We study the algorithmic content of Pontryagin -van Kampen duality. We prove that the process of dualization is computable in the important cases of compact and locally compact totally disconnected Polish abelian groups. The applications of our main results include solutions to questions of Kihara and Ng about presentations of connected Polish spaces, and an unexpected arithmetical characterisation of direct products of solenoid groups among all Polish groups.

Martino Lupini, A.M. (2023). Computable topological abelian groups. JOURNAL OF ALGEBRA, 615, 278-327 [10.1016/j.jalgebra.2022.10.003].

Computable topological abelian groups

Martino Lupini;
2023

Abstract

We study the algorithmic content of Pontryagin -van Kampen duality. We prove that the process of dualization is computable in the important cases of compact and locally compact totally disconnected Polish abelian groups. The applications of our main results include solutions to questions of Kihara and Ng about presentations of connected Polish spaces, and an unexpected arithmetical characterisation of direct products of solenoid groups among all Polish groups.
2023
Martino Lupini, A.M. (2023). Computable topological abelian groups. JOURNAL OF ALGEBRA, 615, 278-327 [10.1016/j.jalgebra.2022.10.003].
Martino Lupini, Alexander Melnikov, Andre Nies
File in questo prodotto:
File Dimensione Formato  
Lupini_Melnikov_Nies_tdlc_abelian_Apr 2022.pdf

Open Access dal 18/10/2024

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 363.67 kB
Formato Adobe PDF
363.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/968970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact