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SUBELLIPTIC SHARP GARDING INEQUALITY ON
COMPACT LIE GROUPS

DUVAN CARDONA, SERENA FEDERICO, AND MICHAEL RUZHANSKY

ABSTRACT. In this work we establish a subelliptic sharp Garding inequality on
compact Lie groups for pseudo-differential operators with symbols belonging
to global subelliptic Hormander classes. In order for the inequality to hold
we require the global matrix-valued symbol to satisfy the suitable classical
nonnegativity condition in our setting. Our result extends to .7 (G)-classes,
0 < d < p, the one in [29] about the validity of the sharp Garding inequality
for the class 77", (G). We remark that the result we prove here is already new
and sharp in the case of the torus.
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1. INTRODUCTION

1.1. Outline and historical remarks. In this work we establish the sharp
Garding inequality for pseudo-differential operators with symbols in the global
subelliptic Hérmander classes on compact Lie groups [1]. As a byproduct we
obtain the extension to the global Hormander classes .75(G), for all 0 < § <
p < 1, of the sharp Garding inequality proved in [29] for the Kohn-Nirenberg
classes 7 (G).

Before describing in detail the main result of this paper concerning operators
on compact Lie groups, let us briefly go back to the Euclidean case and describe
the celebrated microlocal result which inspired the analysis of the problem we
consider here.

Garding’s type inequalities have played a crucial role in the study of several
problems related with partial and pseudo-differential operators. These inequal-
ities are L2-lower bounds which can be applied, in different contexts, to obtain
results about the existence and uniqueness of solutions of differential and pseudo-
differential equations. The starting point in the investigation of these fundamen-
tal lower bounds was the celebrated work of Garding [12] in which he proved the
so called Garding inequality for elliptic operators:

Let P be an elliptic self-adjoint pseudo-differential operator of order m on an
open set 0 < R", then, for any p < m/2 and any compact K < ), there exist
two positive constants ¢, c and C,, i such that'

(Pu,u) > cuuclul’yg — Cuclulfn,  Vu e GF(K). (1.1)

Inequality (1.1) was used by Garding to derive the existence of solutions of
the Dirichlet problem for elliptic operators as well as to study the distribution
of the eigenvalues. However, in order to deal with non-elliptic problems, some
refinements of the latter are needed. In particular, Hérmander proved in [14] the
following Sharp Garding inequality for operators with symbols having nonegative
real part:

Let P be a pseudo-differential operator of order m defined on an open set €} <
R™, and let p € S7}H(Q2) be its symbol. If Re(p(x,§)) = 0 for all (z,£) € T*Q\O,
then for any compact subset K < ) there exists a constant C'x > 0 such that

Re(Pu,u) = —C’KHuH%nT_l, Yu e CF(K). (1.2)
After (1.2) some generalizations were proved, that is, specifically, the suitable
version for operators with symbols in S7';(R"), and the corresponding version for
systems (see, for instance, [31]).

Note that the previous inequalities are both based on a sign property of the
symbol, and that no geometric property of the characteristic set is taken into
account.

'We denote by H* the standard Sobolev space of order s defined as the completion of C¢°(R")
with respect to the norm |jugs := ||(1 — A)2u|z2, where A is the standard Laplacian on R™.
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Further improvements of (1.2) have been established by means of a deeper
analysis of the geometry of the characteristic set and of the invariants associated
with the operators, like, for instance, the principal and the subprincipal symbol.
In this direction we have the Melin inequality proved in [20] and the Hérmander
inequality proved in [16], the latter improved by Parenti and Parmeggiani in [23]
(see also [21]). A somehow different approach was adopted by Fefferman and
Phong in [8] where they derived the sharpest result only by requiring the nonneg-
ativity of the total symbol of the operator. For a survey about the fundamental
lower bounds mentioned above we refer to [27].

Let us stress that these refinements not only allow the study of nonelliptic
operators, but can also be used to obtain microlocal energy estimates leading to
results on propagation of singularities (see Hérmander [1%]). Additionally, the
(sharp) Garding inequality and its generalizations become a fundamental tool
to analyze the existence of solutions of a wide class of boundary value problems
(like the §-Neumann problem), and to investigate the global solvability of evolu-
tion problems and the local well-posedness of the Cauchy problem for evolution
equations.

Let us also mention that some results, both positive and negative, about the
validity of some of the fundamental lower bounds mentioned above are known for
systems as well, and we refer the interested reader to [25, 20] for an overview of
this topic. In the setting of compact Lie groups the validity of such estimates is
more delicate to analyze. Indeed, only some of the lower bounds presented above
have been proved so far. For instance, in the case of a compact Lie group G, and
more generally on manifolds, (1.1) remains valid for operators with symbols in
the usual S)';(M) Hormander classes, where 0 <d < p<1,and p >1—4.

We recall that on closed manifolds (p, d)-pseudo-differential operators are well
defined provided that 0 < § < p < 1, p = 1-9, and that, under these assumptions,
the global classes 775(G) defined in [25] coincide with the usual Hormander
classes on compact manifolds. However bear in mind that the 77 (G)-classes are
defined for all 0 < ¢ < p < 1 without the restriction p > 1 — 4.

On compact Lie groups, (1.1) for global symbols in the classes /75(G), for
0 < 6§ < p <1 (the whole range), was proved by the third author and J. Wirth
in [31] and extended for subelliptic classes of pseudo-differential operators by the
first and third author in [1, Page 96]. We refer the reader to [5, Page 27] for
Garding type inequalities on smooth manifolds, with or without boundary, using
global symbol criteria.

As for the sharp Garding inequality in the general manifold setting, since a
condition on the whole symbol (and not only on the principal symbol) is needed,
this makes the result far reaching in this generality (symbols are not invariantly
defined on manifolds, while the principal symbol is). However, by using the
description of Hormander classes W';(G,loc), 0 <d < p <1, p=1—9, in terms

of global symbols defined on the phase space G x G. Here, G is the unitary dual
of G, (see (2.14) for details about these classes of operators), the third author and

2The unitary dual of G consists of all equivalence classes [¢] of irreducible, unitary continuous
representations of G, { € End(G, He) on a finite dimensional vector space He =~ Cd,
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Turunen proved in [29] the following sharp Gérding inequality on any compact
Lie group:

Let A € WY (G,loc) be such that the almost positivity condition a(x,[£]) = 0
on the global (matriz-valued) symbol of A holds true, then

Re(Au,u)2(q) = _CHUHHMT—I( Yu e C*(G). (1.3)

G)’

We remark again that, in contrast with (1.1), this result requires a condition
on the global symbol of A. This is a nontrivial difference since results involving
conditions on the principal symbol only can be easily extended to manifolds,
while results requiring conditions on the total symbol are, in general, not (yet)
available in the manifold setting.

In the present paper we will focus on the validity of what we shall call subel-
liptic sharp Garding inequality, that is, on the suitable formulation of the sharp
Garding inequality on compact Lie groups for pseudo-differential operators with
symbols belonging to global subelliptic classes. The aforementioned subelliptic
classes, and the corresponding pseudo-differential calculus, are developed in [/]
by using the sub-Riemannian structure of an arbitrary compact Lie group G and
the matrix-valued quantization developed in [28].

Since any sub-Riemannian structure on G is encoded in terms of a positive sub-
Laplacian £ over a compact Lie group G, the global subelliptic Hormander classes

of symbols in [1] were denoted by S;'?(;L(G X CAT‘), where me Rand 0 <0 < p < 1.

1.2. The subelliptic sharp Garding inequality. The statement of our main
result, that is of the subelliptic sharp Garding inequality on a compact Lie group
G, is given in Theorem 1.1 below. Here and in the rest of the paper we shall
denote by H**(G), for s € R, the subelliptic Sobolev space of order s associated
with a fixed positive sub-Laplacian £, that is, the space defined as the completion
of C*(G) with respect to the norm [ul|gs.2(q) == [(1 4+ £)2u|r2(q).-

Theorem 1.1 (Subelliptic sharp Garding inequality). Let G be a compact Lie
group and let L = Lx* be the (positive) sub-Laplacian associated with a system
X = {X;}¥ | of left-invariant vector fields satisfying Hormander’s condition of
step k. For0<p<1land0<§< (26 —1)"1p, and for m e R, let

A=a(z,D): C*(G) — 2'(G)

be a continuous linear operator with global symbol a € S;;la’ﬁ(G X CAJ) Then, if
a(z,[€]) = 0 for all (z,[€]) € G x G, there exists a positive constant C' such that

2
Re(Au’u) = _C”u” m—1(p—(26—1)8) o] (14)
H— 2 =G
for all uw e C*(G), where (-,-) stands for the L*-scalar product.
Ly =X} - X3 - — X2
4which means that the vector fields X1, -, Xj, together with their commutators of length

at most x span the Lie algebra g of G (under the identification g ~ T.G, with e € G being the
neutral element). If Ly is a positive Laplacian, we trivially have x = 1.
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As a consequence of the previous result we obtain in Corollary 1.2 below the
elliptic sharp Garding inequality for operators with symbols in the Hormander
classes .75(G) (corresponding to the case when x = 1).

Note that Corollary 1.2 extends the main result in [29] in that the inequality
is proved for operators with symbols in the particular class 7 (G).

Corollary 1.2 (Elliptic sharp Garding Inequality). For 0 < § < p < 1, let
A = a(z,D) : C*(G) — Z'(G) be a continuous linear operator with symbol
a€ L"(G), meR. Let us assume that a(x,[£]) = 0 for every (z,[£]) € G x G.

0,0
Then, there exists C' > 0, such that

Re(A > —Clull® g 1.5
e(Au, u) [ull” meps " (1.5)

for all u e C*(G).
Let us briefly discuss some immediate consequences of our main Theorem 1.1.

Remark 1.3. Notice that when Lx = A is the Laplacian on the group (that is
X = {X;}I, is a basis of the Lie algebra g, or, equivalently, x = 1), then Theorem
1.1 provides the sharp Garding inequality for operators with nonnegative symbols
in the classes .%(G) with 0 < 0 < p < 1 (see Corollary 1.2). This, in particular,
shows that our result extends the one in [29] where the elliptic Sharp Garding
inequality (namely for the standard global non subelliptic symbols defined in
[28]) was proved only for (p,d) = (1,0). More remarkably, the result applies to
all #%(G) classes of global symbols with 0 < ¢ < p < 1, and not only to those
where p > 1 — § and corresponding to the standard Hormander classes.

Remark 1.4. Observe that the elliptic Sharp Garding inequality for Y;}(G)—
classes with (p,d) in the whole admissible range (see Corollary 1.2), is already a
new result in the case of the torus G = T". As remarked above, the standard
local theory allows to consider a restricted range for p and 4, therefore our result
is much better that the one possibly obtainable trough the local theory, since here
the parameters p and ¢ can be taken in the full range 0 < § < p < 1, allowing
also the case where p < 1 — 4.

As regards the purely subelliptic setting, the appearence of the parameter
 (which is related to the subelliptic order of the fixed sub-Laplacian) in the
subelliptic Sobolev norms in (1.4), is dictated by the combination of the noncom-
mutativity of the group and the noncommutativity property of the symbols of
sub-Laplacians. Indeed, while the Laplacian is a central operator having matrix-
valued global symbol commuting with any other symbol, no sub-Laplacian has
the same commutativity properties. Therefore, in order not to restrict our analy-
sis to very particular subclasses of symbols, we combined elliptic with subelliptic
strategies.

Note that, as observed by the third author and Fischer in [10], the same problem
arises in the nilpotent Lie group setting. In fact, due the intrinsic noncommu-
tativity and subellipticity of the setting, in [10] the sharp Garding inequality in
the nilpotent setting is announced for very particular operators, that is, roughly
speaking, for those commuting with the fixed sub-Laplacian.
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We want to stress that no such commutativity condition is assumed in Theorem
1.1. However there is a price to pay to work in this general framework, price that
is given by a restriction on the classes to which the result applies, namely those
such that 0 < 0 < (2k — 1)7'p. Note that the case (p,d) = (1,0) is covered by
our result.

Let us mention that even imposing a commutativity condition in the same
spirit as in [10], the use of the global pseudo-differential subelliptic calculus does
not lead to the expected result (that is (1.4) without the appearence of  in the
Sobolev norm), and that the expected result for very special classes can most
probably be reached via the global functional calculus.

More remarks about the strength of our result in the purely subelliptic setting
are given in Section 4. There we also show that our subelliptic result does not
follow from the elliptic one.

We now conclude this introduction by giving the plan of the paper.

e In Section 2 we recall some basic facts about pseudo-differential operators
on compact Lie groups, we recall the subelliptic global symbol classes in
[1] that are the object of our analysis. At the end of the section an analysis
of amplitude subelliptic operators is consistently developed.

e In Section 3 we focus on the proof of the main theorem about the subel-
liptic sharp Garding inequality.

e Finally, Section 4 is devoted to some remarks about our result in the
purely subelliptic setting.

2. SUB-LAPLACIANS AND PSEUDO-DIFFERENTIAL OPERATORS ON COMPACT
LIE GROUPS

2.1. Pseudo-differential operators via localisations. Pseudo-differential op-
erators on compact manifolds, and consequently on compact Lie groups, can be
defined by using local coordinate charts (see Hérmander [17] and also Taylor [33]
for a good introductory background on the subject).

Let us briefly introduce these classes starting with the definition in the Eu-
clidean setting. Let U be an open subset of R™. We say that the “symbol”
a € C*(U x R",C) belongs to the Hormander class of order m and of (p,d)-
type, ngé(U x R™), 0 < p,d < 1, if for every compact subset K < U and for all
a, B € N}, the symbol inequalities

\6’58?&(33,5)\ < Oa,ﬁ,K(l + |£|)m—p\o¢|+5|ﬁ\’
hold true uniformly in z € K for all £ € R". Then, a continuous linear operator

A:CP(U) - C*(U) is a pseudo-differential operator of order m of (p, §)-type,
if there exists a symbol a € S7%(U x R") such that

Af(z) = f (1, €)(Fan f) (€

Rn
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for all f e C(U), where
(Fao PO i= | ¥ f(w)da

U
is the Euclidean Fourier transform of f at £ € R™.

Once the definition of Hormander classes on open subsets of R™ is established,
it can be extended to smooth manifolds as follows. Given a C*-manifold M, a
linear continuous operator A : C°(M) — C®(M) is a pseudo-differential operator
of order m of (p,d)-type, with p > 1 — ¢, and 0 < § < p < 1, if for every local
coordinate patch w : M, ¢ M — U, < R™, and for every ¢,¢ € C{(U,), the
operator

Tu := (w )*Aw*(ou), ue C*(U,),°

is a standard pseudo-differential operator with symbol ar € S7'5(U, x R"). In this
case we write A € W7'5(M, loc).

2.2. The positive sub-Laplacian and pseudo-differential operators via
global symbols. Let G be a compact Lie group with Lie algebra g ~ T.G,
where e is the neutral element of G, and let

X:{X1,7Xk}cg

be a system of C*-vector fields. For all I = (iy,--- ,i,) € {1,2,--- , k}* of length
w = 1, we denote by

Xro= X, [ Xy [ X, Xan ] -]

a commutator of length w, where X; := X; when w = 1 and I = (7). The system
X is said to satisfy Hérmander’s condition of step (or order) k if g = span{Xj :
|I| < k}, that is, in other words, the vector fields X, j = 1,..., k, together with
their commutators up to length x, generate the whole Lie algebra g.

Note that we are assuming that there is no subsystem Y = {Y3,--- | Y,;} < X,
¢ < k, of smooth vector fields such that g = span{Y7 : |I| < k}. In this case we
call X a system of Hormander’s vector fields.

Given a system X = {Xj,---, X} of Hormander’s vector fields, then the
operator defined as

19

L=Lx:=—(X}+ -+ X},
is a hypoelliptic operator by Hormander theorem on sums of the squares of vector
fields (see Hormander [15]). In particular the operator £ is also subelliptic, and
it is called the subelliptic Laplacian associated with the system X, or simply
sub-Laplacian. The subellipticity of £ follows from the validity of the estimate

[19]

[y < CUI1LuU] 26y + [u] 2); (2.1)

with s = 2/k, while the Sobolev space H® of order s is defined as the completion
of Ci°(R™) with respect to the norm

H3(Q) = H(l — A)%UHLQ(G),

where A is the standard Laplace-Beltrami operator on G.

i

*

%As usually, w* and (w™1)* are the pullbacks, induced by the maps w and w™! respectively.
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It is clear from the definition that one can define different sub-Laplacians by
using different systems of Hormander’s vector fields (and that satisfy Hormander
condition of different step).

We will not treat other aspects of the analysis of sub-Laplacians here, we refer
the interested reader to Agrachev et al. [1], Bismut [3], Domokos et al. [7], and to
the fundamental book of Montgomery [21]. For some applications of Hormander’s
vector fields we refer to the book of Bramanti [2].

Let us now introduce the Hausdorff dimension associated with the sub-Laplacian
L. For all z € G, let H*G be the linear subspace of the tangent space 7,G gen-
erated by the X;’s and by all the Lie brackets

[Xju ij]: [Xjn [Xj27 Xj3]]v Ty [ij [Xan [Xjav T >ij]]]a

with w < k. Then clearly Hérmander condition can be stated as H;G' = T,G for
all x € GG, where the following inclusions hold

H'Gc HGc HGc - c H"'Gc H'G=T,G, reG.
Note that the dimension of every H*('is constant in x € G, so we set dim H*G :=
dim H¥@, for all x € G, and have that the Hausdorff dimension can be defined
as (see e.g. [19, p. 6]),
k—1
Q= dim(H'G) + Y (i + 1)(dim H*'G — dim H'G). (2.2)
i=1
As already mentioned in the introduction, we will make use of the quantization
process developed by the third author and V. Turunen in [28]. We briefly recall
below how this global quantization is defined.

Let A be a continuous linear operator from C*(G) into 2'(G), and let G be
the algebraic unitary dual of GG. Then, there exists a function

a:GxG— UsenCH¢, (2.3)

that we call the symbol of A, such that a(z,€) := a(x,[£]) € Cl*% for every
equivalence class [¢] € G, where £ : G — Hom(H;), He >~ C%, and such that

A~

Af(e) = Y deTr[é()a(z, ) F(E)], Vf e C*(G). (2.4)
[¢leG

Note that we have denoted by

76 = (Fh©) = f f(@)E(x) dz € C% [€] e G,
G

the Fourier transform of f at £ = (§ij)Z§:1, where the matrix representation of ¢ is
induced by an orthonormal basis of the representation space H¢. Correspondingly,
one denotes the inverse Fourier transform of g(&) € Cd*d as

(Flg)(x) = ), deTr(E(x)g(€)), ze.
[¢leG
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The function a in (2.3) satisfying (2.4) is unique, and satisfies the identity

alw,€) = &(@)*(AQ)(x), A = (A&y)5,, [€] € G,
Note that the previous identity is well defined. Indeed, it is well known that the
functions &;;, which are of C“-class, are the eigenfunctions of the positive Laplace
operator Lg, that is L5§;; = Ag&; for some non-negative real number A = 0
depending only of the equivalence class [{] and not on the representation &.

In general, we refer to the function a as the (global or full) symbol of the
operator A, and we will use the notation A = Op(a) to indicate that a := o4 is
the symbol associated with the operator A.

In order to classify symbols in the Hormander classes, in [28] the authors defined

the notion of difference operators, which endows G with a difference structure.

A~ A~

Following [32], a difference operator Q¢ : Z'(G) — 2'(G) of order k is defined as

Qef(€) = af(€). [€] € G, (2:5)
for some function ¢ vanishing of order k at the neutral element e. We will denote
by diff*(G) the class of all difference operators of order k. For a fixed smooth
function ¢, the associated difference operator will be denoted by A, = Q. A

system of difference operators (see e.g. [32])
A? = A(?(ll) s Ag&_), o = (Qj)lsj@', (26)

with ¢ > n, is called admissible if

rank{Vq(e) : 1 < j < i} = dim(G), and A, € diff' (G). (2.7)

An admissible collection is said to be strongly admissible if, additionally,
ﬂ{x € G :qi)(r) =0} = {e}. (2.8)
j=1

Remark 2.1. Matrix components of unitary representations induce difference
operators. Indeed, if &;,&, - , &, are fixed irreducible and unitary representa-
tion of (G, which not necessarily belong to the same equivalence class, then each
coefficient of the matrix

d
() = Lae, = [€(9)ij — 0isl; =1, g€ G, 1<L<E, (2.9)

that is each function ¢f;(g) := &(g)i; — dij, g € G, defines a difference operator
De, ij == F (£e(9)ij — 0i5) F . (2.10)

We can fix k > dim(G) of these representations in such a way that the corre-
sponding family of difference operators is admissible, that is it satisfies (2.8). To
define higher order difference operators of this kind, let us fix a unitary irreducible
representation &. Since the representation is fixed we omit the index ¢ of the rep-
resentaztions &y in the notation that will follow. Then, for any given multi-index

d . d .
a e Ng¥, with |a| = Z-,i-‘:l Q;j, we write

Ad, d
a . 11 £0 %y
DY := Do ...D
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for a difference operator of order |af.

The difference operators endow the unitary dual G with a difference structure.
For difference operators of the previous form, the following finite Leibniz-like
formula holds true (see [30] for details). Note that below we are still assuming
that the representation &, is fixed.

Proposition 2.2 (Leibniz rule for difference operators). Let G be a compact Lie

group and let D, o € Nﬁ“, be the family of difference operators defined in (2.10).
Then, the following Leibniz rule

(D%ayaz) (w0, €) (20, §)) = >, Ceny(D7ar)(20, §)(D7az)(wo,€), w0 € G,

Iylslel<lal<|y|+el

holds for all ay,ay € C*(G) x 5”(@’), where the summation is taken over all €,
such that |e|, 0| < |a] < |y| + |e].

Note that for different kind of difference operators, namely for those given by
compositions of difference operators of higher order associated with different rep-
resentations, a Leibniz-like formula still holds true by iteration. For more details
about difference operators and Leibniz-like formulas for admissible collections see
also Corollary 5.13 in [9].

We are now going to introduce the global Hormander classes of symbols defined
in [28]. First let us recall that every left-invariant vector field Y € g can be
identified with the first order differential operator dy : C*(G) — 2'(G) given by

v f(@) = (Gf)(@) = 5 F @ exp(tY o

If {X1,---,X,} is a basis of the Lie algebra g, then we will use the standard
multi-index notation

0% = Xg= 0%
for a canonical left-invariant differential operator of order |«|.

By using this property, together with the following notation for the so-called
elliptic weight

&=L+ Xg)"2 [€] € G,

we can finally give the definition of global symbol classes.
Definition 2.3. Let G be a compact Lie group and let 0 < §,p < 1. Let
o:GxG - U Cdexde
[£]eG

be a matrix-valued function such that for any [¢] € G, o(-,[€]) is of C®-class,
and such that, for any given z € G there is a distribution k, € 2'(G), smooth in

x, satisfying o(x,§) = x(f), [€] e G. We say that o € 7%(G) if, for all 8 and v
multi-indices and for all (z,[¢{]) € G x G , the following symbol inequalities

|05 A0 (2,€)|op < Ca,s&™PMHIAL (2.11)
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where | - ||, denotes the ¢ — (% operator norm of the linear finite dimensional
mapping (matrix multiplication by) o(z, &), that is,
lo(, &)lop = sup{llo(z,§)v]e : v e C*, Jufe = 1}. (2.12)

For 04 € %(G) we will write A € U'(G) = Op(S5(G)).

Remark 2.4. Note that, since [¢] € G is unitary, then if @x(f) =o(x,§) and k,
is integrable, then

lo (2, ) op < [Ealzry, Vi, [€]) € G x G. (2.13)

The global Hérmander classes on compact Lie groups can be used to describe
the Hormander classes defined by local coordinate systems. We present the cor-
responding statement as follows.

Theorem 2.5 (Equivalence of classes, [9, 28, 30]). Let A : C*(G) — 2'(G)
be a continuous linear operator and let 0 < § < p < 1, with p = 1 — 0. Then,
A e (G, loc), if and only if oa € F5(G). Consequently,

Op()5(G)) = ¥)5(G,loc), 0<d<p<1,p=1-0d. (2.14)
2.3. Odd and even functions on compact Lie groups. Since we will use
some properties of odd and even functions on G in this paper, for completeness
we recall these definitions below.
Definition 2.6. On a group G, a function f : G — C is

e even, if f(x7!) = f(x), for every x € G;

e central, if f(xy) = f(yx), for every z,y € G;
e odd, if f(z71) = —f(x), for every z € G.

Next, we summarize the action of vector fields on even and odd functions (see
Proposition 3.11 of [29]).

Proposition 2.7. Let G be a Lie group and f € C*(G). Let X;, 1 < i < s, be
an arbitrary system of vector fields in g. Then

Ox, - Ox, f(2z7™h) = (=1)"0x,0x,, - - Ox, f (@), (2.15)
if f is an even central function, and
Ox, -+ Ox, fa™) = (1) 0x, -+ Ox, f ()
of fis an odd central function.
2.4. Subelliptic Hormander classes on compact Lie groups. In order to
define the subelliptic Hormander calculus, we will use a suitable basis of the Lie

algebra arising from Taylor expansions. We explain the choice of this basis by
means of the following lemma (see Lemma 7.4 in [9]).

Lemma 2.8. Let G be a compact Lie group of dimension n. Let ® = {A;  }1<j<n

be a strongly admissible collection of difference operators (for the definition see
(2.7) and (2.8)). Then there exists a basis Xo = {X10, -, Xno} of g such that

Xoqu () (e) = 6.
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Moreover, by using the multi-index notation

ag(ﬂ) — af(lm o P

Xn,D’
for any 5 € Ny, where

5,0/ (0) = TIeDEXi0) o, S € C2(G)

and denoting by
RIn) = flay) = D) a™) - qln )k f(a)
la|<N

the Taylor remainder, we have that

Rl < Clyl™ max |05 f =),

al<N
where the constant C' > 0 is dependent on N, G and ® (but not on f € C*(G)).

» ®) ;o gty
In addition we have that Oy’ |z =Ry, v = Ry, and

10 =g R )l < Cly™ max (10577 f |1

provided that |3] < N.

Using the notation above, and denoting by Ag := Ag‘(ll) e Ag‘{;), we can in-
troduce the subelliptic Hormander class of symbols of order m € R of type
(p,9). We will use the notation M for the matrix-valued symbol of the oper-

ator M := (1+ £)2, and, for every [¢] € G and s € R, we define

M(€)* = diag[(1 + va(€)) lisisa,
where £(£) =: diag[v;(£)*]1<i<d, 18 the symbol of the sub-Laplacian £ at [¢],
as the symbol of the operator M, = (1 + £)2 € Op(Ss%’f)(G X é’)) (see after
Definition 2.9 for the notation Op(S;:g(G x G))).

Definition 2.9 (Subelliptic Hormander classes). Let G be a compact Lie group
and let 0 < 4, p < 1. Let us consider a sub-Laplacian £ = —(X?+---+ X?) on G,
where the system of vector fields X = {X;}¥ | satisfies the Hormander condition

of step k. We say that o € SZ:}E(G x G) if for all o, € Ny

Poppsmir(0) == sup MM PI NG (2, €)]lop < o0, (2.16)
(z,[€))eGxG
Papimuign(0) = sup (09 Ao (w, €))M()Pll=0IBl=m) | < oo (2.17)

(z,[€])eGx G

where | - [op is as in (2.12).
By following the usual nomenclature, we define:

Op(S35(G % G)) 1= {A: C*(G) — Z'(G) : 04 = Az, €) € SJ35(G x G)},
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with
Z deTe(E(2) A, €) F(€)), feC?(G), xeG.

Remark 2.10. Note that if we take £ as the bi-invariant Laplace-Beltrami op-
erator in Definition 2.3 (instead of a sub-Laplacian on G), then M(&) = (€)1,
and one can prove that Definition 2.3 and 2.9 give rise to equivalent classes of
symbols. If £ is a sub-Laplacian on G instead, the two definitions 2.3 and 2.9 can
not be interchanged. The operator £ is now subelliptic, which is much less than
being elliptic (especially in a noncommutative setting), and the symbol M(§)
is not a multiple of the identity matrix anymore. This produces additional non-
commutative effects that require more care in the definition of the classes, which
is the reason why we need the (apparently) more involved conditions (2.16) and
(2.17).

The decay properties of subelliptic symbols are summarized in the following
lemma (see [, Chapter 4]).

Lemma 2.11. Let G be a compact Lie group and let 0 < 0,p < 1. Ifae S (G X
CA?), then for every a, 8 € Nij, there exists Cy g > 0 satisfying the estzmates

m—p|o|+4|B]

105 Aga(w,€)|op < Cap sup (1+vs(€))) 2,

1<Z<d§

uniformly in (z,[£]) € G x G.

In the next theorem we describe some fundamental properties of the subelliptic
calculus [1].

Theorem 2.12. Let 0 < § < p < 1, and let \If;rféﬁ = Op(SZl;E(G X @)), for every
m € R. Then,
- The mapping A — A* : ‘I/ng'c — \I/Z?(’;ﬁ 1s a continuous linear mapping
between Fréchet spaces and the symbol of A*  oax(x,§) satisfies the as-
ymptotic expansion,

Z AL (A, €)%).
|| =0
This means that, for every N € N, and for all { € N,

~

AZOD | A(x,6) = D AL (A, €)%) | e Sy PrIWFIT L (G o @),

la[<N

where |ay| = £.

- The mapping (A1, As) — Aj o Ay : Z“’L X \I/Z?’;’E — \I/ng+m2’£ is a
continuous bilinear mapping between Fréchet spaces, and the symbol of
A = A0 Ay is given by the asymptotic formula

0 ~ ~
oa(w,&) ~ Y (AFA(2, )0 Ao, €)),

laf=0
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which, in particular, means that, for every N € N, and for all { € N,

AZOD | oal,€) = Y (AZA(,€)(0F) As(w,€))
lo|<N

A~

c S;tbél+m2—(p—5)(N+1)—p€+5|ﬁ|,[,(G « G),

for all oy € N with |a| = £.
-For0<d<p<1l (orfor0<d<p<1,06<1/k)let us consz’dera
continuous linear operator A : C*(G) — 2'(G) with symbol o € S L(G x

G). Then A extends to a bounded operator from L*(G) to LQ(G).

Remark 2.13. Let us remark that for all m > 0, we have

S5 (G) < 855G % G).

'K

To show this property we will make use of the estimate

©F s 1L+l £© (2.18)
proved in Proposition 3.1 of [13]. Indeed, for o € Yp%é(G), we have that

m_ o4 8
109 A2 (2, )| op < (€)FPlal+2181

and, consequently, we have

| M (&) o= D AL (2, ) |op < sUp (v(€)y A8l gy el 2151,

1<i<de
From the previous inequality, for —m + pla| 4+ 6|5] < 0, we obtain

(v (€)ymHeled= 5\B|<g>**plal+ Bl < ey <5>%fp\al+%lﬁ\ <1,
while for —m — pla| + 0|5| = 0, we have

<VZ.Z.(§)>—m+pla\—5\6|<§>%—plal+§\BI < <5>—m+p|a|—5\ﬁ|<§>%—p\al+%\ﬁ\ <1,

—m+p|a\ 318

proving that o € SZ%E(G X é)

Remark 2.14. The last assertion in Theorem 2.12 remains valid if we consider
0<d<p<1,0§ < 1/k This is the subelliptic Calderén-Vaillancourt theorem
proved in [1], which gives the boundedness of pseudo-differential operators in the
subelliptic calculus in subelliptic Sobolev spaces (see Theorem 2.19).

Proposition 2.15. Let A : C*(G) — Z'(G) be a continuous linear operator
with symbol a € Sm E(G X G) 0<d<p<1l Then A:H* L(G) - Hsfmvﬁ(G)

extends to a bounded operator for all s € R.

Proof. In view of the closed graph Theorem, we only need to show that there
exists C' > 0 such that

|Aw| gs-m. 2y = | Ms—mAu| 2y < Cuf

Hs£(G)> u e COO<G) (219)
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where M, := (1 + £)2. By replacing u by M_,u, we can see that (2.19) is
equivalent to the following estimate

HMs—mAM—sUHLQ(G) < OHUHLQ(G)a u € COO(G), (220)
which, once again by the closed graph theorem, is equivalent to show that A, :=
M, AM_, admits a bounded extension from C*(G) to L*(G). By the subel-
liptic calculus A, € Sg:f(G x (7). This, finally, gives the existence of a bounded

extension of A as a consequence of the subelliptic Calderén-Vaillancourt Theo-
rem. 0

Remark 2.16. The singularity orders for the right-convolution kernels of subel-
liptic operators can be classified in terms of the Hausdorff dimension () of the Lie
group G with respect to L. Indeed, if A : C*(G) — 2'(G) is a continuous linear
operator with symbol o € SZ?(;[:(G X é), then the right-convolution kernel of A,
T =k, : G — C®(G\{e}), defined by k, := F lo(z,-), satisfies the following
estimates for |y| < 1 (see Proposition 4.24 of [1]):

Q+m

‘kx(y)’ < Co‘y‘i Py lfm > _Q

k(y)| < Colloglyll, ifm=-Q

k2 (y)] < Co, if m < —Q.

Note that the kernel estimates in [9] differ from the estimates above in that Q)
is replaced by n = dim(G).

Let us also remark that for m+ @ > 0, in the context of the pseudo-differential
classes defined by Nagel and Stein [22] for sub-Riemannian structures, the kernel
estimates for the corresponding classes have been obtained in terms of the Carnot-
Carathéodory distance |y|.. = de.(y,e) whose orders should be better than the
one reported in Proposition 4.24 of [1] in terms of the geodesic distance on G.
This is because of the topological inequalities

1

Yyl < lylee < lyl=, lyl < 1. (2.21)
Indeed, operators of order m in the calculus of Nagel and Stein [22] (and of
type (1,0) have operators whose kernel behave like |y|c®"™ < |y|~@*™) when
m > —@ and |y| < 1. Note that for m = —Q), operators of order —@ behaves like
|log |ylee| < [log|yll, for |y| < 1. However, for our purposes, the kernel estimates in
[1] are good enough to describe the subelliptic calculus in terms of the differences
operators Ag.

2.5. Amplitude operators and kernel estimates. A fundamental tool to
prove our main result below is given by the so called subelliptic amplitude oper-
ators. Amplitude operators on graded Lie groups have been investigated in [11,
Page 374]. In the subelliptic setting on compact Lie groups one defines these
objects via the subelliptic amplitudes defined as follows.

Definition 2.17 (Subelliptic amplitudes and amplitude operators). A function
a:GxGExG— U[g]eé Cde*de i an amplitude symbol if for every [£] € G,
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a(-, -, [€]) is smooth. In addition, a belongs to the subelliptic amplitude class of
order m and type (p,d), A7} ﬁ(G x G x Q) if

sup [ M()Wl A= g oD AL a(, y, &) |op < 0, (2.22)
(z,y,[€]))EGXxGxG

and

sup (000 Aga(x, y, ) M(&) Pl WBD=m e oo (2.23)
(z,y,[€])eGXGXG

The amplitude operator AOp(a) associated with an amplitude a € .AZ?(’;E(G x (G X
G) is defined as

Af(x) = AOp(a ngTr () f ale,y, W) Fw)dy |.
¢le@ el

where f e C*(Q).

Given a left-invariant amplitude operator A = AOp(a), a € .AZ?(’;E(G x G X é),
it can be written in terms of their right-convolution kernels as in the classical
way. We give the definition below for completeness.

Definition 2.18. Let a(z,y,&) be a subelliptic amplitude and let A = AOp(a)
be the corresponding amplitude operator. We define the right convolution kernels
of A as the unique map k.. : G x G 3 (z,y) = kayy € S'(G) such that

/k\A,x,y(g) = a(xa Y 5)

Moreover we have
Af(x) = AOpf(a f F )k (v~ 2)dy.

Remark 2.19. As the right-convolution kernels of subelliptic pseudo-differential
operators enjoy the estimates in Remark 2.16, the same holds for the kernel of
subelliptic amplitude operators. Indeed, followmg the strategy in Proposition
4.24 of [1], one has that, for a € A7 c(G x G x G) and |z| < 1, the kernel of
A = AOp(a) satisfies

_Q+m .
kazy(2)] < Colz|” 7, ifm>-Q

kaay(2)] < Colloglyll,  if m=—@Q

kawy(2)] < Co, ifm<—Q.

The estimates in Remark 2.19, and the following Lemma 2.20, will be needed
to prove Proposition 2.21 below. Proposition 2.21 is crucial to prove our main
theorem, since it allows to connect amplitude operators to pseudo-differential
operators through an asymptotic expansion.
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Lemma 2.20. [fa € AmE(G x G x G), then the symbol

o(z,§) == a(z,z,§)
belongs to the subelliptic class S;”’E(G X @)

Proposition 2.21. Let 0 < d < p < 1, and let a € A7; E(G x G x G) Then A =

AOp(a) is a subelliptic pseudo-differential operator with symbol o4 € SZL(;L(G X CA?),
that is A = Op(0), which obeys to the formula

oa(@, ) ~ > (A A¢a(z,y. €))ly-a (2.24)
aeNy

in the sense that, for all N € N, and for all € N,

oy A « a m—(p—9 —pl+461B8], L
A EOE?) O-A(l'7£) - Z (&§/)A§a($;y7€))|y=m € Sp,5 (p=0)(N+1)=pt ]3] 3
lo| <N
(2.25)
for every oy € N with |ay| = £.

Proof. The proof of the asymptotic expansion (2.24) is similar to the one for the
analogous statement for elliptic Hormander classes. Indeed, as in [29, Page 2891],
we have that the symbol o4 of an amplitude operator A is given (by definition of
symbol of an operator A, see [28]) by

oa(z, &) =" (x)(Af)(x f Z d, Tr[n(2)a(x, xz~", n)]d=.

G

Moreover, by using the Taylor expansion (see Lemma 2.8)

az,z27n) ~ D (A a(@,y, ))ly—ati)(2),

n
aeNj

in the previous formula for o4, we get that

a6~ 3 | Z dy Tr[n(2) 87 a(x, ¥, ©))ly=al(e) (2)]d2

aeN”é [n]e

= Y €@ D) dTrn(2)0 alz, . €))ly—ate)(2)]dz
oceNgG [n ]e@

- )Gy (2 Z dyTr[n(2)05" a(w, y, €)= d>
aeN”G [n)e

=) ) Q)(2) D) dyTe[n(2) a(x,,€))|y=a]dz
aeNgé [n ]eG

= N (&Y A¢alz, y, )]y

n
aeNj
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Now we analyze the remainder term of the asymptotic expansion above. Our goal
is to prove that

ALY | o(2,6) = D (7 Agalw, g ))ly= | € Sy TN (2.96)

|o| <N

for all ay with |ay| = ¢. Note that aﬁ?) is a left-invariant differential operator,
and that it can be written in terms of right invariant differential operators of the
same order. Vice versa, right-invariant differential operators can be written as
linear combination of left-invariant ones. For this reason, one has the same kernel
estimates both for left and right- differentiations of kernels in the group variable
x. Here, we observe that when turning right-invariant vector fields into linear
combinations of left-invariant vector fields, and vice versa, we are using that GG
is compact.

For technical reasons we shall prove (2.26) with (9&?) replaced by 8;?), that is
with a right-differentiation. This is done in order to shorten the argument which
can be performed with left-differentiations passing from left to right-invariant
differential operators.

Below we will prove (2.26) (with 8%3)) in two steps. First we prove that for any
given ay, f and Ny € N there exists N = N (3,4, Ng) > Ny such that

g O (1, ) M)t o < o, (2.27)
for all (z,[¢]) € G x G, where
I(w,€) = o(z,6) = Y (A7 A%a(w,y,€))]y=a-

lal<N

In the second step we show that (2.27) is true for N = Ny, which, for the
arbitrariness of Ny, ay, 3, will prove the result.

Proof of Step 1. For any given (z,y) € G x G let k4, be the right-convolution
kernel of A (see Definition 2.18), that is

a(x,y, S) = /I%A,x,y(g), [5] € @

Denote also by k,, , the right-convolution kernel of A, that is the distribution
that satisfies 04(x, &) = k,, (&) for all [{] € G. Because of the identities

Af(z) = AOp(a) f(z) = ff(y)kA,m(y_lx)dy _ j Pz Yhpmme (2)d2,
G G

and

Af(@) = Op(0)f(2) = | F)kaaly 2y = [ Flaz ()

G G

kA,LU,y(y_lx) = kaA,x(y_lx>> kA,m,zz*1 (Z) = kaA,;r(Z>a
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for all 2, y, z € G. Moreover, by the Taylor expansion of k, ,,-1 at xz~! = z, or,

equivalently, of k, ,.-1 at 27! = e (see Lemma 2.8), we can write

Fona(2) = kapae(2) = Y. a(2)05 kawn (2)]sme + Riie® (2),

la|<N

(07 k \T,T
= 3 0a(2)0 kg g o1 ()1, + RO (2),

la| <N

where the remainder term satisfies the estimate

k x, k x,T ) (e}
[R5 () = IR ()] < Clal™ max 105 K (2) |6

Below we shall write the reminder term in a way or the other to make some
computations easier to follow.

Observe first that the inverse Fourier transform ﬁ}jz of the term in (2.26) is
given by

a ka oz (2
Gor ()0 | koo (2) = Y 4a(2)05 kit (2)s1ma | = 0y (2)0 R P (2).

lo| <N
Now let M’ = M'(N, 3,¢) be the smallest nonnegative integer such that
M' > pl =68 —m+ (p—0)(No + 1), (2.28)

then we have

|Ag 0D | oa(z,6) — Y (B Aga(x,y,€))]y—0 | M(€)PEPIm—lo=0 Mot

jol<N

=AY | oalz,&) = D) (A ALa(2,1,€))]y—
la|<N

—~

% M\(g)M/M(g)(P€—5|5\—(m—(ﬂ—5)(N0+1)))—M'Hop

< [AagdD [ oa(z, ) = D (A Aza(w,y.€))ly—s | MEM o

|| <N

B) pkaz, (2)
< 0+ £ (g0 (2)0D B O )] 11 600
by (2.13)

Now, the application of Leibniz rule gives

ki (2) Moy (2)0 Dk p i (2)
[+ £2)F [4a, ()80 R D ()] s(cae) = H(l + L) TRy ()11 (a2
o (Z) kAcc ( )
< Z X, Xk Ry F (]l (@)

1<y o << <k, [y| <MY



20 D. CARDONA, S. FEDERICO, AND M. RUZHANSKY

202) (8)
Qo (22)0L kA o, (22)
< Z H& [ xZ]%f e ’ (21>|2’1=Z2=Z]”L1(G,dz)7

[v1|+]v2]=]7
[v|<M’

where we have used the notation

G(Z;Q)qaé (zg)(?g)k,q,z,.(zg)

R:I:N <21)|21122:Z
(a(’m)qae (22)6%3)]%@,3:2;1 (ZQ) - Z Qr](z)a B)a(n 6(72 qae(ZZ)kA,x,zzl_l (22)> |21:€,22:Z
Inl<N
6“2)(1% (22)0( kA 2,z (22)

— R E [ —

By the estimates in Lemma 2.8 and in Remark 2.19 we have

a(wz)qa (22)6@)]{3&7;"(22)
Moo legrIRG T (20) s —saee | 22 (G
|71|\+||7§\|4=Iv|
vI<M’
[P s 00, (2D K (D
\m|+|vz| I o
[y|<sM’
Y > J‘izvv o max 0507 00, ()0 O R (2D s 15 ) 2
\71||+||“/2| v 1811+ 82]=18]
'y<
Q+m+5(|8|+]a|+[v1]) —pl+]val X
ZI%\H‘M\ ™ SG |Z\N |“/1‘|z] » dz if Q+s>0
vl<M’
< lehlvz\flvl S 12Vl n 2] d= if Q+s =0
<M’
thgwﬁﬂ § 2V mldz if Q+s <0
Y=
where

$' = m+ 5(18]+ lal + Inl) = pt + sl

To conclude the result now we just have to make sure that the integrals in the
last inequality are bounded in each case, which can be done by suitable choosing
N, with N > M’ M' = M'(53,¢, Ny)).

If @+ s < 0 it suffices to choose N such that N — |y| — 1 > —n, that is
N > M'+ 1 —n, to have the convergence of the integral.

If @+ s > 0, then we need to choose N such that p(N —|y1|) — (Q+ ) > —pn,
that is

p(N = [nl) = (Q + m +6(|8| + |af + [n]) — pl + |r2]) + pn > 0. (2.29)
Since
PN = |ml) = (Q +m + (8] + |af + |nl) — pl + |r2]) + pn

> p(N =) = (Q+m+0(|8] + N) — pl + |2]) + pn
> (p—0)N —M —Q— (m+6|8| — pl) + pn,
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then in order to have (2.29) satisfied it suffices to choose N such that
(p =N =M —Q— (m+36|5] = pt) + pn >0,

that is IV sufficiently large such that

M +Q+m+ 6|8 —pl — pn
p—20 '

Finally, by choosing N = N(f,¢, Ny) > Ny and such that

M +Q+m+4|p| — pﬁ—pn}
p—0

we can make sure that the integrals above are bounded and conclude the proof
of step 1.

N >

N > max{M' —n + 1,

Proof of Step 2 By step 1 we know that for any fixed 3, ay, Ny there exists N =
N(67£7N0) > NO

18300 (o(2.€) = 3 (0 Agale, y, )]y ) M(g) "=l Nos=stiaii
lo|<N
is finite. Now we want to prove that

a0 (o(2.6) = 3 (@ Agalw, ,€))lymr ) M(€) oMo pt 3D

|| <No

(2.30)

is finite, which, for the arbitrariness of the parameters will give the result.
Note that, for N = N (8, ¢, Ny) > Ny as in step 1, we have

800 (o(2.6) = 3 (@ Agalz, ,€))lymr ) M(€)~ oMo pt 310

lor|<No

— 1800 (o, €) = Y (@ AZa(w,9,6)) |y

la<N

Y (A%, )y ) Mgl ot

N0<‘Oz|<N

<80 (o) = Y (A AZa(w,y, €))lyme ) M(g) (- DGt

la|l<N
(2.31)
w0 Y Az (0 Aza(e,y,0)lyms ) M(g) "ot
N()<|OL‘SN
(2.32)

The choice of N gives that (2.31) is finite, while to obtain the boundedness
of (2.32) it is enough to observe that, since Ny < |a| < N, the properties of
amplitudes and Lemma 2.20 give

~

(6 Aga(w,y, €))|y=r € Syy VNG X @),
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and therefore (2.32) is finite too. This finally proves (2.30) and concludes the
proof due to the arbitrariness of ay, 3, Ny. O

3. PROOF OF THE MAIN THEOREM 1.1

Notations. In this section the following notations will be adopted:

- ¢y(2) = g}y (@) ... q;(2), for any given v € N;

- X ={Xy, -+, X)} will be a system of vector fields satisfying Hormander
condition of step k; R R

- & := [¢] for the elements of G (below we will always work in G, so the
notation should not be confusing);

- L := Lx will be the positive sub-Laplacian associated Wit/h\the system X;

- M will be the operator defined as M := (I+£)"2, while M(¢) will denote

the corresponding matrix-valued symbol M (&) = diag[(vii(§))]1<i<d,, where
wi(€)) == (1 + vi(§)H)Y*

- ||  [lm,z Will denote the norm in the Sobolev space H™*((G) associated
with the subelliptic operator £ on G}

- || |lop Will denote the £2 — ¢2 operator norm of the linear finite dimensional
mapping (matrix multiplication by) o(z,£), that is,

04, lop = sup{loa(a, vl : v e T, o] = 1,
Remark 3.1. The proof of the main theorem relies on the construction of a
positive pseudo-differential operator P € Op(S;né (G x@)) such that A—P = @,
with A as in the hypotheses of Theorem 1.1, and

m—%(p—<2~—1>6)7 r

Q:H — =2 4G —H (@)

being a bounded operator. In fact, if such a decomposition were true, then this
would immediately lead to the desired inequality by simply observing that

Re(Au,u) = Re(Pu,u) + Re(Qu,u) = —C|ul,,_1

modo-@e18)

—<m—%<p2—(2n—1>6>>7 r

for all u e C*(QG).

As in the proof of the Sharp Garding inequality on compact Lie groups (see
[29]), the key point here is the construction of the so called weight function wg,
which, essentially, corresponds to the construction of the operator P with the
properties mentioned in Remark 3.1.

The aforementioned construction follows the lines of the Euclidean case. How-
ever, the adaptation to the Lie-group setting is linked to the deep group structure.
Indeed, a crucial key point in our proof will be the choice of the suitable power
of (§) inside the expression of wg, choice that depends on the relation between
the eigenvalues of the Laplacian and those of the sublaplacian on the group.

We remark that the use of an elliptic weight we, namely depending on (£), in-
stead of a subelliptic one, that is depending on M (£), is fundamental here. This,
in particular, is due to the fact that while the Laplacian is a central operator on
the group and its (matrix valued) symbol commutes with all the other symbols,
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the same property does not hold for any sublaplacian on the group. The noncom-
mutativity property of the symbol of sub-Laplacians, toghether with the intrinsic
noncommutativity of the group, causes several technical issues not allowing the
use of a subelliptic weight.

Notice also that similar anomalies occur in the nilpotent Lie group setting,
where, again, sub-Laplacians (and more generally Rockland operators), do not
have symbols with the same commutaivity property as the symbol of the Lapla-
cian on compact Lie groups. This main difference, as remarked in [10], is very
likely the reason why the full sharp Garding inequality, that is for any operator
with nonnegative symbol, has not been proved yet in the nilpotent Lie group
setting (see [10] where the result for specific operators has been announced).

Taking into account the previous clarifications, we can now build the proof of
Theorem 1.1 starting from the construction of the weight function wg.

Let us consider G as a closed subgroup of GL(N,R) = R¥*¥ for some N € N,
so that its Lie algebra g is an n-dimensional vector subspace such that

[A,B] ;= AB—BA€g

for every A, B € g. Let e € G be the neutral element, U < G a neighborhood of
e, and V < g a neighborhood of 0 € g such that the matrix exponential mapping

exp:V ->U
is a diffeomorphism. We define on g the central norm |- | (that we shall use only
in the definition of the function we below) as follows
X = J|uXu1]0du, (3.1)
e

where the product under the integral is the product of matrices, and where | - |o
stands for the Euclidean norm on g. Note that exp~! is central with respect to the
norm (3.1), i.e., |exp~t(zy)| = | exp~!(yx)|, and that the norm (3.1) is invariant
by the adjoint representation.

We now assume that the neighborhood V' of 0, is the open ball V' = B(0,7) =
{Z eR™:|Z| <r}, with r > 0, and consider a real smooth function ¢ : [0,7) —
[0,00), radial on g, supported on V', and such that ¢(s) = ¢(|Z]|) = 1 for s > 0

small. Then we define the function
(p+9)

we(z) 1= (| exp™ (2)[<€) 2

n(p+9)

Jo(exp™ ())& = (3-2)

with
P(Y) = Co| det Dexp(Y)| T2 (V)2 Cy = (J ¢(|1Z)%dz)"7>,
RTL

where, recall, p+§ < 2, (&) = (1 + )2, ie. o7_a(€) = (§)*Ly, Dexp is the
Jacobian matrix of exp, and f(Y') is the density with respect to the Lebesgue
measure of the pull-back on g of the Haar measure on G by the exponential
mapping.

Note that, given the geodesic distance d, we have d(z,e) ~ |exp '(x)| and
(p+9)

suppwe = {r € G : d(z,e) <) 2 } < U..
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n(p+48)

Remark 3.2. Observe that from Remark 2.13 and the fact that <§> Iy, €
n(p+9) n(p+8)

n(p+98)
0" (G), we deduce that <§> w1y € 84 (G X G) c Sp70 (G X G),
for all p e (0,1].

We are now ready to state a key lemma about the basic properties of the
function we.

n(p+9)

Lemma 3.3. Let we be as above. Then we(e) = Col€) %, we is central and

inversion invariant, and d(z, e) < 7’<§>’@ on supp (we). Moreover |we| L2y =
1 for all £ € G, and (7,8) = we(r)ly, € 7 (;‘15) (G) < S (p+5) (G X G) for all
pe(0,1] and 0 <0 < p.

Proof. Notice that, due to the properties of ¢, we immediately have that we(e ) =

(p+0) . : o (p+5)
Col&)™ 5, we is central and inversion invariant, and d(z,e) < r{(§{)~ 2

supp we. As for the |wel|r2(q), we have

J Be([Y 1665 (Y ) Pldet D exp(Y) (Y)Y

n(p+d)

[ we(orpas = o5

(p+ )

)| \det D exp(Z{&

O\ f(2( 5 dz

j 02 (1Z1)2 1

- c&fsbguzr)?dz -1,

(p+9)

where in the second line we applied the change of variables Z = Y'(£) 2=, while
in the third line we simply used the expression of ).
We are now left with the proof of
n(p+6) n(+d) p
(@,8) > we(2)lse € 7 1) (G) © 5 s (G % G). (3.3)

’ 2k

From the compactness of G, proving (3.3) is equivalent to showing that, for every

n(p+9) p+5)
multi-index § and for any fixed x € G, (8§(’8)w§)(x)fd§ S * w(G) (see

Lemma 3.3 in [29]). First observe that

Wue@)le, = Y Cap|dP0(lexp™ (@)l 5 |0 v (exp™ (@))€ Iy,
;| <|B
N Copdallexp™ @)K 5 1O B Xaalexp™ (@) 5 I,

aslal<|B]
where ¢, X5—q are suitable functions such that ¢, € C{°(R) and is constant near
the origin, while x3_ € C3°(V'). Since

&

then, for every (fixed) x € G,

n(p+5) L (e4d)lal (p+§)|cx n(p+8) | (p+9) (p+6) 18|

Id€ y 4Kk

(G)’

n(p+d) | (P;f) 18| (

8 ( )Idg S ‘5/1 04” G)
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(p

if ¢o (| exp™t(2)|(€) 2tz6>)xﬂ_a(exp_1(x)) e S (G) for all & and 3 as above.
Therefore, to complete the proof it is enough to check that these last terms
are standard global symbols of order 0.

Now, given x € G, it is easy to see that

Gallexp™ (D)) xa-alexp™ (@) < C. (3.4)
In fact, if = is such that exp~'(x) = 0, then ¢, is constant and the inequality
follows. If, instead, exp~!(z) # 0, then, since ¢, is compactly supported in &, we
get that the symbol in the left hand side of (3.4) is compactly supported, then
smoothing, and the inequality follows. This concludes the proof of (3.3) from
which the result follows. O

Remark 3.4. Note that from Remark 2.13, for all m > 0, we have 5’ 5 (G) <

n(p+5)

S;’:‘(;E(GXG). This fact, together with the property (z,&) = we ()14, € Yp’(gﬂ (@),

n(p+4)
immediately gives (z,&) — we(v)ly, € S <i‘jﬂ;)’ﬁ((}). Note also that the symbol
P

we ()14, commutes with any subelliptic symbol b(z, §), for all £ € G.

Proposition 3.5. Let 04 € S;fgﬁ(G X CAT’) and let p(x,y,&) be the amplitude

p(z,y,§) = Jwg(le)wg(yz1)<m(z,£)dz, (3.5)

e
where we is as in (3.2). Thenpe A™5, (G x G x G) and the amplitude operator
P
P = AOp(p) given by

:f D deTr (E(y " o)pl, y, €)) uly)dy
G [€eG
18 positive.

Proof. Recall that p € Am(p+5) (G x G x @) if

sup [ M(E) Tl U D 0 00 AL (2, €) o < 0,
(x,y,[f])EGXG’Xé’

and that, by Leibniz rule, é’g? 6 Aap(:r y,&) is a sum of terms of the form

[ ueto= (2200 wety= ) (Ao a(2, )iz
G
where [ + X + p| = |a|. Moreover, due to the properties of we, we have

[(A20Q we(wz")) (A2 we(y="")) lop

n(p+9) (p+9) 18] n(p+6) (p+8) |7l
=2 —plnl+ s o —PlAl+ s
< 0" : :

w6
n(p+4)

<O 5 sup. (€ )>—p(\kl+|n|)+(”7§5)(\ﬁl+lvl)7
i=1,..., de
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(£40) | . o
therefore, since supp we = {z;d(z,e) < 1{({)~ 2+ } is contained in a set of measure
(P+5)n

()" 2z, we get

—~ ol (48 _ _
,JM@) A olal= 523D (AT D () (AL e (y=))

< M(E) P (Al g4 (2,€))dzop

< C<f> "<p+6) ”Aﬂa ﬁ)wg(mz—l)AAa wg(yz 1))&(5)—plul+ﬂ\al—<p;6) (|/3\+|’Y\)||Op
X |M(E) T (AT A(2,)) ]
n(p+9) n(p+6) p+6 (p+6

|5\+Iv\)ﬂ(€)—plul+0\ al—

< CEOTE QO B gy (st

<O sup (g(€)yrlel= 3 (B hD=pllnl+N+lub+ “32 (81D < ¢
1,....de
Finally, since Hﬂ({)‘mma (|5‘+|7|)8g?)6§j)A?p(x,y,f)Hop is estimated by a
sum of terms of the previous form, the first result follows.
To see that P is positive, on denoting by

M(z,€) = f wely=")e(y="Valg)dy.

G

|- (p+9)
2

we have

(Pu, ) f f 3 deTH(E(w)pla, v, uly)e(y) dy)ulr)da

[¢leC

fZ 0¢Tr | 6(0) [[welos ety )oa(z. Odeul)e(w) dy @
G G [€eG G

ngTr [ @ uctasatwits | epoatz et
G

| [t et utpay ) |-
G

— [ 3 et (M 98I0l €)M (2, )7) o
G [€eG
which is non-negative due to the non-negativity of o4 and the fact that the

positivity of matrices is invariant under unitary transformations. This concludes
the proof. O

Lemma 3.6. Let se R and p e Am(p+5) (G x G x G) as in (3.5). Let us assume

that 0 < 6 < p < 1. Then the opemtor with symbol p(x,z,£) —oa(x,§) is bounded
from H®*(G) to H*~ (m—3 (p=(2x=1)5)), £ (Q).
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Proof. By the properties of pseudo-differential operators with symbols in subel-
liptic classes, in order to prove the theorem it suffices to show that

2k—1)6 = 2k—1)6
pla,w,§)=oalz, ) e S BTV E(Gx ) = ST (GXE). (36)

Note that, since H’ngLz(G) =1, we have

p(x,x,8) —oa(x,§) = fws(m_l)QUA(Z»f)dZ —oa(z,§)

a
— [P a6~ aalm )i
a
where, recall, suppwe = {z € G : d(z,e) < r<§>_<p2+&6)}. Then we consider the
Taylor expansion of order one of o4(z 'z, &) with respect to 271 at 271 = e,
namely,
oalz7'2,8) = oa(@, &) + Y NWoa(@,)q,(2) + D 4y (2)aan(z712,8),
lvl=1 lv1=2

where the last term in the right hand side represents the remainder of Taylor
expansion of order 1. Note also that we can choose the polynomials ¢, to be odd
when |y| = 1, that is, ¢,(z) = —g,(271). By using the expansion above together
with the property S\wg )¢, (2)dz = 0 when |y| = 1 (since wg is even while g,

is odd), we obtaln

p2.€) = 0a(0,6) = w2 (74,6 — oa(,6)
G

+ 3 0a@.a(2) + Y] 0aq(z 12,8, (2) ) d2

lv[=1 Iv[=2
- 3 [oante e ueer )i
=2¢g
where the symbols o4, € SZL;J"Y"L(G x @) come from the remainder term of

Taylor expansion. Now, by Leibniz rule and the left invariance of 6&?), we have
that the quantity

A8 (w.6) = 0a(2.€) = 800 Y] [ oanle o uel= a2z
7= 2G
can be written as a sum of terms of the form

f (00 A2 04, (71, ) (AL we () (AL we () ()2

G

_ f (0D AL 002 (9, €)) s (AL we () (A we(2)) s ()2, (37)

G
where |y| = 2 and |a; + ag + as| = |af.



28 D. CARDONA, S. FEDERICO, AND M. RUZHANSKY

Since for v such that |y| = 2 we have |q7(z)| < ClEy (p9)
n(p+98)

we, and since meas(supp(we)) < (§)7 2= , in view of (2.18) each therm of the
form (3.7) satisfies

on the support of

'O —m 1 —(2K— o |—max M [0 (0%
IM(€) +1(p—(26-1)8)+plal {6,°2522}|8] J(ay)AgUAq(y,f))|y_z—1x(A£2wg(2))
G

X (Dg*we(2))gy(2)dz o

o m K— « (p+5) [0
< Csup | M(g) 7 ol B0 A 0 (0,€)) oy
xe

sp |2 e (1) oy s1p 152022 o j 14,(2)) dz

21€G
supp (wg)

—mt L (p—(2h— - -
<C sup W(€)w) m+: (p—(2r—=1)6) +pla|=6|]+m+26+|6|6—|a1|p

i=1,..., de
x (€ 5ol lasp— gl - 0
<O sup (p(€);)x P (2a=18)+plal=0|8]+25+[8l6=(an +|azl +las|)p— 22
1=1,..., d&
This, finally, shows (3.6) and concludes the proof. O

Lemma 3.7. Let s € R. Let us assume that 0 < p <1 and0<d < (2k—1)"1p <
p. Then the pseudo-differential operator with symbol op(x,&)—p(x, x, &) is bounded

from H®£(G) to H¥(m=x(e=@s—1D0).L().
Proof. To conclude the result need to show that
(p—(26—1)8), L m—1(p—(2r—1)3), L
op(x,6) = plz,2,6) € pmax{’; ey =S Gk . (3Y)

To prove (3.8) we use the asymptotic expansion in (2.25), which implies that

op(@.€) —p(z,7,8) ~ Y & ALp(x,,8)]y—s.
1B1=1
The asymptotic formula above means that, for all N € N,

op(x,&) — p(x,x,§) = Z Aﬂfwg ((9(B) c(2))oa(z 2, &)dz + ry(z, §),

I<|BISN G

g et (N+1), £

with ry(z,€) € (p+5) (G % @) Let N > 1 and define
Sn(x,§) = op(x,§) — pla, z,£) —ry(z,).

Now we expand o4(z71x,€) by using Taylor expansion with respect to z

27! = e as in the proof of Lemma 3.6, and have

SEDN: f we2) (0 we(2))dz 0a(z,€)

1<|Bl<N

L at
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DY Mfwg () () 94 (71, €)dz
IyI=11<|BI<N
- ](x7§) + J(l‘,g%

where 04, € SZ?;(S'A"’E(G x @) (|7] = 1) comes, as before, from the remainder
term of Taylor expansion. To have (3.8) we need I,J and ry to belong to the
subelliptic class in (3.8). We then analyse the three terms separately starting
from 1.

Note that, when |8 = 1, we and é’g?)wg are even and odd respectively (see
Proposition 3.11 in [29]), so we have

[ wee@ueenaz =0, torgs) -1,
G
and

_ Aﬁfwg (0P we(2))dz 7a(, ).

2<|Bl<N
In particular I(z, ) will be given by a sum of terms of the form

D1 | (Alwe(2)(A207 we(2))dz Afoa(, €). (3.9)

2<|5|<NG

with |7+ X+ u| = |f|. Due to the measure of the support of we, each term of the
form (3.9) satisfies

(p+9) n(p+8)

f(Azwdz))(Aga(i’wg(z))dz < C(E)y™ 30 gy e eIl gy M e A,

a
(3.10)
Then for I we get

| M(&)™m =D (g )|, < C Y S M@ T A A (2, ) op

2<IBISN A0+ +pl=] 8]

(p+5) TN — 1) (2p—
x (€)TPIMHIM+ZZZI81 | A (&) =PIl (o= (2r=D)d))

<C Z Z sup <yii(§>>*p(|)\|+|m+|#|)+(p2ﬂ|5|+%(pf(2fcfl)§) <cC,
2<|BISN A, n+A+p]=| 8] i=1,...,d¢
since
(p+9)
~p( + Il + i) + : 181 = —plI\ + Il + 1l — 131) + =Ly
<—’5\ <6—p<0,

and 6 — p+ L(p — (2s — 1)6) < 0 for 6 such that p — (2k — 1)§ > 0. Finally, by
using the same kind of estimates as above in combination with Leibniz rule (see
Remark 2.1), we can also conclude the more general estimate

' —m 1 — KR— o max M o
|M(€) +1 (p—(26—1)8)+|al p+|B| max{s, L5 }5§?)A51($,€)HOP<C
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w(p=(26=1)0), L g™ m—(p—(2k=1)8), L

which, in particular, gives that I(z,£) e S max{5 wso)) ptss)

We now consider the term J(z, ). In this case we have

’\M\(ﬁ)_ ~(p=(@2e-1)8 ) J(2,6)]op < C Z Z Z Hﬂ({)—m+%(p—(2n—l)6)

IKIBISN A n+2+p|=]8] v,1v[=1

f (AZwe(2)) (A2 we(2)) g (2) Aboay (27 2, €)dzop,
G

so, as for I(x,£), we prove that each term in the sum is bounded. Argu-
ing as before (and using the fact that (Agwg(z))(Ag\a(Zﬁ )UJg(Z)) commutes with
Afoay (2712, €)) we get

| M (&)~ (o= (2e=1)d) f (A2we (2)) (A2 we (2)) g (2) Al ay (27, €)dz | op
G

_(ptd) (p+39) 1 o
< C sup (wy(€))y 2 PN D+ L (=(26-1)9)
i=1,....dg

<O sup (vy(€)y e+ Inl- 18D+ 32181+ 2 (p—(2r-1)8) < (.
i=1,...,d¢

The more general estimate (for |al, |3| # 0)

(p+9)
2

'O —m l — KR— o max (07
| M(€) +1(p—(26—1)8)+|alp+|B] max{s, }8§?)A J(2,6)||op < C

p—(2k—1)8), L
{5 (P+5)}

p—(26—1)8

(G x G) = S p+6 ’L(G x G) can be

derived by followmg the same steps as in the proof of Lemma 3.6, therefore we
omit the proof.

We are now left with the study of ry. In this case, by the properties of
the remainder in the asymptotic formula, we have that, for all N € N, ry €

+3)
WL % @), for all 0 < § < p < 1 such that p — (2k — 1)5 > 0. This
shows (3.8) and concludes the proof. O

giving that J € S

Sp7 (p+5)

Proof of Theorem 1.1. Let us consider the amplitude operator P in Proposition
3.5. In view of Remark 3.1, it suffices to prove that

m—3 (p=(rk=1)9) —(m—3 (p=(r=1)9))
O (R A (€)

is a bounded operator. To show this property it is enough to observe that

0Q<x7£) = (O'A(SL’,f) _p(xwrvf)) + (p(l’,l‘,f) - O'p(SC,é)),

therefore, by Lemma 3.6 and Lemma 3.7, the required boundedness of ) follows.
This completes the proof of the subelliptic sharp Garding inequality. O
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4. FINAL REMARKS

Due to the statement of our main result some remarks are in order.

Considering the general version of the Euclidean sharp Garding inequality for
(p,d)-classes, and its correspondent in the compact Lie group setting given by
Theorem 1.1 in the case k = 1, that is Corollary 1.2, one would expect that the
suitable version of the subelliptic sharp Garding inequality should be as follows:

Conjecture. Let G be a compact Lie group and let L = Lx be the (positive)
sub-Laplacian associated with a system X = {X;}¥ | of left-invariant vector fields
satisfying Hormander’s condition of step k. For 0 < d < p < 1 and m € R,
let A = a(x D) : C*(G) — Z'(G) be a continuous linear operator with symbol

a€ S (G x G). Then, if a(z,[€]) = 0 for all (z,[€]) € G x G, there exists a

positive constant C' such that

Re(Au,u) = C’Hu|| (=8 £ (4.1)

for all ue C*(G).

The subelliptic setting and the noncommutativity of the group have not allowed
us to prove the expected version (4.1) of the subelliptic sharp Garding inequality.
However, it is worth to make some considerations to stress the importance and
nontriviality of our result.

Let us first recall that some inclusions between global subelliptic classes and
standard global classes can be established. Specifically, one has that

1. Ifm>0,0<0<2 and p <1, then vaﬁc 7 (G).
2. Ifm <0,0<0 <%, and p <1, then S B%é(G).
k?

Three immediate consequences of the inclusions above and of Corollary 1.2 are
described below.

Consequence 1. Let m > 2 -6 >0,0<0 <2< i andac S;rf(;c((}’ x G).

Then, if a(z, [£]) = 0 for all (z,[€]) € G x G, there exists a positive constant C
such that

Re(Au,u) = —Clul? ,, >—Clulf .05 (4.2)
e (€]

)

for all u e C*(G).

Consequence 2. Let 0 <m < £-6,0<d <2< 1 andace S;f}ﬁ(G < G).

Then, if a(x, [£]) = 0 for all (z,[¢]) € G x G, there exists a positive constant C'
such that

Re(Au,u) = _C”u”2 m—(£-6) = _CHUHZ m—(£-6) ) (4'3)
H 2 (@) H 4@

for all u e C*(G).
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Consequence 3. Let m < 0,0 <6 < £ < %, and a € S:a’ﬁ(G X CA}) Then, if
a(z,[€]) = 0 for all (z,[€]) € G x G, there exists a positive constant C such that

Re(Au,u) = —Clul? m_opy Z ~Cul? m_(£_s) , (4.4)
H™ 2 (G) H 23— £()

for all u e C*(G).

The previous inequalities, namely (4.2), (4.3) and (4.4), show that Theorem
1.1 for subelliptic classes (k # 1) does not follow from Theorem 1.1 applied
to standard global classes (k = 1), that is, from our Corollary 1.2. In other
words, the subelliptic sharp Garding inequality is not a consequence of the so
called elliptic sharp Garding inequality. Note also that Theorem 1.1 applied to
subelliptic classes gives results better than those in (4.2), (4.3) and (4.4).

To conclude, let us say that it is natural to conjecture that (4.1) holds true in
the subelliptic setting. Of course one can find particular operators for which (4.1)
is satisfied. An immediate example is given by operators of the form A = a(z)L,
where a(z) is a nonnegative smooth function and £ is a positive sub-Laplacian.
However, this is a very specific operator for which the validity of (4.1) follows
from simple and direct computations. For the sake of completeness we will briefly
prove this fact below.

Note that we can write
Re(a(z)Lu,u) = Re([M,, L7*]£*u, u) + Re(L2aL?u, u),
= ([Ma, £ LPu,u) + [ValPul3s g,

where [Ma, LY 2] stands for the commutator between the multiplicative opera-
tor M,f := af and £Y2. In this particular case (it is not true in general in
our non Euclidean setting), we have that [Ma,ﬁl/ 2] is of subelliptic order 0,

namely its symbol belongs to the class Sﬁ’oﬁ (G x C:*) This allows us to estimate
Re([M,, LY2)£12u,u) = Re(L™VA My, LYV?|LYu, L) < CHUH%/ZE, for some
C > 0, and to conclude that

Re(a(z)Lu,u) = —Clulip,,  Yue C*(G),

where the index £ = ™=1 (m = 2) is “optimal”.

Of course, by using the steps above, we have that (4.1) holds true for any
operator of the form A = a(z)L™ with m € R.

That said, it is important to underline once more that the noncommutative
structure plays a determinant role in the validity of fundamental a priori estimates
such as the one studied here, therefore it would not be surprising if the expected
optimal result in (4.1) can be attained only under very particular conditions
and/or with tools still to be developed.
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