynomials qγ to be odd
when |γ| “ 1, that is, qγpzq “ ´qγpz

´1q. By using the expansion above together
with the property

ş

G

|wξpzq|
2qγpzqdz “ 0 when |γ| “ 1 (since wξ is even while qγ

is odd), we obtain

ppx, x, ξq ´ σApx, ξq “

ż

G

wξpzq
2
´

σApx, ξq ´ σApx, ξq

`
ÿ

|γ|“1

B
pγq
X σApx, ξqqγpzq `

ÿ

|γ|“2

σA,γpz
´1x, ξqqγpzq

¯

dz

“
ÿ

|γ|“2

ż

G

σA,γpz
´1x, ξqwξpzq

2qγpzqdz,

where the symbols σA,γ P S
m`δ|γ|,L
ρ,δ pG ˆ pGq come from the remainder term of

Taylor expansion. Now, by Leibniz rule and the left invariance of B
pβq
X , we have

that the quantity

B
pβq
X 4α

ξ pppx, x, ξq ´ σApx, ξqq “ B
pβq
X 4α

ξ

ÿ

|γ|“2

ż

G

σA,γpz
´1x, ξqwξpzq

2qγpzqdz

can be written as a sum of terms of the form
ż

G

pB
pβq
X 4α1

ξ σA,γpz
´1x, ξqqp4α2

ξ wξpzqqp4
α3
ξ wξpzqqqγpzqdz

“

ż

G

pB
pβq
Y 4α1

ξ σA,γpy, ξqq|y“z´1xp4α2
ξ wξpzqqp4

α3
ξ wξpzqqqγpzqdz, (3.7)

where |γ| “ 2 and |α1 ` α2 ` α3| ě |α|.
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Since for γ such that |γ| “ 2 we have |qγpzq| ď Cxξy´
pρ`δq
κ on the support of

wξ, and since measpsupppwξqq À xξy
´
npρ`δq

2κ , in view of (2.18) each therm of the
form (3.7) satisfies

}xMpξq´m`
1
κ
pρ´p2κ´1qδq`ρ|α|´maxtδ, pρ`δq

2
u|β|

ż

G

pB
pβq
Y 4α1

ξ σA,γpy, ξqq|y“z´1xp4α2
ξ wξpzqq

ˆp4α3
ξ wξpzqqqγpzqdz}op

ď C sup
xPG

}xMpξq´m`
1
κ
pρ´p2κ´1qδq`ρ|α|´ pρ`δq

2
|β|
B
pβq
X 4α1

ξ σA,γpx, ξqq}op

sup
z1PG

}4α2
ξ wξpz1q}op sup

z2PG
}4α3

ξ wξpz2q}op

ż

supp pwξq

|qγpzq| dz

ď C sup
i“1,...,dξ

xνpξqiiy
´m` 1

κ
pρ´p2κ´1qδq`ρ|α|´δ|β|`m`2δ`|β|δ´|α1|ρ

ˆ xξy
npρ`δq

2κ
´p|α2|`|α3|qρ´

npρ`δq
2κ

´
pρ`δq
κ

ď C sup
i“1,...,dξ

xνpξqiiy
1
κ
pρ´p2κ´1qδq`ρ|α|´δ|β|`2δ`|β|δ´p|α1|`|α2|`|α3|qρ´

pρ`δq
κ ď C.

This, finally, shows (3.6) and concludes the proof. �

Lemma 3.7. Let s P R. Let us assume that 0 ă ρ ď 1 and 0 ď δ ă p2κ´1q´1ρ ď
ρ. Then the pseudo-differential operator with symbol σP px, ξq´ppx, x, ξq is bounded

from Hs,LpGq to Hs´pm´ 1
κ
pρ´p2κ´1qδqq,LpGq.

Proof. To conclude the result need to show that

σP px, ξq ´ ppx, x, ξq P S
m´ 1

κ
pρ´p2κ´1qδq,L

ρ,maxtδ, pρ`δq
2
u

“ S
m´ 1

κ
pρ´p2κ´1qδq,L

ρ, pρ`δq
2

. (3.8)

To prove (3.8) we use the asymptotic expansion in (2.25), which implies that

σP px, ξq ´ ppx, x, ξq „
ÿ

|β|ě1

B
pβq
Y ∆β

ξ ppx, y, ξq|y“x.

The asymptotic formula above means that, for all N P N0,

σP px, ξq ´ ppx, x, ξq “
ÿ

1ď|β|ďN

∆β
ξ

ż

G

wξpzqpB
pβq
Z wξpzqqσApz

´1x, ξqdz ` rNpx, ξq,

with rNpx, ξq P S
m´ pρ`δq

2
pN`1q,L

ρ, pρ`δq
2

pGˆ pGq. Let N ě 1 and define

SNpx, ξq :“ σP px, ξq ´ ppx, x, ξq ´ rNpx, ξq.

Now we expand σApz
´1x, ξq by using Taylor expansion with respect to z´1 at

z´1 “ e as in the proof of Lemma 3.6, and have

SNpx, ξq “
ÿ

1ď|β|ďN

∆β
ξ

ż

G

wξpzqpB
pβq
Z wξpzqqdz σApx, ξq
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`
ÿ

|γ|“1

ÿ

1ď|β|ďN

∆β
ξ

ż

G

wξpzqpB
pβq
Z wξpzqqqγpzqσA,γpz

´1x, ξqdz

“ Ipx, ξq ` Jpx, ξq,

where σA,γ P S
m`δ|γ|,L
ρ,δ pG ˆ pGq (|γ| “ 1) comes, as before, from the remainder

term of Taylor expansion. To have (3.8) we need I, J and rN to belong to the
subelliptic class in (3.8). We then analyse the three terms separately starting
from I.

Note that, when |β| “ 1, wξ and B
pβq
X wξ are even and odd respectively (see

Proposition 3.11 in [29]), so we have
ż

G

wξpzqpB
pβq
Z wξpzqqdz “ 0, for |β| “ 1,

and

Ipx, ξq “
ÿ

2ď|β|ďN

∆β
ξ

ż

G

wξpzqpB
pβq
Z wξpzqqdz σApx, ξq.

In particular Ipx, ξq will be given by a sum of terms of the form
ÿ

2ď|β|ďN

ż

G

p∆η
ξwξpzqqp∆

λ
ξB
pβq
Z wξpzqqdz∆µ

ξσApx, ξq, (3.9)

with |η`λ`µ| ě |β|. Due to the measure of the support of wξ, each term of the
form (3.9) satisfies

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

G

p∆η
ξwξpzqqp∆

λ
ξB
pβq
Z wξpzqqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cxξy´
pρ`δq
2κ

n
xξy

npρ`δq
4κ

´ρ|η|
xξy

npρ`δq
4κ

´ρ|λ|` pρ`δq
2κ

|β|.

(3.10)
Then for I we get

}xMpξq´m`
1
κ
pρ´p2κ´1qδqIpx, ξq}op ď C

ÿ

2ď|β|ďN

ÿ

λ,η,µ;|η`λ`µ|ě|β|

}xMpξq´m`ρ|µ|∆µ
ξσApx, ξq}op

ˆxξy´ρp|λ|`|η|q`
pρ`δq
2κ

|β|
}xMpξq´ρ|µ|`

1
κ
pρ´p2κ´1qδq

}op

ď C
ÿ

2ď|β|ďN

ÿ

λ,η,µ;|η`λ`µ|ě|β|

sup
i“1,...,dξ

xνiipξqy
´ρp|λ|`|η|`|µ|q` pρ`δq

2
|β|` 1

κ
pρ´p2κ´1qδq

À C,

since

´ρp|λ| ` |η| ` |µ|q `
pρ` δq

2
|β| “ ´ρp|λ| ` |η| ` |µ| ´ |β|q `

δ ´ ρ

2
|β|

ă
δ ´ ρ

2
|β| ď δ ´ ρ ă 0,

and δ ´ ρ ` 1
κ
pρ ´ p2κ ´ 1qδq ď 0 for δ such that ρ ´ p2κ ´ 1qδ ą 0. Finally, by

using the same kind of estimates as above in combination with Leibniz rule (see
Remark 2.1), we can also conclude the more general estimate

}xMpξq´m`
1
κ
pρ´p2κ´1qδq`|α|ρ`|β|maxtδ, pρ`δq

2
u
B
pβq
X 4α

ξ Ipx, ξq}op ď C
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which, in particular, gives that Ipx, ξq P S
m´ 1

κ
pρ´p2κ´1qδq,L

ρ,maxtδ, pρ`δq
2
u

“ S
m´ 1

κ
pρ´p2κ´1qδq,L

ρ, pρ`δq
2

.

We now consider the term Jpx, ξq. In this case we have

}xMpξq´m`
1
κ
pρ´p2κ´1qδqJpx, ξq}op ď C

ÿ

1ď|β|ďN

ÿ

λ,η,µ;|η`λ`µ|ě|β|

ÿ

γ,|γ|“1

}xMpξq´m`
1
κ
pρ´p2κ´1qδq

ż

G

p∆η
ξwξpzqqp∆

λ
ξB
pβq
Z wξpzqqqγpzq∆µ

ξσA,γpz
´1x, ξqdz}op,

so, as for Ipx, ξq, we prove that each term in the sum is bounded. Argu-

ing as before (and using the fact that p∆η
ξwξpzqqp∆

λ
ξB
pβq
Z wξpzqq commutes with

∆µ
ξσA,γpz

´1x, ξq) we get

}xMpξq´m`
1
κ
pρ´p2κ´1qδq

ż

G

p∆η
ξwξpzqqp∆

λ
ξB
pβq
Z wξpzqqqγpzq∆

µ
ξσA,γpz

´1x, ξqdz}op

ď C sup
i“1,...,dξ

xνiipξqy
´
pρ`δq
2κ

´ρp|η|`|λ|`|µ|q` pρ`δq
2
|β|` 1

κ
pρ´p2κ´1qδq

ď C sup
i“1,...,dξ

xνiipξqy
´
pρ`δq
2κ

´ρp|η|`|λ|`|µ|´|β|q` pδ´ρq
2
|β|` 1

κ
pρ´p2κ´1qδq

ď C.

The more general estimate (for |α|, |β| ‰ 0)

}xMpξq´m`
1
κ
pρ´p2κ´1qδq`|α|ρ`|β|maxtδ, pρ`δq

2
u
B
pβq
X 4α

ξ Jpx, ξq}op ď C

giving that J P S
m´ 1

κ
pρ´p2κ´1qδq,L

ρ,maxtδ, pρ`δq
2
u

pG ˆ pGq “ S
m´ 1

κ
pρ´p2κ´1qδq,L

ρ, pρ`δq
2

pG ˆ pGq can be

derived by following the same steps as in the proof of Lemma 3.6, therefore we
omit the proof.

We are now left with the study of rN . In this case, by the properties of
the remainder in the asymptotic formula, we have that, for all N P N, rN P

S
m´ pρ`δq

2
pN`1q,L

ρ, pρ`δq
2

pGˆ pGq, for all 0 ď δ ă ρ ď 1 such that ρ´ p2κ´ 1qδ ą 0. This

shows (3.8) and concludes the proof. �

Proof of Theorem 1.1. Let us consider the amplitude operator P in Proposition
3.5. In view of Remark 3.1, it suffices to prove that

Q : H
m´ 1

κ pρ´pκ´1qδq

2
,L
pGq Ñ H

´pm´ 1
κ pρ´pκ´1qδqq

2
,L
pGq

is a bounded operator. To show this property it is enough to observe that

σQpx, ξq :“ pσApx, ξq ´ ppx, x, ξqq ` pppx, x, ξq ´ σP px, ξqq,

therefore, by Lemma 3.6 and Lemma 3.7, the required boundedness of Q follows.
This completes the proof of the subelliptic sharp G̊arding inequality. �
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4. Final remarks

Due to the statement of our main result some remarks are in order.
Considering the general version of the Euclidean sharp G̊arding inequality for

pρ, δq-classes, and its correspondent in the compact Lie group setting given by
Theorem 1.1 in the case κ “ 1, that is Corollary 1.2, one would expect that the
suitable version of the subelliptic sharp G̊arding inequality should be as follows:

Conjecture. Let G be a compact Lie group and let L “ LX be the (positive)
sub-Laplacian associated with a system X “ tXiu

k
i“1 of left-invariant vector fields

satisfying Hörmander’s condition of step κ. For 0 ď δ ă ρ ď 1 and m P R,
let A ” apx,Dq : C8pGq Ñ D 1pGq be a continuous linear operator with symbol

a P Sm,Lρ,δ pG ˆ
pGq. Then, if apx, rξsq ě 0 for all px, rξsq P G ˆ pG, there exists a

positive constant C such that

RepAu, uq ě ´C}u}2
H
m´pρ´δq

2 ,L
pGq
, (4.1)

for all u P C8pGq.

The subelliptic setting and the noncommutativity of the group have not allowed
us to prove the expected version (4.1) of the subelliptic sharp G̊arding inequality.
However, it is worth to make some considerations to stress the importance and
nontriviality of our result.

Let us first recall that some inclusions between global subelliptic classes and
standard global classes can be established. Specifically, one has that

1. If m ą 0, 0 ď δ ă ρ
κ
, and ρ ď 1, then Sm,Lρ,δ Ă S m

ρ
κ
,δpGq.

2. If m ď 0, 0 ď δ ă ρ
k
, and ρ ď 1, then Sm,Lρ,δ Ă S

m
κ
ρ
k
,δ
pGq.

Three immediate consequences of the inclusions above and of Corollary 1.2 are
described below.

Consequence 1. Let m ą
ρ
κ
´ δ ą 0, 0 ď δ ă ρ

κ
ď 1

κ
, and a P Sm,Lρ,δ pG ˆ

pGq.

Then, if apx, rξsq ě 0 for all px, rξsq P G ˆ pG, there exists a positive constant C
such that

RepAu, uq ě ´C}u}2

H
m´p

ρ
κ´δq
2 pGq

ě ´C}u}2

H
κm´p

ρ
κ´δq

2 ,L
pGq

, (4.2)

for all u P C8pGq.

Consequence 2. Let 0 ă m ď
ρ
κ
´ δ, 0 ď δ ă ρ

κ
ď 1

κ
, and a P Sm,Lρ,δ pG ˆ

pGq.

Then, if apx, rξsq ě 0 for all px, rξsq P G ˆ pG, there exists a positive constant C
such that

RepAu, uq ě ´C}u}2

H
m´p

ρ
κ´δq
2 pGq

ě ´C}u}2

H
m´p

ρ
κ´δq
2 ,L

pGq

, (4.3)

for all u P C8pGq.
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Consequence 3. Let m ď 0, 0 ď δ ă ρ
κ
ď 1

κ
, and a P Sm,Lρ,δ pG ˆ

pGq. Then, if

apx, rξsq ě 0 for all px, rξsq P Gˆ pG, there exists a positive constant C such that

RepAu, uq ě ´C}u}2

H

m
κ ´p

ρ
κ´δq
2 pGq

ě ´C}u}2

H

m
κ ´p

ρ
κ´δq
2 ,L

pGq

, (4.4)

for all u P C8pGq.

The previous inequalities, namely (4.2), (4.3) and (4.4), show that Theorem
1.1 for subelliptic classes (κ ‰ 1) does not follow from Theorem 1.1 applied
to standard global classes (κ “ 1), that is, from our Corollary 1.2. In other
words, the subelliptic sharp G̊arding inequality is not a consequence of the so
called elliptic sharp G̊arding inequality. Note also that Theorem 1.1 applied to
subelliptic classes gives results better than those in (4.2), (4.3) and (4.4).

To conclude, let us say that it is natural to conjecture that (4.1) holds true in
the subelliptic setting. Of course one can find particular operators for which (4.1)
is satisfied. An immediate example is given by operators of the form A “ apxqL,
where apxq is a nonnegative smooth function and L is a positive sub-Laplacian.
However, this is a very specific operator for which the validity of (4.1) follows
from simple and direct computations. For the sake of completeness we will briefly
prove this fact below.

Note that we can write

RepapxqLu, uq “ Re
`“

Ma,L1{2
‰

L1{2u, u
˘

` RepL1{2aL1{2u, uq,

“
`“

Ma,L1{2
‰

L1{2u, u
˘

` }
?
aL1{2u}2L2pGq,

where
“

Ma,L1{2
‰

stands for the commutator between the multiplicative opera-

tor Maf :“ af and L1{2. In this particular case (it is not true in general in
our non Euclidean setting), we have that

“

Ma,L1{2
‰

is of subelliptic order 0,

namely its symbol belongs to the class S0,L
1,0 pG ˆ pGq. This allows us to estimate

Re
`“

Ma,L1{2
‰

L1{2u, u
˘

“ Re
`

L´1{4
“

Ma,L1{2
‰

L1{2u,L1{4u
˘

ď C}u}21{2,L, for some
C ą 0, and to conclude that

RepapxqLu, uq ě ´C}u}21{2,L, @u P C8pGq,

where the index 1
2
“ m´1

2
(m “ 2) is “optimal”.

Of course, by using the steps above, we have that (4.1) holds true for any
operator of the form A “ apxqLm with m P R.

That said, it is important to underline once more that the noncommutative
structure plays a determinant role in the validity of fundamental a priori estimates
such as the one studied here, therefore it would not be surprising if the expected
optimal result in (4.1) can be attained only under very particular conditions
and/or with tools still to be developed.
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