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COMPUTABLE TOPOLOGICAL ABELIAN GROUPS

MARTINO LUPINI, ALEXANDER MELNIKOV, AND ANDRE NIES

ABSTRACT. We study the algorithmic content of Pontryagin - van Kampen duality. We
prove that the process of dualization is computable in the important cases of compact
and locally compact totally disconnected Polish abelian groups. The applications of
our main results include solutions to questions of Kihara and Ng about presentations
of connected Polish spaces, and an unexpected arithmetical characterisation of direct
products of solenoid groups among all Polish groups.
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1. INTRODUCTION

1.1. Overview. We study Polish groups by combining ideas from computability theory
with tools of abstract harmonic analysis and algebraic topology.

The celebrated Pontryagin - van Kampen duality essentially reduces the study of
compact abelian groups to the theory of discrete abelian groups. For instance, for con-
nected compact abelian G and H , we have that G is topologically isomorphic to H if
and only if their discrete duals Ĝ and Ĥ are isomorphic. So the expectation might be
that deciding the topological isomorphism problem for compact abelian groups can be
reduced to solving this problem for the dual groups, which are discrete (a context in
which much is known [39, 32]). Unfortunately, one fundamental issue with Pontryagin
- van Kampen duality in the literature is that calculating duals usually involves non-
constructive considerations, all proofs tend to be non-algorithmic, and even the defini-
tion of the dual of a group (1.3) appears to be completely non-effective in an algorithmic
sense.

The first author was partially supported by: Rutherford Discovery Fellowship and RDF-VUW2002, Mars-
den Fund Fast-Start Grant VUW1816 (the Royal Society Te Aparangi). The second author was supported by
Rutherford Discovery Fellowship RDF-VUW1902 (the Royal Society Te Aparangi). The third author was sup-
ported by the Royal Society Te Aparangi under the standard Marsden grant UOA-19-346. This work received
its initial impetus during a meeting of the second and third authors at the Research Centre Coromandel in
July 2020.
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2 MARTINO LUPINI, ALEXANDER MELNIKOV, AND ANDRE NIES

We use tools of effective algebra [1, 14] and computable analysis [47, 56] to resolve
this issue. More specifically, using a wide variety of techniques we prove that Pontrya-
gin - van Kampen duality is computable in the case of connected compact Polish groups.
Our second main result establishes a computable version of the duality for totally discon-
nected locally compact abelian groups. The methods we use are new and promise a lot
more. For instance, we give the first example of an effective version of Čech cohomology
from algebraic topology, and extend a result in effective algebra due to Dobritsa [7] to
the setting of procountable groups.

We apply these results and techniques to give unexpectedly low (arithmetical) esti-
mates for the isomorphism problem for natural subclasses of compact connected abelian
groups, perhaps most notably for direct products of solenoid groups. Interestingly, with
some extra work our techniques can be used to solve several open problems in com-
putable topology seemingly unrelated to Polish groups. For instance, we give the first
known example of a ∆0

2-metrized connected compact Polish space not homeomorphic
to any computably metrized Polish space; note that we do not restrict ourselves to Polish
groups here. This answers a question recently raised by Kihara and also independently
posed in [24]. See §1.6.2 for further open questions and their solutions.

To formally state and discuss our results we need some background. The rest of the
introduction will proceed as follows. In Subsection 1.2 below we give a general introduc-
tion to computable mathematics to motivate our investigations. Then in Subsection 1.3
we briefly discuss Pontryagin - van Kampen duality and what is known about its algo-
rithmic content. Subsections 1.4 and 1.5 contain the main results about compact and
totally disconnected locally compact groups, respectively. In Subsection 1.6 we state
and discuss the above-mentioned corollaries of our results. Finally, in Subsection 1.7
we briefly discuss the duals of t.d.l.c. groups.

1.2. Computable mathematics. Our paper contributes to a fast developing branch of
effective mathematics which combines methods of computable algebra [14, 1, 15] with
tools of computable analysis [3, 56, 47] to advance both subjects. The main tools of
such studies are the notions of computability of algebraic and topological structures;
Turing [54, 55], Fröhlich and Shepherdson [17], Maltsev [34], Rabin [48] and others sug-
gested various notions of computability for infinite mathematical structures and spaces.

The standard approach to computability in effective algebra is as follows. A com-
putable presentation of a (discrete, countably infinite) algebraic structure is its isomor-
phic copy upon the domain N in which the operations and relations are Turing com-
putable [17, 34, 48]. In topology and Banach space theory the situation is more complex
since structures are almost never countable. However, at least in the separable case one
can use a dense countable set to define computability, as follows. Following the early
ideas of Turing [54, 55], say that a Polish space is computably metrized (computable
Polish) if there is a countable dense subset (xi )i∈N and a complete metric d compat-
ible with the topology such that d(xi , x j ) can be uniformly computed with precision
2−n . For Banach spaces [47] one usually fixes the metric associated with some complete
norm and also additionally requires the operations to be computable (to be clarified).
In the context of this paper, we follow [38, 37] and allow the metric to be compatible but
not fixed (that is, different presentations can have different metrics).

Initially, computably presented structures and spaces were mainly used to formally
illustrate that certain proofs and procedures in the classical literature can or cannot
be performed algorithmically; see [1, 14, 47]. For example, it is well-known that the
algebraic closure F of a computable field F is computable via a computable embedding
φ : F → F , but φ(F ) does not have to be a computable (decidable) subset of F [17].

Beginning with [21], these methods have found applications in the study of classi-
fication problems not necessarily restricted to computable mathematics. We discuss
some of these below; see [10, 8, 2, 9] for further discussion. The intuition is that for
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many common non-trivial classes of objects, the problem of characterising computably
presentable members of the class tends to be as hard as describing arbitrary (not nec-
essarily computable) members of the class by invariants of some kind. This intuition is
formalized using definability techniques, hierarchies, and computability-theoretic rel-
ativisation. Results of this sort are somewhat akin to those in descriptive set theory [19],
but these two approaches sometimes provide slightly different complexity estimates for
the same class; e.g., compare [16] with the corresponding results in [19, 25]. In some
cases the computability-theoretic versions of results are more “constructive” and fine-
grained. In particular, computable results typically can be relativized to an arbitrary
oracle, and thus they imply the respective “boldface” topological estimates.

For example, Downey and Montalbán [8] proved that the isomorphism problem for
computable torsion-free abelian groups is Σ1

1-complete. This means that any problem
which involves an exhaustive search through the uncountably many members of the
Baire space NN can be computably transformed into the problem of deciding whether
two computable torsion-free abelian groups are isomorphic. The result of Downey and
Montalbán can be uniformly relativised to any oracle X , which means that the problem
of deciding whether two X -computable torsion-free abelian groups are isomorphic is
a Σ1

1(X )-complete problem. In particular, it follows that the isomorphism problem for
(the set of reals coding) such groups is analytic complete under continuous reducibil-
ity, i.e., it is Σ1

1-complete in the boldface hierarchy. This provides strong evidence that
countable torsion-free abelian groups are unclassifiable up to isomorphism; see [21, 8]
for a detailed discussion1.

Our goals include the study from the perspective outlined above of the algorithmic
content of Pontryagin - van Kampen duality, and its application to classification prob-
lems.

1.3. Pontryagin - van Kampen duality. Given a topological abelian group G , the char-
acter group Ĝ of G is the collection of all continuous homomorphisms from G to the
unit circle group R/Z under the compact-open topology (the topology of uniform con-
vergence on compact sets), with pointwise addition. Note that Ĝ is abelian as well. Un-
less otherwise stated, we will assume that all our groups are Polish and abelian. Pon-
tryagin - van Kampen duality states that, if G is locally compact, then Ĝ is also locally

compact; furthermore ̂̂G is topologically isomorphic to G via the map sending g ∈ G to
the evaluation map φ 7→ φ(g ). It follows that, similarly to Stone duality in the case of
Boolean algebras, the character group Ĝ contains all the information about G . For a lo-
cally compact abelian group G , the character group Ĝ is usually called the Pontryagin -
van Kampen dual of G , or simply the dual of G if there is no danger of confusion. In Sec-
tion 4 we provide the details about Pontryagin - van Kampen duality necessary for our
proofs. We refer the reader to the books [46, 40] for more on this subject. For now, we
note that G is discrete countable iff Ĝ is compact Polish. In that case, G is torsion-free
iff Ĝ is connected, and G is torsion iff Ĝ is totally disconnected.

Note that the definition of Ĝ seems to be non-algorithmic. Nonetheless, there is one
(and, perhaps, only one) instance of Pontryagin - van Kampen duality that is somewhat
evidently computable, namely the case of profinite and discrete torsion abelian groups.
Smith [52] was perhaps the first to note this. However, for almost 40 years after the
publication of [52] essentially no progress had been done towards understanding the
algorithmic content of duality beyond this special case.

Recently, the second author has initiated a systematic investigation of the computability-
theoretic aspects of Pontryagin - van Kampen duality, with applications to classification
problems in topological group theory [37]. The paper [37] focusses on the classes of

1We also note that, while the present article was under review, Paolini and Shelah [43] announced that the
isomorphism problem for torsion-free abelian groups is Borel complete.
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compact and discrete abelian groups. Among other results, it formally clarifies the con-
jecture of Smith.

The main tool in [37] is the computable version of Pontryagin - van Kampen duality
when passing from discrete to compact groups. More specifically, for a computable dis-
crete G , its dual can be computably metrized. As a consequence of the aforementioned
result of Downey and Montalbán [8], the isomorphism problem for compact connected
abelian groups (represented as completions) is Σ1

1-complete. However, neither the re-
sult nor the techniques developed in [37] help to “construct” the dual Ĝ of a given com-
putably metrized compact G . Our first goal is to completely settle the compact con-
nected case.

1.4. Connected compact groups: the first main result. Recall that the definition of the
character group seems rather non-constructive in the connected case, in the following
sense. Since the dual of a compact group G is discrete, it can be viewed as a collection
of isolated paths through the Baire space. One can use Σ1

1 bounding (see e.g. [50]) to see
that Ĝ has a ∆1

1 presentation. So the complexity of Ĝ could potentially belong to an ar-
bitrary high level of the hyperarithmetical hierarchy. Can we obtain a better complexity
estimate and at least establish an upper bound (such as, e.g., ∆0

N2 ) for the hyperarith-
metical level? This question was raised in the conclusion of [37]; see also Problem 21(3)
of [11].

The estimate that we give below was unexpected since our initial conjecture was that
the complexity of Ĝ has to be non-arithmetical. Recall that a compact computably
metrized Polish space is effectively compact if the set of all 2−n-covers by basic open
balls of the space is computably enumerable uniformly in n. The theorem is the de-
sired computability-theoretic version of Pontryagin – van Kampen duality in the com-
pact connected/discrete torsion-free case.

Theorem 1.1. For a torsion-free abelian group G, the following are equivalent:

(1) G is computably presentable as a discrete group;
(2) Ĝ admits an effectively compact presentation.

It is well-known that, in general, 0′ can list all covers of a given compact computably
metrized Polish space (see, e.g., [24, 29] for the technical details). It follows that, without
the assumption of effective compactness, the dual of a computably metrized connected
G is ∆0

2; this is a significant improvement over the crude ∆1
1 bound. Soon we will see

that the bound ∆0
2 is sharp and that the assumption of effective compactness cannot be

removed in Theorem 1.1; this is Theorem 1.5.
The proof of Theorem 1.1 is rather indirect. In (2), we naturally assume that the group

operations are computable; however, this assumption is actually not necessary for the
proof of (2) → (1) to work. It relies on a new constructive definition of Čech cohomol-
ogy and a result from algebraic topology asserting that the first Čech cohomology group
of the underlying space of a connected abelian Polish group is isomorphic to its dual.
The proof also makes use of a theorem of Khisamiev [31] stating that every torsion-free
abelian group that admits a computably numerable presentation also admits a com-
putable presentation.

We also note that (1) → (2) strengthens the main result of [37], and that (2) → (1) is
uniform in the case when the group is non-zero; this will be important in applications.
We also conjecture that (2) → (1) is non-uniform in general.

1.5. Beyond compact groups: the t.d.l.c. case. Can we extend Theorem 1.1 to cover lo-
cally compact groups which are neither compact nor discrete? To answer this question,
we will need new ideas and techniques. The class of totally disconnected locally com-
pact (t.d.l.c.) groups is perhaps the narrowest class extensively studied in the literature
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(recent papers include [58, 57, 20, 4, 28]) which contains both the countable discrete
and the profinite Polish groups.

In Definition 3.4(2) we will introduce a notion of computability for abelian t.d.l.c. groups.
The problem is that the dual of a t.d.l.c. group is not totally disconnected in general. The
duals of t.d.l.c. abelian groups are exactly the extensions (in the sense of super-groups
here and throughout) of compact abelian groups by discrete torsion abelian groups;
see, e.g., [5]. Such groups are sometimes called locally elliptic. The most commonly
accepted notion of computability for general Polish groups is computable metrizability,
i.e., there exists a computable complete metric with respect to which the operations are
computable. Thus, the second main result of this article stated below is perhaps the
best result one could hope for in the t.d.l.c. case.

Theorem 1.2. Suppose G is a computable abelian t.d.l.c. group. Then its dual Ĝ is com-
putably metrized Polish.

We believe that the proof of Theorem 1.2 is of independent interest. To circumvent a
difficulty in constructing a computable metric in Theorem 1.2, we extend a well-known
result of Dobritsa [7] (see Theorem 4.2) from computable abelian group theory to arbi-
trary computable abelian t.d.l.c. groups; this is Proposition 5.1. Of course, the result of
Dobritsa has no direct analog in the theory of computable topological groups. Thus, it is
not surprising that the technical proof of Proposition 5.1 relies on some novel strategies
specific to the subject; see §5.1.1 for a detailed discussion.

How about a converse of Theorem 1.2? As we have already mentioned above, the
obvious obstruction is that Ĝ does not have to be t.d.l.c. We restrict ourselves to G such
that both G and Ĝ are t.d.l.c; see Subsection 1.7 for a discussion of the general case. The
abelian groups such that both the group and its dual are t.d.l.c. are exactly the extensions
of profinite groups by torsion groups. Equivalently, these are exactly the locally compact
abelian protorsion groups. A more careful analysis of the proof of Theorem 1.2 in this
special case shows:

Theorem 1.3. Suppose G is an abelian t.d.l.c. group such that Ĝ is also t.d.l.c.. Then G
has a computable presentation if, and only if, Ĝ has a computable presentation.

We note that, in contrast with Theorem 1.2, the proof of Theorem 1.3 is (computably)
uniform.

1.6. Consequences. We now discuss several applications of our computable duality re-
sults and of the techniques used to prove them. First, in §1.6.1 we apply Theorem 1.1
to measure the complexity of the isomorphism problem for special classes of compact
abelian groups. Then in §1.6.2 we discuss an application of the methods developed in
the proof of Theorem 1.2. More specifically, it follows that the assumption of effective
compactness in Theorem 1.1 cannot be removed. With a bit of extra work this result can
be applied to simultaneously answer several open questions about computable metric
spaces.

1.6.1. Applications to classification problems. Our first corollary is concerned with the
complexity of the effective classification problem for various subclasses of compact Pol-
ish abelian groups. We follow [21, 11] and measure this using the special index sets
which are called the characterisation problem and the isomorphism problem (to be
defined in Subsection 8.2). Informally, we use the universal Turing machine to list all
(partially) computably metrized group presentations and ask which indices (pairs of in-
dices) correspond to members of a certain class of groups (respectively, to isomorphic
members of the class). We attack Problem 21(3) of [11]:
Measure the complexity of the effective classification problem

for natural subclasses of compact Polish groups.
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There are many potential applications of Theorem 1.1 to various subclasses of con-
nected compact abelian groups. We state only three such applications below:

Corollary 1.4. For each of the following classes, both the characterization problem and
the isomorphism problem are arithmetical:

(1) compact abelian Lie groups;
(2) direct products of solenoid groups;
(3) connected compact abelian groups of finite covering dimension.

As usual, the corollary can be relativized to an arbitrary oracle. The corollary can be
informally interpreted as follows. Given a presentation of a group, we can use only local
properties of the presentation (such as finite covers and their first-order or computable
properties) to recognise whether a given group is, say, homeomorphic to a product of
solenoid groups. Also, given two such groups, we can arithmetically decide whether
they are (algebraically) homeomorphic. Note that the usual definition involves at least
one set-quantifier.

While (1) and (3) are relatively straightforward consequences of Theorem 1.1, (2) is
non-trivial since it relies on the technical main result of [10]. In our proof we establish
only somewhat crude arithmetical upper bounds. Perhaps with some extra work at least
some of our estimates can be turned into optimal completeness results; we leave this
open.

1.6.2. Applications to the foundations of computable topology. We begin this paragraph
with the natural question: Is the assumption of effective compactness necessary to
prove (2) → (1) of Theorem 1.1? In view of (2) → (1) of Theorem 1.1, this is equivalent to
answering the following more general question in the abelian case:

(Q1) Is every computably metrized compact connected group homeomorphic to an
effectively compact one?

We will answer this question below in the negative. Interestingly, our next theorem
which answers this question also solves several further problems which we state and
discuss next.

One of the first tasks in any emerging theory is to establish the equivalence (or non-
equivalence) of some of the most basic definitions and assumptions which lie at the
foundations of the theory. Point-set topology is notorious for its zoo of various no-
tions of regularity of spaces, the most fundamental of which are known to be non-
equivalent via relatively straightforward but clever counterexamples. In stark contrast,
computable topology seems to be essentially completely missing the proofs that many
of its computability-theoretic notions are (non-)equivalent. This is partially explained
by the fact that proving (non-)equivalence of such notions presents a significant chal-
lenge. For instance, the problem of comparing effectively compact and computably
metrized presentation has recently attracted a considerable attention. It follows from
[24, 29] that every computably metrized Stone space is homeomorphic to an effectively
compact one; see [24] for an explanation. In contrast, Lemma 3.21 of [29] gives an exam-
ple of an effectively metrized compact Polish space which is not homeomorphic to an
effectively compact Polish space. Ng has also recently announced that every effectively
compact metric space is homeomorphic to a computably metrized space which is not
effectively compact. All these results rely on advanced modern techniques. In a recent
personal communication with the second author, Ng has raised the following question:

(Q2) Is every computably metrized compact connected Polish space homeomorphic
to an effectively compact one?

This is similar to our question above stated for connected groups, but it is concerned
with arbitrary connected Polish spaces.
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Somewhat unexpectedly, it takes much effort to prove that there exists a∆0
2-metrized

Polish space not homeomorphic to a computably metrized one (answering a question
posed by Selivanov [51]); see [29, 24] for three substantially different proofs all of which
are non-trivial. All known examples share the same feature, namely they use connected
components of the constructed spaces to “code” an undecidable set. Kihara in his recent
CiE2020 talk asked:

(Q3) Is every∆0
2-metrized connected compact Polish space homeomorphic to a com-

putably metrized one?

This question was also independently raised in [24] (Question 2). Also, [24] (Question 3)
asks the analogous question for ∆0

2-metrized connected Polish groups.

We will see in Corollary 1.6 that, with the help of Theorem 1.1, our result stated below
can be used to answer all these questions in the negative using a unified approach.

Theorem 1.5. There exists a computably metrized connected group G such that Ĝ has no
computable presentation as a discrete group.

The proof of Theorem 1.5 is quite different from the proof of a similar profinite coun-
terexample in [37]; it relies on a new diagonalization strategy. Even though the con-
structed group is connected compact, the proof is much more technically related to
Theorem 1.2 than to Theorem 1.1. With some extra work, we will derive:

Corollary 1.6.

(1) There exists a computably metrized connected compact Polish group not home-
omorphic to any effectively compact Polish space. (This simultaneously an-
swers (Q1) and (Q2).)

(2) There exists a ∆0
2-metrized connected compact Polish group not homeomor-

phic to any computably metrized Polish space. (This simultaneously answers
(Q3) and Question 3 of [24].)

Note that in the corollary, although both counterexamples happen to be computably
metrized compact groups, we diagonalize against all spaces. Jason Rute gave an elegant
argument showing that a computably metrized compact Polish group G is effectively
compact iff the left Haar probability measure is computable iff the right Haar proba-
bility measure is computable. See his post [12, Section 17]. It thus follows from (1) of
Corollary 1.6 that there is a computably metrized connected compact group not home-
omorphic to any computably metrized compact group with computable Haar probabil-
ity measure. Willem Fouche asked whether every computable compact Polish group has
computable Haar measure. A fixed presentation of a group can have this property (see
[37] and [12, Theorem 15.1]). Our corollary gives the strongest possible negative answer
to this question, in the sense that no computable presentation of the constructed group
can have computable Haar measure.

1.7. The locally elliptic case. Recall that the duals of t.d.l.c. groups are called locally
elliptic groups; they are exactly the extensions of compact abelian groups by discrete
torsion abelian groups. Although the terminology is perhaps not self-explanatory, this
property can be viewed as a generalization of local finiteness of a discrete group. Platonov
[44] initiated the systematic study of not necessarily abelian locally elliptic groups in the
1960s. We thank Yves Cornulier for this bit of history and cite [6] for some recent results
on locally elliptic groups.

We leave open whether our methods can be combined and extended to prove com-
putability (or non-computability) of the duality between arbitrary t.d.l.c. and locally el-
liptic abelian groups, we conjecture that it should be possible. Perhaps, one needs a
suitable general notion of effective local compactness, such as a strong version of ef-
fective σ-compactness, to make the converse of Theorem 1.2 work. However, at the
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current state of the theory we do not seem to possess enough techniques to cover this
more general case, and thus leave it to be investigated in the future.

2. PRELIMINARIES

2.1. Computable topological spaces. A computable topological space is a pair (X ,ν),
where ν :N→ τ is a numbering of a countable basis of the topological space X , so that

ν(i )∩ν( j ) = ⋃
(i , j ,k)∈R

ν(k),

where R ⊆N3 is c.e. More generally, an open set U of X is c.e. or effectively Σ0
1 (relative

to ν) if there is a c.e. set I such that U = ⋃
i∈I ν(i ). In a computable topological space,

the intersection of two basic open sets is a c.e. open set in a uniform way.

Definition 2.1. Given a computable topological space (X ,ν), we call

N x = {i : x ∈ ν(i )}

the name of x. A point x is called computable if it has a computably enumerable name.

Definition 2.2. A function f : X → Y between two computable topological spaces is
effectively continuous if there is a c.e. family F of pairs of (indices of) basic open sets
such that:

(C1): for every (U ,V ) ∈ F , f (U ) ⊆V ;
(C2): for every x ∈ X and basic open E 3 f (x) in Y there exists a basic open D 3 x in X

such that (D,E) ∈ F .

Definition 2.3. A function f : X → Y between two computable topological spaces is
effectively open if there is a c.e. family F of pairs of basic open sets such that

(O1): for every (U ,V ) ∈ F , f (U ) ⊇V ;
(O2): for every x ∈ X and any basic open E 3 x there exists a basic open D 3 f (x) such

that (E ,D) ∈ F .

2.2. Effectively compact metric spaces. Recall that a ball in a computably metrized
space is basic if it has a positive rational radius and is centered in a special point.

Definition 2.4. A computably metrized Polish space is effectively compact if there is
a uniformly computable procedure which, given ε ∈ Q+, enumerates all covers of the
space by basic open ε-balls.

Remark 2.5. We note that an apparently weaker definition that also occurs in the litera-
ture is via an effective version of total boundedness: one asks that given ε ∈Q+ one can
compute some cover of the space by basic open ε-balls. However, this definition is in
fact equivalent to the one we use. To obtain our version from the weaker formulation,
the idea as follows. Take a finite collection (Bε(xi )) of basic open ε-balls. If it is a cover,
the values of the continuous function z → supi (ε−d(z, xi )) are all positive, and hence all
greater than 2δ for a sufficiently small but unknown δ. So we can wait for a rational δ> 0
so that for the cover (Bδ(yk ) by finitely many δ-balls we are effectively given by hypoth-
esis, for each k there is i such that d(yk , xi ) < ε−δ. This implies that Bδ(yk ) ⊆ Bε(xi ),
and hence verifies that (Bε(xi )) is a cover. So we add it to the list.

2.3. Computable Polish spaces and groups. Examples of computable topological spaces
can be obtained using the following concept.

Definition 2.6. A computable (Polish) metric space is a triple (M ,d , (xi )i∈N), where (M ,d)
is a Polish metric space and (xi )i∈N is a dense sequence in M such that, for any i , j ∈N,
d(xi , x j ) is a computable real uniformly in i , j .
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The points xi in the dense sequence (xi )i∈N are called special points. A topological
space X is computably metrizable if there exists a computable metric on the set of nat-
ural numbers such that the completion of this metric space is homeomorphic to X . It is
clear that such a space is computable as a topological space: let 〈ν(k)〉k∈N be an effective
listing of the open balls around special points with a radius of the form 2−r .

Definition 2.7. [38] A Polish group G is computably metrizable if there is a dense set
(xi )i∈N in G and a metric d compatible with the topology of G such that:

• (G ,d , (xi )i∈N) is a computable (Polish) metric space;
• the group operations of G are effectively continuous

A pair ((xi )i∈N,d) as in the definition above is called a computable Polish presenta-
tion, or a computably metrized presentation, of G .

3. COMPUTABLE PRESENTATIONS OF T.D.L.C. ABELIAN GROUPS

In Section 1.5 we discussed totally disconnected locally compact (t.d.l.c.) abelian
groups. In this section we give a formal definition of computability for such groups. Our
approach in this abelian case is via a definition of computability for the larger class of
procountable groups, which we recall next.

Suppose we are given a sequence of groups (Ai )i∈N such that each Ai is countable
discrete. Suppose we are also given epimorphisms φi : Ai → Ai−1 for each i > 0. The
inverse limit lim←−−(Ai ,φi ) is concretely defined as the closed subgroup of the topological
group

∏
i∈N Ai consisting of those g such that φi (g (i )) = g (i −1) for each i > 0.

Definition 3.1. A topological group G is called procountable if G ∼= lim←−−(Ai ,φi ) for some
sequence (Ai ,φi )i∈N as above.

It is well-known [?, Thm. 1.5.1] that a Polish group G is isomorphic to a closed sub-
group of S∞ if, and only if, it has a neighbourhood basis of the neutral element con-
sisting of open subgroups. Furthermore, G is procountable if, and only if, it has such a
neighbourhood basis where the open subgroups are normal. In particular, each abelian
group isomorphic to a closed subgroup of S∞ is procountable.

Among the procountable (not necessarily abelian) groups, being t.d.l.c. can be char-
acterized easily.

Fact 3.2. Suppose G ∼= lim←−−(Ai ,φi ) for some sequence (Ai ,φi )i∈N as above. Then

G is locally compact ⇔ ker φi is finite for all sufficiently large i .

Proof. For each i let Ni ≤ G be the kernel of the natural epimorphism G → Ai , an
open normal subgroup of G . Identifying Ai with G/Ni via this epimorphism, we have
φi (g Ni ) = g Ni−1 for each g ∈G , and in particular ker φi = Ni−1/Ni for i > 0.

For the implication “⇒", note that G as a t.d.l.c. group has a compact open sub-
group K by a theorem of van Dantzig. Since the Ni form a basis of neighbourhoods
of 1 in G , we have Ni−1 ≤ K for sufficiently large i . So Ni−1 is compact, whence Ni has
finite index in it.

For the implication “⇐", we may assume that each φi has a finite kernel. For i > 0
write Bi = N0/Ni , a finite subgroup of Ai . Let φ′

i = φi |Bi . Note that φ′
i : Bi → Bi−1

is onto for each i , and the group N0 is topologically isomorphic to lim←−−i>0
(Bi ,φ′

i ). So
N0 is profinite and hence compact. Since N0 is open in G , this shows that G is locally
compact. �

Shortly, in Def. 3.4 we will consider computable procountable presentations, and in-
troduce an effective version of the finiteness condition in Fact 3.2 in order to obtain a
notion of a computable locally compact procountable group. Each t.d.l.c. group G is
isomorphic to a closed subgroup of S∞, and if G is abelian then it is also procountable
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as noted above. Thus, in taking our approach to computability via the procountable
groups, we include the case of abelian t.d.l.c. groups, which suffices for this paper.

3.1. Computable t.d.l.c. presentations. In computability theory, a strong index k for a
finite set F ⊆ N is a direct encoding of the set by a single natural number; e.g. one can
take k =∑

n∈F 2n . A computable index for a set S is the code for a Turing program com-
puting S. By a strong index for a finite group with domain a subset of N, we will mean a
pair of strong indices as above, one for the domain and one for the group operation.

Towards Def. 3.4, we first recall a definition going back to LaRoche [33] and Smith [52].

Definition 3.3. A computable profinite presentation of a profinite group P is a sequence
of finite groups Ai and epimorphisms φi : Ai → Ai−1 (for i > 0), all given by uniformly
strong indices, such that P ∼= lim←−−(Ai ,φi ).

We now widen the definition of La Roche and Smith in that we allow the Ai to be com-
putable groups, and require that the Ai and the φi have computable indices uniformly
in i .

Definition 3.4. (1) A computable presentation of a procountable group G is a sequence
(Ai ,φi )i∈N, of discrete groups Ai and epimorphisms φi : Ai → Ai−1 (for i > 0) such that
G ∼= lim←−−(Ai ,φi ), each group Ai is uniformly computable as a discrete group, and the
sequence of maps (φi )i∈N+ is uniformly computable. (For notational ease, we also letφ0

be the identity on A0.)
(2) Suppose that ker φi is finite for each i (so that G is locally compact by Fact 3.2). We
say that (Ai ,φi )i∈N is a computable t.d.l.c. presentation of G if in addition, from i one
can compute a strong index for ker φi as a subset of Ai .

Remark 3.5. Note that each computable profinite presentation in the sense of La Roche
and Smith is a computable t.d.l.c. presentation. Recall that a computable discrete group
G is a group upon the domainN in which the operations are represented by computable
functions (Maltsev [34], Rabin [48]). Letting all the maps φi be the identity, our defini-
tion subsumes the definition of a computable group.

Remark 3.6. Given a computable procountable presentation of an abelian group G , we
can always refine the sequence (Ai )i∈N so that kernels of the projections φi : Ai → Ai−1

are cyclic subgroups of Ai . Then, saying that the (strong) indices of (K er φi )i∈N are
computable is equivalent to saying that the generators of these kernels and their orders
can be computed from i .

Remark 3.7. It is clear that each computably presented procountable group is com-
putably metrizable (Def. 2.7). The converse of this fails even for profinite groups; this
follows from Cor. 1.6 of [37].

3.2. Discussion. The second and third author in forthcoming work [36] define com-
putability for a t.d.l.c. group G without the restriction to being abelian. They begin by
showing that two rather different possible definitions are equivalent. The first asks that
a certain computable subgroup of S∞ satisfying an effective local compactness condi-
tion is isomorphic to G . The second says, roughly speaking, that a (countable) ordered
groupoid defined canonically on the compact open cosets of G is computable. [36, Sec-
tion 8] shows that in the abelian case the definition in [36] is equivalent to the one given
here. This evidences that the definition of computability for t.d.l.c. groups used here is
not ad hoc; rather, it is equivalent to a general definition, but stated here in such a way
as to be appropriate in our technical proofs below.

We provide further evidence that our definition of computability for t.d.l.c. abelian
groups is a natural one. We give a characterisation of this class based on computable
extensions of a profinite group by a discrete group.
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First we need a little background; for more detail see e.g. [18]. Given abstract groups
A,L, an extension of A by L is an exact sequence 0 → A → E → L → 0. (Note that in
homological algebra this is usally called an extension of L by A.) The extensions of A
by L are given by equivalence classes of cocycles. A cocycle from L to A is a function
c : L × L → A that is symmetric and satisfies the condition that c(u, v)+ c(u + v, w) =
c(v, w)+ c(u, v +w). By these conditions, on L× A, the operation

(u, a)+ (v,b) := (u + v, a +b + c(u, v))

defines an abelian group E . The inverse of (u, a) is (−u.−a−c(u,−u)). A monomorphism
A → E is defined by a 7→ (0, a). An epimorphism E → L is defined by (u, a) → u. So we
have an exact sequence as above. We write E = extc (L,P ). If A is a topological group
and L is countable discrete, then E is naturally a topological group with the product
topology, and A is open in E .

Given a uniformly computable sequence of groups (Ai )i∈N, by a computable element
of

∏
Ai we mean a computable function f such that f (i ) ∈ Ai for each i . Let L be a com-

putable discrete group and P a computable profinite group as defined in 3.3 (identified
with its presentation). We say that a 2-cocycle c : L ×L → P is computable if c(x, y) is a
computable element of P uniformly in x, y ∈ L. In this case, we call the group extc (P,L)
a computable extension of P by L.

Proposition 3.8. Let G be a t.d.l.c. abelian group. The following are equivalent.

(1) G has a computable t.d.l.c. presentation.
(2) G is homeomorphic to a computable extension of a profinite group P by a discrete

group L.

Proof. (1)→(2): Let (Ai ,φi )i∈N be a computable t.d.l.c. presentation of G as in Def. 3.4(2).
Write L = A0. Letα denote the canonical projection G → L. Let P denote the kernel ofα.

We claim that P has a computable profinite presentation (Bi ,φ′
i )i∈N. The groups Bi

and the maps φ′
i are defined as in the proof of the implication “⇐" in Fact 3.2. We

show how to recursively compute strong indices for the groups Bi . Fix a strong index
for the finite group B1. If we have a strong index for Bi−1, since the epimorphism φi

is computable uniformly in i , we can compute a strong index for a finite set D ⊆ Ai

such that φi (D) = Bi−1. By hypothesis, from i we can compute a strong index for the set
kerφi . So we can compute a strong index for D ·kerφi , which equals the domain of Bi .
Since Ai is a uniformly computable group, we can therefore obtain a strong index for
the group Bi .

Since the mapsφi are uniformly computable, we automatically obtain strong indices
for the restricted maps φi |Bi . This verifies the claim.

We next define a computable 2-cocycle c : L×L → P . Since the maps φi are onto and
uniformly computable, given x ∈ L we can uniformly determine a computable element
τ(x) ∈ G such that α(τ(x)) = x. Now let c(x, y) = τ(x) + τ(y) − τ(x + y). Then c is as
required.

(2)→(1): Let (Bi ,φ′
i ) be a computable profinite presentation of P . Let A0 = L. For each

i let βi : P → Bi be the canonical projection. Note that ci := βi ◦ c : L ×L → Bi is a 2-
cocycle. Let Ai = extci (L,Bi ) be the corresponding extension. Define maps φi : Ai →
Ai−1 by φi (u, a) = (u,φ′

i (a)). Using that φ′
i ◦ ci = ci−1, it is easily verified that the φi are

epimorphisms.
We show that G ∼= lim←−−(Ai ,φi ). By our concrete definition of inverse limits given at

the beginning of this section, and our concrete definition of extensions, H0 = extc (L,P )
is a closed subgroup of L ×∏

i Bi . Furthermore, H1 = lim←−−i
(extci (L,Bi ),φi ) is the closed

subgroup of
∏

i (L×Bi ) consisting of those g such that the first component g (i )0 ∈ L does
not change with i , and for the second components we haveφ′

i (g (i )1) = g (i −1)1 for each
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i > 0. Define a topological isomorphismΦ : H0
∼= H1 by letting φ(u, f ) be the function g

such that g (i )0 = u and g (i )1 = f (i ) for each i .
Note that (viewing Bi as a subgroup of Ai ) one has ker(φi ) = ker(φ′

i ), so ker(φi ) is
finite and given by a strong index uniformly in i . Thus (Ai ,φi ) is a computable t.d.l.c.
presentation of G . �

4. PONTRYAGIN - VAN KAMPEN DUALITY

All topological groups in this section will be abelian, separable, and Hausdorff. As
usual, we use additive notation for abelian groups and view them as Z-modules. Recall
that the Pontryagin - van Kampen dual (or Pontryagin dual, or just dual for short) Ĝ of
a locally compact abelian group G is the collection of all topological group homomor-
phisms from G to the unit circle group T endowed with the topology of uniform conver-
gence (the compact-open topology). Pontryagin - van Kampen duality states that, for a
locally compact G , applying the dualization process twice yields a group topologically
isomorphic to G . Pontryagin [45] proved the duality for the important special cases of
compact and discrete abelian groups. Thereafter, van Kampen [30] in a 3-page paper
showed how the result can be extended to arbitrary locally compact abelian groups.

4.1. Compact and discrete torsion cases. It is not hard to see that G is compact iff Ĝ
is discrete and G is profinite iff Ĝ is discrete torsion; see [40] for details. More gen-
erally, for a Polish t.d.l.c. abelian G , its dual is a topological extension of a separable
compact group N by a countable torsion discrete group X . That is, the abelian group
Ĝ has an open compact subgroup N such that Ĝ/N ∼= X . It follows that Ĝ is equal to
the union of its compact subgroups and it does not have to be t.d.l.c. in general. Recall
that the strongest notion of computability known beyond the class of t.d.l.c. groups is
computable metrizability (Def. 2.7). Recall also that the class of t.d.l.c. groups includes
discrete and profinite groups.

Proposition 4.1. Suppose G is a Polish abelian t.d.l.c. group which is either compact
or discrete torsion. Then G has computable t.d.l.c. presentation if, and only if, Ĝ has
computable t.d.l.c. presentation.

Proof. A profinite group G has a computable profinite presentation iff its dual Ĝ , which
is a discrete torsion group, has a computable discrete presentation; see Theorem 1.9
of [37]. This suffices by Remark 3.5. �

For any computable discrete A, its dual Â is computably metrizable [37]. We first
explain why the dual of a discrete group can be viewed as a closed subgroup of A=TN,
where T is the unit circle group.

4.1.1. The group Hom(G ,T). Let T be the group R/Z, which is isomorphic as topologi-
cal group to the multiplicative group of complex numbers having norm 1. We say that
a point x ∈T is rational if the respective point of the unit interval is a rational number.
Then T equipped with rational points is a computable Polish group. The direct product

A= ∏
i∈N

Ti ,

of infinitely many identical copies Ti of T carries the natural product-metric

D(χ,ρ) =
∞∑

i=0

1

2−i−1
di (χi ,ρi ),

where each of the di stands for the shortest arc metric on Ti . Under this metric and
the component-wise operation A is a computably metrized Polish abelian group. The
dense sets are given by sequences (ai ), where ai is a rational point in Ti , and almost
all ai are equal to zero. The basic open sets in

∏
i∈NTi are direct products of intervals

with rational end-points such that a.e. interval in the product is equal to the respective
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Ti . Clearly, we can effectively list all such open sets. (The exact choice of this basic
system of balls is not crucial, but it will be convenient to assume that the end-points
of the intervals are rational.) Every compact abelian group can be realised as a closed
subgroup ofA, as explained below.

Suppose G = {g0 = 0, g1, g2, . . .} is a countably infinite discrete group. Let Hom(G,T)
be the subset ofA=∏

i∈NTi , (each Ti is a copy of T) consisting of tuples χ= (χ0,χ1, . . .),
where each such tuple represents a group-homomorphism χ : G → T such that χ(gi ) =
χi ∈Ti . Since G is discrete, every group homomorphism χ : G →T is necessarily contin-
uous. Thus, Ĝ ∼= Hom(G,T). Since being a group-homomorphism is a universal prop-
erty, Hom(G,T) is a closed subspace ofA. Pontryagin duality implies that every separa-
ble compact abelian group is homeomorphic to a closed subgroup ofA.

In our later proofs we will need a more detailed understanding of the dual of a dis-
crete G within A = ∏

i∈NTi . We can “build” a closed subgroup of A homeomorphic to
Ĝ ; this is explained in detail below.

4.2. Constructing Ĝ within A. In this subsection we give a 0′-computable procedure
which, given a computable discrete G , builds a closed subgroup of A isomorphic to Ĝ .
We outline the main idea, then we explain why this “naive” construction is not com-
putable in general. Then we explain how to modify the construction to make it com-
putable.

Fix some enumeration of all elements of G ; to be consistent with the notation in the
previous subsection, suppose G = {g0 = 0, g1, g2, . . .}. Recall, A= ∏

i∈NTi where each Ti

is a copy of T. Let πi be the projection of Hom(G,T) onto Ti .

4.2.1. Performing a few steps. We describe an idea behind the construction. We do this
by performing a few steps and blend these steps with informal explanation.

At stage 0, set π0(Hom(G,T)) = 0; clearly, χ(g0) =χ(0) = 0 for any character χ of G .
At stage 1, we consider the next element g1. Suppose, for example, 〈g1〉 ∼= Z, and

therefore its dual 〈̂g1〉 is homeomorphic to T. We then declare π1(Hom(G,T)) =T1 and
go to the next stage.

At stage 2, consider g2 and suppose, say, 2g2 = g1. Then the order of g2 is infi-
nite, and thus 〈̂g3〉 ∼= T. For any x ∈ T, χ(g3) = x implies χ(g1) = 2x. We then declare
π2(Hom(G,T)) =T2, but we also require 2χ3 =χ2 for each character χ= (χ0,χ1, . . .) of G .

We can proceed in this manner to define the closed set representing Ĝ withinA.

4.2.2. The naive construction.

At stage 0, set π0(Hom(G,T)) = 0.
At stage s, if the order of gs is infinite then declare πs (Hom(G,T)) = Ts, and if it is

finite and 〈gs〉 ∼=Zk , then declare πs (Hom(G,T)) = 〈1

k
〉 ≤Ts. Check if there exist integers

n, m0, . . . ,ms−1 such that

ngs =
∑
i<s

mi gi ,

where n 6= 0, and if at least one of the mi 6= 0 then GC D(n,m0, . . . ,ms−1) = 1. If such a
relation holds for g0, . . . , gs , then also require that

nχs =
∑
i<s

miχi ,

for any sequence (χ0,χ1, . . .) in the closed set that we construct.

The naive construction described above builds a closed subset of A. Together with
the computable operations inherited from A it forms a closed subgroup of A topologi-
cally isomorphic to Ĝ .
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4.2.3. The main issue with the naive construction. It is not difficult to show that search-
ing for a linear combination of the form ngs = ∑

i<s mi gi in a computable discrete G
requires 0′ in general. Proposition 3.3 of [37] shows that this difficulty cannot be cir-
cumvented in the following sense. The closed subgroup Hom(G ,T) ≤A does not nec-
essarily have a dense sequence of points uniformly computable with respect to A. This
is the only difficulty, because if Hom(G ,T) had a dense computable subset of points,
then we could use the metric ofA and its computable operations to computably metrize
Hom(G ,T).

4.2.4. Fixing the issue. The idea is to replace G with a computable H ∼= G such that
Hom(H ,T) does contain a computable dense subset. As was verified in [37], for the
naive construction to work it is sufficient that H has a computable maximal linearly
independent set over integers2.

Dobritsa [7] proved the following, building on the earlier work of Nurtazin [42]:

Theorem 4.2 (Dobritsa). Every computable discrete abelian group has a computable pre-
sentation with a computable maximal linearly independent set.

Using Dobritsa’s theorem, we can replace G with a computable H that admits a com-
putable maximal linearly independent set; in H the conditions required to run the naive
construction are computable. This gives a computably metrized presentation of Ĥ ∼= Ĝ .

5. DETERMINING THE DUAL

5.1. Proof of Theorem 1.2.

5.1.1. Discussion and intuition. Recall that Theorem 1.2 states that the Pontryagin dual
Ĝ of a computable abelian t.d.l.c. group G is computably metrizable. Fix a computable
t.d.l.c. presentation (Ai ,φi ), where each Ai is discrete and each K er φi is finite and given
by its strong index as in Def. 3.4(2). Since the kernel of each projection is finite, the index
of Âi+1 in Âi will also be finite. The dual of G will be the direct limit of Âi .

As discussed in the previous section, each Âi can be computably metrized. Nonethe-
less, to build the computably metrized copy of Âi , we need to pass to a new computable
discrete presentation Bi of Ai that has a computable maximal linearly independent set.
The isomorphism between Ai and Bi does not have to be computable in general. Con-
sequently, it will no longer be clear how Bi+1 projects onto Bi , and thus we will have
difficulties in defining a computable metric on the direct limit of B̂i .

It seems that the only reasonable solution to this problem is to build all these Bi

simultaneously and additionally maintain the projections between them. Once the re-
sult of Dobritsa is extended to computable procountable abelian groups in this sense in
Proposition 5.1, the rest of the proof becomes somewhat routine. We will use the spe-
cific properties of the computably metrized B̂i as described in the previous section to
put them together in a coherent way.

In the subsection below we prove Theorem 1.2 assuming Proposition 5.1. We will
prove Proposition 5.1 in Section 9, which requires a considerable effort.

5.1.2. Formal proof of Theorem 1.2.

Proposition 5.1. Suppose (Ai ,φi ) is a computable t.d.l.c. presentation of an abelian group
G as in Def. 3.4(2). Then G has a computable t.d.l.c. presentation (Bi ,ψi ) such that each
Bi has a computable maximal linearly independent set, uniformly in i .

2Recall that elements g1, . . . , gk of an additive abelian group G are linearly independent (over Z) if, for any
choice of n1, . . . ,nk ∈Z, n1g1+. . .+nk gk = 0 implies ni = 0 for all i . Note that torsion elements are “dependent
on themselves". All maximal linearly independent subsets of G have the same cardinality which is called the
(Prüfer or torsion-free) rank of A.
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We postpone the technical proof of the proposition to Section 9. Assuming the propo-
sition, we prove the theorem. By the proposition, we can assume that each Ai has a
uniformly computable maximal linearly independent set. As we explained in Subsec-
tion 4.2, the duals of Âi have uniformly computable metrizations; this is Theorem 1.4 of
[37]. As explained in §4.2.4, the procedure described in §4.2.2 becomes computable if
the group has a computable maximal linearly independent set.

Furthermore, it follows from the description of the construction in §4.2.2 that, within
each version T j of the unit circle in A = ∏

i Ti , we can use only rational points when
we define a projection of Ai to T j . The image of this projection will be equal to the
completion of this set of rational points. More specifically, if we decide that π j (Ai ) ∼=Zm

then we add the rational points
k

m
, k ≤ m, all at once. Otherwise, if we decide that

π j (Ai ) =T j , then we initate the enumeration of all rational points in T j .
Recall that the kernel of each φi : Ai → Ai−1 in the computable procountable pre-

sentation is given by its strong index. We can uniformly rearrange the enumeration of
Ai to make sure that the elements of the kernel are listed first, and then the rest of the
elements of Ai listed.

It follows from Subsection 4.2 that, after this re-enumeration, the dual of Ai can be
realised as a computable closed subgroup of

∏
i Ti , where the first k projections πi (i ≤

k) correspond to the elements of the kernel. Note that each of these k projections is
finite. In particular, the collection of sequences of the form

(0, . . . ,0,χk+1,χk+2, . . .)

will be a computably metrized presentation of Ai−1. Similarly, we take the finite kernel
of the composition φ̃i of φ j , i < j , then the dual of Ai can be represented as a com-
putable closed subgroup of

∏
i Ti , where the first mi projections πi (i ≤ mi ) correspond

to the elements of K er φ̃i , and the sequences with the first mi coordinates equal to
0 represent a computably metrized presentation of A0. Furthermore, it follows from
§4.2.2 that each Âi will be a disjoint union of finitely many cosets of Â0, and uniformly
computably so.

The computably metrized groups Âi can be viewed as nested under inclusion. Mod-
ify the metric on this computably metrized presentation of Âi to make it more suitable
for metrizing the direct limit of all Âi . Declare the distance between any two points
coming from different cosets of Â0 equal to 2, and use the product metric ofTN (which is
always ≤ 1) to compare elements in each individual coset mod Â0. This is a computable
metric which is furthermore effectively compatible with the original metric on Âi . Each
Âi is a disjoint union of finitely many cosets of Â0, in a tractable way (see §4.2.2). It
follows that the operations on Ĝ are effectively open and effectively continuous, since
for any input the group operations can be computed within Âi for a sufficiently large i .
This finishes the proof of Theorem 1.2.

5.2. Proof of Theorem 1.3. Recall that, by assumption, G and Ĝ are t.d.l.c. abelian.

Since ̂̂G ∼= G , it is sufficient to prove that computability of G implies computability of
Ĝ in the sense of Definition 3.4(2). By hypothesis G admits a computable procountable
presentation (Ai ,φi ) in which every Ai is torsion discrete. Each Ai has a maximal com-
putable linearly independent set, namely the empty set, and therefore Proposition 5.1
is vacuously true for these Ai . It remains to note that the computable metric on each
totally disconnected compact Âi produced in the proof of Theorem 1.2 is effectively
compatible with the standard ultra-metric on the respective compact subset of NN; see
also §4.2.2 and §4.2.4. Furthermore, since there are only finitely many points in eachTi

and they are enumerated instantly (i.e., as a strong index), it follows that we can produce
a computable profinite presentation of Âi , uniformly in i . Following the same argument
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as in the proof of Theorem 1.2, computably metrize the direct limit of Âi . Since each in-
dividual compact Âi is computable t.d.l.c., the resulting computable ultra-metric makes
Ĝ computable t.d.l.c.

Remark 5.2. The correspondence given by Theorem 1.3 is uniform, since the only non-
uniform step in Theorem 1.2 is checking if the rank of A0 is finite or infinite; this will be
explained in the proof of Proposition 5.1.

6. THE CONNECTED CASE: PROOF OF THEOREM 1.1

6.1. Effective compactness of the dual. (1) → (2): Recall from Section 4 that Ĝ can be
represented as a solenoid-type closed subgroup H of∏

n
Tn ,

where eachTn is the standard computable presentation of the unit circle group. It is suf-
ficient to show that this presentation H is effectively compact. It consists of sequences
(an) such that, for some of the n’s, we additionally require that qn an = ∑

s<n mn,s as ,
where qn is a prime and mn,s are integers which depend on n. Furthermore, we can
decide for which n such a restriction occurs, and in this case we also can compute the
respective qn and mn,s . Recall that in Subsection 4.2.4 we also explained that for this to
work, we picked a computable presentation of G with a computable maximal linearly
independent set. Note that the map x → qn x is surjective and computably maps basic
intervals to basic intervals in a strong sense (i.e., maps names to names), and the same
can be said about the standard operations of addition and multiplication by an inte-
ger scalar (in T). In fact, there exist arbitrarily small intervals Is 3 as for which we have
qn In =∑

s<n mn,s Is .
Given a finite potential cover C0, . . . ,Ck by basic open balls of H , uniformly compute

i so large that the i ′-th projection of each of the C j covers all of the Ti ′ , i ′ > i . If (Ci ) is
indeed a cover, then every ξ ∈ H is contained in some C j together with a neighbourhood
of the form

I0 × I1 × . . .× Ii ×
∏
j>i
T j ,

where:

i. each In is a basic interval with rational end-points;
ii. each In is formally contained in the n-th projection of Ci :

d(cntr(In),cntr(Ci ))+ r (In) < r (Ci ),

where cntr(I ) denotes the center of an interval I ;
iii. if qn is defined, then qn In =∑

s<n mn,s Is .

Note that these conditions are Σ0
1. Also, by compactness, there must exist finitely many

neighbourhoods of this form that cover the whole group. We argue that such finite fam-
ilies can be computably enumerated.

Suppose we are given a family of intervals (I k
n ), k ≤ m, such that for every fixed k

the intervals I k
n satisfy the properties (i)-(iii) above (with index k suppressed). If qn is

defined and {
∏

s<n I k
s : k ≤ m}, is a cover of the projection of the group on

∏
s<nTn , then

{
∏

s≤n I k
s : k ≤ m}, is a cover of the projection of the group on

∏
s≤nTn ; this is because

every ξ (viewed as a sequence) that projects into
∏

s<n I k
s will also project into I k

n . Thus,
by induction on m, the problem of covering the group by neighbourhoods satisfying (i)-
(iii) is reduced to the problem of covering of the product of those Tn for which qn is not
defined, as follows. Let J be the set of all indices n ≤ i for which qn is not defined. For a
family

{
∏
n≤i

I k
n × ∏

j>i
T j : k ≤ m}
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satisfying (iii) to cover the group, it is necessary and sufficient that {
∏

n≤i I k
n : k ∈ J } is

a cover of
∏

k∈J Tk . Since the spaces Ti are uniformly effectively compact, such neigh-
bourhoods can be effectively enumerated. Thus, if C0, . . . ,Ck is indeed a cover, then we
will eventually see it.

(2) → (1): First, we will informally explain the main idea behind the proof. Then we give
some background from algebraic topology. After that we introduce and verify a new
method of calculating the Čech cohomology groups. Then we check that it can be used
to produce a computable presentation of the discrete torsion-free dual.

6.2. Informal explanation of the proof. Suppose we are given a computably metrized
presentation of the compact connected abelian Ĝ ; we can assume it is effectively com-

pact. Recall that ̂̂G ∼=G is the collection of all continuous homomorphisms from Ĝ to the
unit circle T under the topology of uniform convergence. Although Ĝ is topologically
isomorphic to a closed subgroup of the computable group TN, we do not necessarily
have access to an isomorphism showing this. So our job is to list all of the countably
many continuous homomorphisms χi : Ĝ →Twithout repetition in such a way that the
operation of addition is computable:

χi +χ j =χ f (i , j ),

where f is a computable function. Naively, one could try to approximate the Π0
1 class

of all elements in ̂̂G by means of finite partial maps from Ĝ to T. Since the space of all
continuous maps from Ĝ to T is not compact, the best we can hope using this brute-
force approach is to reduce the problem to the problem of uniformly computing iso-
lated members of a Π0

1 class in the Baire space. By a uniform version of Σ1
1-bounding

(see [50], Thm. 6.2.III), this will give a ∆1
1 presentation of ̂̂G ∼=G .

We see that the brute-force approach gives an upper bound on the complexity of G
which is too crude. The idea is to use algebraic topology (which is “algorithmic” in its
nature) to significantly improve this estimate. A peculiar consequence of the structural
theory of compact abelian groups is the following fact: for a compact connected abelian
group G, its homeomorphism type determines its algebraic homeomorphism type (see
Part 5 of Chapter 8 of [26]). To prove the theorem, one shows that the first Čech co-
homology group (to be defined) of the underlying space of a given compact connected
abelian group is isomorphic to its discrete dual.

To calculate the Čech cohomology group of Ĝ , we need to list its 2−n-covers and com-
pute their nerves; recall that the nerve of a cover is the simplicial complex in which the
faces are the collections of balls that intersect non-trivially. The covers form an inverse
system under refinement maps, and so do the associated nerves under the induced sim-
plicial maps. For each nerve, it makes sense to calculate its cohomology groups. For a
fixed i , the direct limit of the i th cohomology groups under the homomorphisms in-
duced by the refinement maps on nerves is exactly the i th Čech cohomology group of
Ĝ , which for i = 1 turns out to be isomorphic to G . The process described above is read-
ily seen to be arithmetical, which is already a significant improvement over the crude∆1

1
bound that we established earlier. It takes quite a bit of work to prove that, indeed, we
can computably recover the Čech cohomology groups from the given effectively com-
pact presentation of Ĝ .

There are three main obstacles in effectively computing the Čech cohomology groups.
First, we need to have access to covers of Ĝ . This is where effective compactness will be
useful. Second, for each cover we will need to calculate its nerve. This is problematic
since we need to decide whether balls intersect or not; this is naturally Σ0

1. In fact, it
seems that in general this difficulty cannot be resolved by means of manipulating with
the given presentation. We also suggest that the reader take some time to check that the
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mere computable enumerability of intersection for basic open balls is insufficient for
the cohomology machinery to work computably. This is not immediately obvious since
seeing this involves examining multiple layers of definitions; we omit the unpleasant
tedious details. To circumvent this obstacle, we will replace the standard notion of a
Čech nerve with a different notion of a metric nerve which yields the same cohomol-
ogy groups. Even though this will not be difficult, it will involve some subtle choice of
numerical parameters to check that the new notion works the way we expect. Third,
even assuming that the first two issues are resolved, the 1st Čech cohomology group is
merely c.e. presented rather than computable. Recall that a group is c.e. presented if its
operation is computable but equality is merely computably enumerable. Luckily, it was
conveniently proven by Khisamiev in the 1980s that every c.e. presented torsion-free
abelian group has a computable presentation which can be produced with sufficient
degree of uniformity. This uniformity will be important in applications. We will state
the result below and we will also give a sketch of its proof.

We are now ready to give the details.

6.3. Background from algebraic topology. The material contained in this subsection
can be found in [41]. The main point of this section is to set the terminology and nota-
tion.

6.3.1. Simplicial complexes. We assume that all the simplicial complexes are finite. If
K is a simplicial complex, write Hi (K ) for its i -th homology group (with coefficients in
Z), and H i (K ) to denote its i -th cohomology group. We omit the standard definitions
of these groups and refer the reader to, say, [41] where these definitions are stated and
explained in great detail. We also refer the reader to Chapter 3 of [53] and Chapter IV
of [13].

Recall that a simplicial map between simplicial complexes is a function from vertices
to vertices that maps simplices to simplices. Suppose that K and L are simplicial com-
plexes and f , g : K → L are simplicial maps. We say that f , g are contiguous if for every
simplex σ of K , f (σ)∪g (σ) is a simplex of L. For d ∈N, two contiguous simplicial maps
K → L induce the same homomorphism Hd (K ) → Hd (L) and H d (L) → H d (K ).

We say that f , g are contiguous equivalent if there exist ` ∈N and f0, . . . , f` such that
f0 = f , f` = g , and fi , fi+1 are contiguous for 0 ≤ i < `. This defines an equivalence
relation among simplicial maps. From the perspective of (co)homology, simplicial maps
belonging to the same contiguous equivalence class are indistinguishable. It is thus
convenient to define a morphism of simplicial complexes K → L to be a contiguous
equivalence class of simplicial maps K → L.

Then one can consider simplicial complexes as objects of a category with morphisms
defined as above. This makes K 7→ Hd (K ) is a covariant functor from simplicial com-
plexes to abelian groups, and K 7→ H d (K ) is a contravariant functor from simplicial
complexes to abelian groups.

6.3.2. Towers of simplicial complexes. We consider finite simplicial complexes. A tower
of simplicial complexes is a sequence

(
K (n), p(n,n+1)

)
of simplicial complexes K (n) and

morphisms p(n,n+1) : K (n+1) → K (n). For n < m let p(n,m) : K (m) → K (n) be the canonical
composition of maps. Suppose that

K = (
K (n), p(n,n+1)

)
and L = (

L(n), p(n,n+1)
)

are towers of simplicial complexes. A morphism K → L is represented by a sequence(
nk , f (k)

)
k∈N where (nk ) is an increasing sequence in N and f (k) : K (nk ) → L(k) is a mor-

phism such that p(k,k+1) f (k+1) = f (k)p(nk ,nk+1) for k ∈N. Two such sequences
(
nk , f (k)

)
k∈N

and
(
n′

k , f ′(k)
)

k∈N represent the same morphism if for every k ∈ N there exists mk ≥
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max
{
nk ,n′

k

}
such that f (k)p(nk ,mk ) = f ′(k)p

(
n′

k ,mk

)
for every k ∈ N. The identity mor-

phism of K is represented by the sequence
(
nk , f (k)

)
where nk = k and f (k) is the iden-

tity of K (k). The composition of morphisms
(
nk , f (k)

)
and

(
k`, g (`)

)
is the morphsim(

nk` , g (`) ◦ f (k`)
)
. This defines a category with towers of simplicial complexes as objects.

One similarly define the category of towers of abelian groups. More generally, one
can define the category tow (C ) of towers associated with a category C . The category of
inductive sequences ind (C ) in C is defined in the similar way. The objects in ind (C )
are sequences

(
A(n),η(n+1,n)

)
where A(n) is an object in C and η(n+1,n) : A(n) → A(n+1)

is a morphism in C . One can succinctly define ind (C ) as the opposite category of
tow

(
C op

)
, where C op is the opposite category of C .

Given a tower of simplicial complexes K = (
K (n)

)
and d ∈ N one defines the tower

Hd (K ) = (
Hd

(
K (n)

))
n∈N of homology groups, where the group homomorphism Hd

(
K (n+1)

)→
Hd

(
K (n)

)
is induced by the morphism K (n+1) → K (n), and the inductive sequence H d (K ) =(

H d
(
K (n)

))
n∈N of cohomology group, where the group homomorphism H d

(
K (n)

) →
H d

(
K (n+1)

)
is induced by the morphism K (n+1) → K (n). This defines a covariant func-

tor K 7→ Hd (K ) from the category of towers of simplicial complexes to the categories of
towers of groups, and a contravariant functor K 7→ H d (K ) from the category of towers
of simplicial complexes to the category of inductive sequences of groups.

6.3.3. Č ech nerves. Suppose that X is a compact metrizable space. We define a tower
of simplicial complexes K (X ) as follows. Fix a sequence

(
U (n)

)
n∈N of finite open covers

of X such that, for every n ∈ N, U (n+1) refines U (n), and for every finite open cover
W of X there exists n ∈ N such that U (n) refines W . For every n ∈ N, fix a refinement
map p(n,n+1) : U (n+1) → U (n). Let K (n) be the Čech nerve N

(
U (n)

)
of the cover U (n).

Then p(n,n+1) is a simplicial map K (n+1) → K (n). Furthermore, any two refinement maps
U (n+1) →U (n) induce contiguous simplicial maps K (n+1) → K (n). This defines a tower of
simplicial complexes K (X ) = (

K (n)
)

n∈N. For d ∈ N, one obtains an inductive sequence
of abelian groups Hd (K (X )) = (

Hd
(
K (n)

))
n∈N. This defines a functor X 7→ Hd (K (X ))

from compact metrizable spaces to inductive sequences of abelian groups. A different
choice of covers yields an isomorphic functor.

6.4. Metric nerves. In this subsection we define a new notion of a metric nerve and
verify that metric nerves can be used in place of Čech nerves in all our applications. The
new notion we define in this subsection was inspired by [49].

Fix decreasing vanishing sequences (εn) and (δn) in R+ such that 2εn +δn+1 ≤ δn

for every n ∈ N. Suppose that X is a compact metrizable space. A subset A ⊆ X is ε-
dense if for every x ∈ X there exists a ∈ A such that d (x, a) < ε. Fix a sequence

(
A(n)

)
of finite subsets of X such that, for every n ∈ N, A(n) is εn-dense. Define N

(
A(n)

)
to

be the simplicial complex with set of vertices A(n), where one lets σ be a simplex in
N

(
A(n)

)
if and only if σ has diameter less than δn , i.e. d (a,b) < δn for every a,b ∈ σ.

For n ∈N, fix a function p(n,n+1) : A(n+1) → A(n) such that d
(
p(n,n+1) (a) , a

) < εn for ev-
ery n ∈N. The assumption that 2εn +δn+1 ≤ δn guarantees that p(n,n+1) is a simplicial
map N

(
A(n+1)

)→ N
(

A(n)
)
. A different choice of function p(n,n+1) as above yields a con-

tiguous simplicial map N
(

A(n+1)
)→ N

(
A(n)

)
. Define the tower of simplicial complexes

L (X ) = (
N

(
A(n)

))
n∈N.

Suppose that X ,Y are compact metrizable spaces, and ϕ : X → Y is a continuous
function. Suppose that

(
A(n)

)
and

(
B (n)

)
are sequences of finite subsets of X ,Y , respec-

tively, obtained as above. Let (nk )k∈N be an increasing sequence in N such that, for
a,b ∈ X , d (a,b) < δnk implies that d

(
f (a) , f (b)

) < δk+1. For k ∈ N define a simplicial

map A(nk ) → B (k), a 7→ f (k) (a) such that d
(

f (k) (a) , a
) < εk for every k ∈N. Notice that

this is indeed a simplicial map, and a different choice would yield a contiguous simpli-
cial map. The sequence

(
nk , f (k)

)
represents a morphism L (X ) → L (Y ). The assignment
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X 7→ L (X ) defines a functor from compact metrizable spaces to simplicial complexes.
A different choice of finite sets

(
A(n)

)
of X and of vanishing sequences (εn) and (δn) in

(0,1) such that 2εn +δn+1 ≤ δn for n ∈Nwould yield an isomorphic functor.

6.4.1. Comparing K (X ) and L (X ). We want to show that the functors X 7→ K (X ) and
X 7→ L (X ) are isomorphic. Fix vanishing sequences (εn), (δn), (rn) satisfying the follow-
ing for every n ∈N:

• 2εn +δn+1 ≤ δn ;
• 2εn + rn+1 ≤ rn ;
• εn ≤ rn ;
• 2rn ≤ δn ;
• 2εn +δn+1 ≤ rn .

For example, one can set εn = 2−8n and δn = 2−4(n−1) and rn = 2−4n+1 (for large
enough n). Fix a compact metrizable space X , and let

(
A(n)

)
be the corresponding se-

quence of finite subsets such that, for every n ∈N, A(n) is εn-dense. Let L (X ) = (
N

(
A(n)

))
be defined as above with respect to

(
A(n)

)
and the sequence (δn). We can assume that

K (X ) = (
N

(
U (n)

))
is defined in reference to the sequence of covers U (n), where U (n)

is the cover of open balls of radius rn with center in A(n). Furthermore, we can as-
sume that the refinement map p(n,n+1) : U (n+1) → U (n) is the same as the bonding
map p(n,n+1) : N

(
A(n+1)

) → N
(

A(n)
)
, defined by assigning to a ∈ A(n+1) and element

p(n,n+1) (a) ∈ A(n) such that d
(
a, p(n,n+1) (a)

)< εn .
The identity map of A(n) defines a simplicial map ϕn : N

(
U (n)

)→ N
(

A(n)
)
, as 2 · rn ≤

δn . Thus,
(
ϕn

)
defines a morphism ϕ : K (X ) → L (X ). We claim that this is an iso-

morphism. Indeed, for every n ∈ N, p(n,n+1) is a simplicial map N
(

A(n+1)
) → N

(
U (n)

)
.

Indeed, if σ is a simplex in N
(

A(n,n+1)
)
, then we claim that σ is contained in the ball of

center p(n,n+1) (a) and radius rn for every a ∈ σ. Indeed, if a, a′ ∈ σ then we have that
d

(
a, a′)< δn+1, d

(
p(n,n+1) (a) , a

)< εn and d
(
p(n,n+1)

(
a′) , a′)< εn and hence

d
(
a′, p(n,n+1) (a)

)< 2εn +δn+1 ≤ rn .

Thus, the sequence
(
n +1, p(n,n+1)

)
defines a morphism ψ : L (X ) → K (X ) that is the

inverse of ϕ. This shows that ϕ : K (X ) → L (X ) is an isomorphism, which can be easily
seen to be natural.

6.4.2. Computability of L(X ). Given an effectively compact X , define An ⊆ X , p(n,n+1),
δn ,εn ∈ Q by recursion as follows. For n = 0, set ε0 = k > di am(X ) and δ0 = 8k, and
A0 = {x}, where x is any (first found) special point of X . Suppose An , δn , εn have already
been defined and assume 4εn < δn . Search for the first found finite An+1 ⊆ X of special
points and the first found positive rationals δn+1 and εn+1, and a map p(n,n+1) : An+1 →
An that satisfy:

i. 2εn +δn+1 < δn and δn+1 < δn/2;
ii. 4εn+1 < δn+1;

iii. An+1 is an εn+1-dense in X ;
iv. for every pair a, a′ ∈ An+1, either d(a, a′) < δn+1 or d(a, a′) > δn+1.
v. For each, a ∈ An+1 set p(n,n+1)(a) equal to the first found b ∈ An such that

d (b, a) < εn .

Note that condition (iii) is equivalent to saying that the εn+1-balls centered in ele-
ments of An+1 cover X ; this is a Σ0

1 because the space is effectively compact. Conditions
(i), (ii.), and (iv) are Σ0

1 by definition. To see why such An , δn , εn can be found, fix any
set of special points An+1 and rationals εn+1 and δ′n+1 as follows. Since 4εn < δn by our
hypothesis, so we can choose any δ′n+1 < mi n{2εn ,δn/2} to satisfy (i) and then fix any
εn+1 < δn+1/8 to meet (ii.) strongly (in the sense that any δn+1 ∈ (δ′n+1/2,δ′n+1) satisfies
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condition ii. for the same εn+1). Choose some

δn+1 ∈ (δ′n+1/2,δ′n+1) \ {d(a, a′) : a, a′ ∈ An+1}

so that this finite set of potential equalities is avoided; this gives condition iv. while
maintaining condition (ii.). It follows that such An , δn , εn exist and, thus, we will eventu-
ally find (perhaps, some other) such An , δn , and εn . Similarly, the definition of p(n,n+1)

is computable too since for every a ∈ An+1 there is at least one b ∈ An which satisfies
d (b, a) < εn .

Note that the conditions (i) and (ii) imply that both sequences δn and εn are van-
ishing, and thus the analysis contained in the previous paragraphs implies that we will
obtain a uniformly computable tower L(X ) and the associated maps p(n,n+1) which, fur-
thermore, will be uniformly given by their strong indices. Condition (iv) guarantees that
the strong indices of the finite simplices in the tower are uniformly computable.

6.5. Calculating the cohomology group. Given a compact M , let N be the directed set
of all its finite open covers under the refinement relation. For each member C of N ,
define its (Čech) nerve N (C ) and the cohomology groups H∗(N (C )) (with coefficients
in Z). Let H∗(M) be the direct limit of H∗(N (C )) induced by the inverse system N .
Remarkably, for a compact connected abelian group G ,

H 1(G) ∼= Ĝ ,

where as usual Ĝ denotes the Pontryagin dual of G (which is torsion-free discrete); see,
e.g., Part 5 of Chapter 8 of [26], and see also [27] for a detailed exposition of cohomol-
ogy theory for compact abelian groups. Note that we did not use the operation of G to
define H 1(G); therefore homeomorphic connected compact abelian groups are neces-
sarily (topologically) isomorphic as groups.

In the previous subsection we verified that instead of Čech nerves, one can use metric
nerves to define H 1(G). This is because, in the notation of the previous section, X 7→
K (X ) and X 7→ L (X ) are isomorphic, and thus the respective towers of abelian groups
are also isomorphic and give isomorphic limits. We have also verified that, in contrast
with Čech nerves, metric nerves can be effectively produced under the assumption that
the underlying space is effectively compact. Our next goal is to verify that this indeed
implies that H 1(G) is computably presented.

Produce a computable inverse system Ñ of metric nerves. For a fixed finite set of
points C ∈ Ñ and the respective metric simplex Ñ (C ), define the simplicial chain com-
plex as usual:

. . . →δ3 A2 →δ2 A1 →δ1 A0

where Ai are finitely generated free abelian groups and δi are boundary homomor-
phisms, and then define the associated cochain complex Ai = Hom(Ai ,Z) and define
di : Ai → Ai−1 to be the dual homomorphism ofδi+1. Then H i (Ñ (C )) = K er (di )/Im(di−1)
is the i th cohomology group of the simplex Ñ (C ) which is a finitely generated abelian
group which can be thought of as given by finitely many generators and relations. By
the analysis from the previous subsection, the direct limit of the H i (Ñ (C )) is isomor-
phic to then i-th Čech cohomology group H i (G) of G . We are interested mainly in the
case when i = 1.

A sequence of finitely generated uniformly computable abelian groups (Bi ) is strongly
completely decomposable if each Bi uniformly splits into a direct sum of its cyclic sub-
groups, and furthermore the sets of generators of the cyclic summands are given by their
strong indices. We will need the lemma below which is well-known; see [18] for a proof.

Lemma 6.1. Let G ≤ F be free abelian groups. There exist generating sets g1, . . . , gk and
f1, . . . fm (k ≤ m) of G and F , respectively, and integers n1, . . . ,nk such that for each i ≤ k,
we have gi = ni fi .
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Claim 6.2. The groups H i (Ñ (C )) are strongly completely decomposable (uniformly in
C and i ).

Proof. A close examination of the definitions shows that, given C (as a finite set of pa-
rameters) and i , we can compute the generators of Ai = Hom(Ai ,Z) and compute di .

We can computably find the set of generators (a j ) of K er (di ) and a set of genera-
tors (bs ) of Im(di−1) such that for each s there is an integer m and an index i such that
mai = bs ; we know that such generators exist so we just search for the first found ones.
It follows that the factor H i (Ñ (C )) = K er (di )/Im(di−1) is strongly completely decom-
posable with all possible uniformity. �

Recall that a group admits a c.e. presentation if it is isomorphic to a factor of a com-
putable (free) group by a computably enumerable subgroup. It is equivalent to gener-
alising the definition of a computable discrete presentation by requiring the equality to
be merely c.e. (while the operation is still computable).

Claim 6.3. The direct limit limC∈Ñ H i (Ñ (C )) admits a c.e. presentation.

Proof. We have checked in the previous subsection that effective compactness can be
used to effectively list Ñ . The refinement map between of two metric covers C ≤ C ′
in Ñ induces a simplical map between the respective nerves Ñ (C ) and Ñ (C ′), and
this induces a computable homomorphism between the respective cohomology groups
H i (Ñ (C )) → H i (Ñ (C ′)). By Claim 6.2, these finitely generated abelian groups are effec-
tively completely decomposable uniformly in C and i . Note that Imφ is generated in
H i (Ñ (C ′)) by the images of the generators of H i (Ñ (C )). Similarly to the proof of Claim
6.2, choose new generators of H i (Ñ (C ′)) and Imφ so that the latter are integer multi-
ples of the former. In particular, it is easy to see that Imφ is a computable subgroup
of H i (Ñ (C ′)). This means that we can augment Imφ with extra generators in a com-
putable way to expand it to H i (Ñ (C ′)). It follows that limC∈Ñ H i (Ñ (C )) = H i (G) can be
consistently defined as the “union” of the H i (Ñ (C )),C ∈ Ñ , to obtain a group in which
the operations are computable and the equality is c.e. (The equality is merely c.e. since
an element a ∈ H i (Ñ (C )) can be mapped to 0 in some H i (Ñ (C ′′)) which appears arbi-
trarily late in the directed system.) �

Since Ĝ is torsion-free, to finish the proof it is sufficient to apply the result below.

Proposition 6.4 (Khisamiev [31]). Every c.e.-presented torsion-free abelian group A has
a computable presentation.

In contrast with Dobritsa’s proof, the detailed argument contained in [31] seems
complete and correct, but it is not necessarily easy to follow by current standards. We
thus give an extended proof idea.

Proof idea. At every stage, we have a finitely generated partial group Cs and an embed-
ding of Cs into a c.e. presentation U of A. Suppose Cs is generated by b1,b2, . . . ,bk(s). At
a later stage we may discover that the image of h = ∑

i mi bi in U is declared equal to 0.
As in the proof of Claim 6.2, we can pick a new collection of generators g1, . . . , gk(s) of Cs

such that ngk(s) = h for some n. (Notice however that here we are dealing with partial
groups which adds a bit of extra combinatorial noise to the construction. In particu-
lar, strictly speaking, we cannot refer to Claim 6.2 since all our objects are finite partial
groups. This is nonetheless not really a problem, but we omit the details.)

It is crucial that the image of gk(s) in U must be 0 as well, because A is torsion-free.
We thus can safely dispose of gk(s) by declaring it equal to a linear combination of the
generators which have not yet been declared zero using sufficiently large coefficients.
For a modern clarification and verification of this strategy, see the proof of Claim 4.7
in [23]. Note that for the process to eventually stabilise, we need to have at least one
non-zero element in U . It is routine to show that, if the setup of the construction is
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right, the map from C to U is eventually stable (i.e., the process is ∆0
2) and its limit is a

surjective isomorphism of groups. We omit technical details. �

Remark 6.5. It follows that there is a uniform procedure which, given a c.e.-presentation
of a non-zero torsion-free abelian group, outputs its computable presentation. See also
[39] for a discussion. (Note that the requirement of being non-zero was omitted in the
statement of Theorem 4.6 in [39] since the zero group was viewed as torsion in [39].)

7. A CONNECTED COMPACT COUNTEREXAMPLE. PROOF OF THEOREM 1.5

Recall that the Pontryagin duals of connected compact Polish abelian groups are ex-
actly the discrete torsion-free abelian groups; see, e.g., [40]. We prove that there exists
a compact computably metrized connected Polish abelian group G such that Ĝ has no
computable presentation.

7.1. Notation and an informal description of the proof. Recall the notation of Subsec-
tion 4.2. We build G ≤A=∏

i Ti so that its discrete dual Ĝ is isomorphic to the additive

subgroup of the rationals generated by {
1

pi
: i ∈U }, where (pi ) is the standard listing of

all primes and U an infinite set of natural numbers. The following fact is immediate; it
is a special case of the elementary characterisation of computable subgroups of (Q,+)
which can be traced back to Maltsev [35].

Claim 7.1. Ĝ = 〈{ 1

pi
: i ∈U }〉 ≤Q is computably presentable if, and only if, U is c.e.

The elementary proof can be found in [39]. Thus, it is sufficient to construct an ef-
fectively metrized G of this form such that the invariant set U of Ĝ is not c.e. Recall the
naive construction described in §4.2.2. The plan is to build Ĝ ≤ Q and, based on the

naive construction, produce G ∼= ̂̂G ≤A. We identify G and ̂̂G throughout the proof.
In the naive construction, we declare nχs = ∑

i<s miχi for all χi ∈ Ti ∩G whenever
we have a relation ngs = ∑

i<s mi gi in Ĝ = {g0 = 0, g1 = 1, g2, g3, . . .}. In §4.2.2, we also
declareπi G =Ti ∩G to be either the wholeTi or a discrete subgroup ofTi depending on
the order of generator gi of Ĝ . In our case, each non-zero gi have infinite order since Ĝ
is torsion-free. Thus, we need to worry only about the rules of the form nχs =∑

i<s miχi .
The idea is to not make immediate commitments and, for example, ensure that nχs =∑

i<s miχi holds up to error 2−s at stage s. This should be understood as follows.
For example, we can begin with believing that pg2 = g1, where p is a prime. This

corresponds to the rule

(†) pχ2 =χ1,

which must be satisfied by every χ1 ∈ T1 ∩G and χ2 ∈ T2 ∩G . At stage s, we produce
a finite list of pairs of open intervals (I1, I2) ⊂ T1 ×T2 such that the size of each Ii is at
most 2−s , and such that pI2 ⊆ I1. We can additionally require that all such I2 listed so far
(of size 2−s ) together cover the whole T2, and thus the corresponding intervals I1 cover
T1. This is equivalent to approximating, up to error 2−s , the effectively continuous map
x → px between T2 and T1.

Remark 7.2. Note that, unless x = 0, there are p pre-images of x ∈ T1 in T2 under x →
px. We could explicitly computably list the name of the inverse multi-function x →
p−1x. But we only need that these pre-images can be computed, which is obvious.

If nothing has to be changed at a later stage and pχ2 = χ1 is the only rule, then G is
the intersection of the effectively closed sets Hs , such that Hs is composed of (χi : i ∈N)
where pχ2 = χ1 up to error 2−s . For every fixed s, it is easy to list a computable dense
subset of H : simply list the rational points in T1 and take their pre-images in T2 under
the approximated map. We initiate such a list; at every stage we have only finitely many
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points which have already been listed. For each such rational r1 ∈ T1, as s gets larger
these pre-images computably converge to finitely many points in T2; see Remark 7.2.
This way we will obtain a computable dense subset of G in the limit.

However, we must make the set of primes U not c.e., and this means that some
primes will have to be extracted from U at some stage. For example, suppose that at
stage s we change our mind and decide that p ∉ U . The idea is to take q very large
which is currently outside of U , declare q ∈ U , and replace the rule x0 = pxi with the
rule x0 = qxi . Since q is very large, each of the finitely many intervals of T2 of size 2−s

currently listed in the 2−s -approximation of x → px contains at least one point of the

form
k

q −p
, where k ≤ (q −p). Under x → qx, the point

k

q −p
is mapped to

(‡)
kq

q −p
= k(q −p +p)

q −p
= k + kp

q −p
= kp

q −p
.

In other words, x → px and x → qx agree on all points of this form. At stage s we
have enumerated only finitely many intervals approximating x → px (in the sense as
explained above). Using these intervals, we have initiated the approximation of finitely
many pre-images

y0, . . . , yp−1 ∈T2,

of finitely many rational points r ∈T1 under the map x → px.
For each such yi ∈ T1, fix the intervals I 3 yi and J 3 r of size at most 2−s such that

(J , I ) has already been listed in the 2−s -approximation of px :T2 →T1. Choose a k such

that z = k

q −p
∈ J . It follows from (‡) that qz = pz ∈ I . In other words, since r ∈ I , the

interval J can equivalently be viewed as a 2−s -approximation to the point qr .
We thus switch the process of enumeration of the dense set of G by replacing (†) with

the new rule

(*) qχ2 =χ1,

which, form this stage on, must hold for every χ1 ∈T1 ∩G and χ2 ∈T2 ∩G .
It follows that we can adjust our approximation of the dense set of G to the new rule

(*), and the current best approximations to the old preimages of r can be recycled as
approximations to some of its new preimages. Unless r = 0, we also have to introduce
more approximations to preimages of r since q is much larger than p; see Remark 7.2.

In the case of many generators, we work with T1 which corresponds to 1 ∈ Q and

Ti that corresponds to gi ∈ G such that gi = 1

p
for some p which depends on i and is

uniquely determined by i . There is no interaction between strategies working with dif-
ferent generators. At the end, we will define infinite sequences of shrinking intervals,
and we define a dense computable sequence on G using these infinite sequences simi-
larly to how it is done in the Baire space: starting from some large enough index, always
pick the next interval in your approximation to be the first one found inside the previous
interval of the cruder approximation.

7.2. Formal proof. Take a non-c.e. set U = range lims f(i,s), where f :N→N is injective,
total computable, and for every i there exists at most one s such that f (i , s) 6= f (i , s +1);
in this case we also require

f (i , s) 6= f (i , s +1) =⇒ f (i , s +1) > s.

In other words, let U = {lims f (i , s) : i ∈ N}, where the value of the total computable
function f (i , s) of two arguments changes at most once for each fixed i , and furthermore
if this happens at s then the new value is set equal to a number larger than the stage. We
note that, when f (i , s +1) 6= f (i , s), the value f (i , s +1) can be set as large as we desire
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during the construction. For instance, f (i , s +1) can be picked larger than h(i ) for any
fixed total computable function h. It is easy to build such a U and additionally satisfy
the usual requirements We 6=U for e ∈N.

Remark 7.3. We give a bit more detail. To diagonalize against the e-th c.e. set We , pick
a follower xe and keep it in U . In our notation, this corresponds to setting f (e, s) = xe

at stage s. If xe never enters We then We 6=U . If at some later stage t the follower xe is
enumerated into We , then we permanently extract xe from U ; this corresponds to set-
ting f (e, t ) = y for some y larger than any number mentioned so far in the construction.
In this case again We 6=U . Since we always use large numbers to redefine f , xe will be
permanently kept out of the range of lims f (·, s). In particular, there is no interaction
between the strategies working with different c.e. sets. We leave further standard details
to the reader.

Since U is not c.e., the group Ĝ = 〈{ 1

pi
: i ∈ U }〉 ≤ Q has no computable presenta-

tion (Claim 7.1). We claim that G ∼= ̂̂G is computably metrizable. Let Ĝ = {g0 = 0, g1 =
1, g2, g3 . . .}. We build G as a closed subset of A = ∏

i Ti , where Ti corresponds to the

value of a character χ ∈ ̂̂G evaluated at gi ; see Subsection 4.2. To define a computable
metric, initiate an approximation of the dense set (ρ j ) j∈N of G , as follows.

7.2.1. Construction. At stage s, define open intervals U j
i ,s ⊆Ti with rational end-points,

which satisfy, for every i , j ≤ s:

(1) U j
i ,s ⊆Ti and 0 ∈U j

0,s ;

(2) U j
i ,s ⊆U j

i ,s−1 if U j
i ,s−1 is defined;

(3) p f (i ,s)U
j

i ,s ⊆U j
1,s ;

(4) U j
1,s cover T1;

(5) di amU j
i ,s < 2−s ;

(6) If c j ,s is the center of U j
1,s , then for each y ∈Ti such that p f (i ,s) y = c j ,s , then there

is an interval U k
i ,s with center y . If there is no such interval, then introduce a new

one with this property which also satisfies (1)− (4) (if they are applicable).

(We can have U j
i ,s =U l

i ,s for j 6= l .) This finishes the construction.

7.2.2. Verification. Since the informal explanation was rather detailed, we give a some-
what compressed verification to avoid unnecessary repetition. Use f (i , s) 6= f (i , s +
1) =⇒ f (i , s + 1) > h(i ), where h(i ) is so large that, for every j such that U j

1,s−1 is de-
fined, there exists an integer k with the property

k

p f (i ,s+1) −p f (i ,s)
∈U j

1,s−1.

Remark 7.4. There is no circularity here; for instance, we could use Kleene’s Recursion
Theorem to argue that the index of h is known. Alternatively, we could uniformly com-
bine the construction of f with the construction of the group, so that at every stage we
have total control over the value of h when it is needed, but this would be more tedious.

It follows from the equation below that holds in R/Z (cf.(‡)):

(‡′)
kp f (i ,s+1)

p f (i ,s+1) −p f (i ,s)
= kp f (i ,s)

p f (i ,s+1) −p f (i ,s)
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that condition (3) can be maintained at every stage of the construction, for a suitable

choice of intervals. For that, pick U j
i ,s using a small enough neighbourhood of

k

p f (i ,s+1) −p f (i ,s)
∈U j

1,s−1.

The rest of the verification is routine. Using the intervals U j
i ,s , define a sequence (ρ j ) j∈N

of points uniformly computable in A, and consider the closure cl (ρ j ) j∈N of the se-
quence in A. It forms a computably metrized group under the operations inherited
from A. The group is isomorphic to the group of characters of Ĝ by design; see Subsec-

tion 4.2 for more details. By Pontryagin - van Kampen duality, cl (ρ j ) j∈.N
∼= ̂̂G ∼=G . By the

choice of U and Claim 7.1, Ĝ has no computable presentation.

8. CONSEQUENCES

8.1. Proof of Corollary 1.6. Recall that the corollary states:

(1) There exists a computably metrized connected Polish group not homeomor-
phic to any effectively compact Polish space. (This simultaneously answers (Q1)
and (Q2).)

(2) There exists a ∆0
2-metrized connected Polish group not homeomorphic to any

computably metrized Polish space. (This simultaneously answers (Q3) and Ques-
tion 3 of [24].)

The first clause of the corollary follows from the proof of Theorem 1.1 and the previ-
ous theorem. Indeed, recall that to produce the discrete dual of an effectively compact
connected abelian group we do not need to use the group operation. Thus, if the com-
putably metrized compact connected domain of the group constructed in Theorem 1.5
was homeomorphic to an effectively compact space, then we would be able to produce
a computable presentation of its dual group.

To see why the second clause of the corollary holds, relativize the proof the proof
of Theorem 1.5 to 0′. We obtain a ∆0

2-metrized Polish group GS such that ĜS has no ∆0
2-

presentation. Assume the underlying Polish space M of G admits a computable metriza-
tion, and thus a ∆0

2-effectively compact presentation. Apply the construction from the
proof of Theorem 1.1 to this presentation to calculate a ∆0

2-presentation of ĜS , which is
a contradiction. (Recall that we do not need to use the group operation on M .)

8.2. Background on index sets. Let

M0, M1, . . .

be the list of all partially computable presentations of metrized Polish spaces with two
partial operations on them (one binary and une unary), and let Me denote the comple-
tion of Me . It is not hard to see that

{e : Me is a compact connected Polish group}

is arithmetical (Π0
3); see [37]. It is thus makes sense to study the complexity of index sets

of various classes compact connected groups which we define below.
Let K be a class of compact topological groups. The index set of K , or the characteri-

sation problem for K , is the set
{e : Me ∈ K }.

The isomorphism problem for K is the set

{(e, j ) : Me , M j ∈ K and Me
∼= M j },

where in our case ∼= stands for topological group isomorphism of groups.
These definitions mimic the analogous definitions for computable discrete struc-

tures which can be found in, e.g., [21]. An argument can be made that the complexity
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of these sets accurately reflect the complexity of the classification problem for K , espe-
cially if the estimates that we obtain can be relativized to an arbitrary oracle; see [11] for
a detailed discussion.

8.3. Proof of Corollary 1.4. Recall that the corollary states that, for each of the follow-
ing classes, both the characterization problem and the isomorphism problem are arith-
metical:

(1) compact abelian Lie groups;
(2) direct products of solenoid groups;
(3) connected compact abelian groups of finite covering dimension.

We can arithmetically (this isΣ0
1) check whether Me is a non-zero compact connected

abelian group. Then the dual of the group has to be non-zero torsion-free abelian, and
it is also isomorphic to the first Čech cohomology group which admits a Σ0

2 presenta-
tion uniformly in e. By Remark 6.5, we can uniformly produce a ∆0

2-presentation of

the discrete torsion-free dual of Me . Thus, in each case it is sufficient to check that
the isomorphism and the characterisation problems of the respective discrete duals are
arithmetical.

8.3.1. Compact abelian Lie groups. It is well-known that, up to topological isomorphism,
every compact abelian Lie group is the product of finitely many copies of the unit cir-
cle T; e.g., [46]. The duals of such groups are exactly the direct sum of the same number
of copies of Z, i.e., are free abelian groups of finite rank. It is easy to see that the index
set and the isomorphism problem for free abelian groups of finite rank is arithmetical;
the same is true for ∆0

2 free abelian groups of finite rank. Indeed, there is a uniformly
computable list of isomorphism types of such groups, and every group in the list is rel-
atively computably categorical. It is sufficient to ask whether there is a ∆0

2 computable
isomorphism from the given ∆0

2 presentation of the dual to one of the groups in the
computable list. This is clearly an arithmetical question. This makes the isomorphism
problem arithmetical too.

8.3.2. Direct products of solenoid groups. Recall that the solenoid groups are exactly the
duals of additive subgroups of Q. Thus, the duals of direct products of solenoid groups
are exactly the directs sums of additive subgroups of Q. Such groups are called com-
pletely decomposable. The main result of [10] says that both the isomorphism problem
and the characterisation problem for completely decomposable groups are arithmeti-
cal. The proof in [10] can be relativised to 0′, thus giving (2) of the corollary.

8.3.3. Compact connected abelian groups of finite dimension. Recall that, under duality,
covering dimension corresponds to Prüfer rank of the discrete dual (Thm 47 of [46]). It is
clear that the property of having a finite Prüfer rank is arithmetical. It remains to observe
that every such group is relatively computably categorical, so we again can check if there
is a ∆0

2-isomorphism (between two ∆0
2 duals) instead of an arbitrary isomorphism. It

follows that both the isomorphism problem and the characterisation problem for this
class are arithmetical.

9. EXTENDING THE THEOREM OF DOBRITSA TO T.D.L.C. GROUPS: PROOF OF

PROPOSITION 5.1

By hypothesis G has a computable t.d.l.c. presentation as in Definition 3.4(2). In
other words, we may assume G equals the inverse limit of uniformly computable dis-
crete groups (Ai ) under uniformly computable surjective projections φi : Ai → Ai−1

having finite kernels; furthermore, the kernels are given by their strong indices. Propo-
sition 5.1 says that we can pass to a computable t.d.l.c. presentation in which each dis-
crete Bi has a uniformly computable maximal linearly independent set. The rest of the
section is devoted to the proof of this proposition.
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9.1. The choice of technique. Recall that Dobritsa proved that every computable abelian
group has a computable presentation with computable linearly independent set. The
original, 1-page proof of Dobritsa [7] is extremely compressed and omits some impor-
tant details. Dobritsa used a strategy that, as far as we know, was invented by Nur-
tazin [42] for a different purpose; the brief sketch in the research announcement [42]
is even more compressed than the aforementioned proof of Dobritsa3. Both major sur-
veys on the subject [32] and [39] also contain merely outlines of the proof. The only
complete proof of the theorem of Dobritsa in the literature can be found in [37]. It re-
places the clever combinatorial strategy of Nurtazin [42] with an application of abelian
group theory. The result then becomes a special case of the more general theorem from
[23] which is not restricted to groups but works for other classes too (such as differential
closed fields, for instance).

Unfortunately, we cannot use the abstract techniques of [37, 23] to extend the theo-
rem of Dobritsa to the t.d.l.c. case; this is because we have to simultaneously approxi-
mate the projections between the Bi , so the group-theoretic structure on Bi cannot be
separated from the process of building a maximal linearly independent set. It has to
be done all at once. We will have to use a version of Nurtazin’s strategy, which tends to
make the combinatorics in the proof more complex.

Not only is the theorem of Dobritsa a special case of Proposition 5.1, but the proof
of Proposition 5.1 that we give below is the only complete proof of Dobritsa’s result
in the literature which relies on a variation of Nurtazin’s strategy rather than on some
other strategy. The only similar full proof of this kind can be found in [22] where Nur-
tazin’s strategy was modified to handle the somewhat tamer class of computable or-
dered abelian groups.

We begin our discussion with the elementary case of finite rank, and then move on
to the discussion and the proof of the general case.

9.2. Proposition 5.1 in the case of finite rank. For an abelian group A, elements are
linearly independent in A iff they are independent in A/T (A), where T (A) is the sub-
group of torsion elements of A. If φ : A → B is a surjective homomorphism with finite
kernel, then the kernel in particular consists of torsion elements. These simple facts will
be used to verify the following.

Claim 9.1. Suppose φ : A → B is a surjective homomorphism of abelian groups with
finite kernel. Suppose C ⊆ A. If C is a maximal linearly independent in A then φ(C ) is
maximal linearly independent in B .

Conversely, suppose D = {d0,d1, . . .} is maximal linearly independent in B . Then any
set C ′ of the form {c ′0,c ′1, . . .} where φ(c ′i ) = di is a maximal linearly independent subset
of A.

Proof of Claim 9.1. First, suppose C = {c0,c1, . . .} is a maximal linearly independent sub-
set of A. Assume

∑
i niφ(ci ) = 0, i.e.,

∑
i ni ci ∈ K er φ. Since K er φ is finite, for m > 0 large

enough we have ∑
i

mni ci = 0,

and therefore mni = 0 ⇐⇒ ni = 0 for all i . Fix z ∈ B and let φ(y) = z. By maximality of
C in A, there exist ci ∈ C and coefficients mi and m 6= 0 such that

∑
i mi ci +my = 0. It

follows that
∑

i miφ(ci )+mz = 0. Thus, φ(C ) is maximal linearly independent in B .

Now suppose that D = {d0,d1, . . .} is maximal linearly independent in B , and that C ′
is a subset of A of the form {c ′0,c ′1, . . .} where φ(c ′i ) = di . If

∑
i mi c ′i = 0 then φ(

∑
i mi c ′i ) =

3As far as we know, the volume containing [42] is stored at the basement of the Sobolev Institute of Math-
ematics library. Only a physical copy is available and only upon a special request.
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i mi di = 0, which implies mi = 0 for all i . Fix x ∈ A; by maximality of D in B there exist

m1, . . . ,mk and m 6= 0 such that

mφ(x)+∑
i

mi di = 0.

Thus,
0 = mφ(x)+∑

i
miφ(c ′i ) =φ(mx +∑

i
mi c ′i ),

and therefore mx +∑
i mi c ′i is a torsion element since K er φ is finite. Pick d > 0 large

enough so that
0 = d(mx +∑

i
mi c ′i ) = dmx +∑

i
dmi c ′i .

It remains to note that dm 6= 0. �

Remark 9.2. The “large enough d” at the end of the proof above can be computed uni-
formly from the strong index of K er φ.

We return to the proof of the proposition. By Claim 9.1, if the rank of A0 is finite, then
there is nothing to prove since the maps φi are computable. Throughout the rest of the
proof, assume that the rank of A0 (thus, of each Ai ) is infinite.

9.3. Proof idea of Proposition 5.1 in the case of infinite rank. In brief, we will combine
the proof of Dobritsa’s Theorem 4.2 with a dynamic version of the elementary proof of
Claim 9.1 to simultaneously permute all Ai . Unfortunately, there are several technical
issues that cannot be summarised in just one sentence. We give more intuition below.

9.3.1. The case of only one A0. The factorial trick. We first informally outline the main
idea of Dobritsa’s original proof in the case when we have only one computable dis-
crete group. Given a computable discrete A, Dobritsa transforms it into a computable
discrete B having a computable maximal linearly independent set C , as follows.

Build a ∆0
2 isomorphism θ : B → A. Initially, let θ copy A into B without any change.

In B , declare that a computable set C = {c0,c1, . . .} is a linearly independent set. For
simplicity, pick just two a0, a1 ∈ A which currently look linearly independent (recall that
linear independence is a Π0

1-property) and interpret c0 as the pre-image of a0 and c1

as the pre-image of a0. If these a0 and a1 are indeed linearly independent, then θ(ci ),
i = 0,1, do not have to be changed. However, at a later stage we may discover that, in A,
a0 and a1 are linearly dependent:

n0a0 +n1a1 = 0,

and therefore we must pick a new image for c1 in A.
For that, choose the first found d ∈ A which currently looks independent of a0 (recall

independence isΠ0
1) and, following the idea of Nurtazin [42], define

θ(c1) = a1 + t !d ,

where t is larger than any number mentioned so far in the construction. We have to
also correct θ on other elements, but we omit details. It is important to note that, if d is
indeed independent of a0, then so is a1+t !d ; furthermore a1+t !d and d will have equal
linear spans over a0. Otherwise, the strategy will be repeated with a fresh d ′, and then
perhaps d ′′ (etc.) until a d (k) truly independent over a0 is found. In particular, it follows
that this process of correcting mistakes will eventually stabilise.

We call Nurtazin’s strategy involving t ! “the factorial trick"; see the surveys [32, 39]
and also [22, 23] for more about this strategy, its applications, and variations. Of course,
the strategy can be extended to cover arbitrary collections of ci , not only two of them.
We address several questions that can potentially puzzle the reader if whey are not fa-
miliar with this or similar method.
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Why do we need the factorial? It is necessary to preserve the relations. We may have
already defined θ on x such that

mθ(x) = m0a0 +m1a1,

where m does not divide the GC D(m0,m1). The new image of x will be

m0a0 +m1(a1 + t !d) = (m0a0 +m1a1)+m1t !d ,

where the former summand (m0a0+m1a1) is divisible by m as witnessed by the previous
image of x, and m1t !d is divisible by m because m < t (recall t is large). In particular,
the relation mx = m0c0 +m1c1 will be preserved under θ. Of course, we do not have to
use t ! here, but since we do not necessarily worry about the efficiency of our algorithm
we can just as well stick with the factorial.

How do we make θ an onto homomorphism? Surjectivity can be achieved by specifically
putting the s-th element into the range of θ at stage s. Alternatively, we can search
for a1 with the least possible index (in A) such that a1 is linearly independent of a0.
This will guarantee that (ci )i∈N is mapped to a basis of A. Since every element of A
can be expressed as a linear combination of basic elements over the maximal torsion
T (A), all we need to do is to make sure that each such combination has a pre-image.
The “factorial trick” will preserve any relation mentioned so far, and this ensures that θ
respects the group structure.

Why is θ injective? This is perhaps the most subtle question which was furthermore
almost completely overlooked in the original compressed proof in [7]. We must argue,
by induction, that no new relations are introduced in the process of correcting θ. This
will be done in Claim 9.5; note that the proof of the claim is not entirely trivial.

9.3.2. The case of two groups A0 and A1. Now assume we have only two groups in the
sequence, A0 ←φ1 A1, and recall that the kernel of φ1 is finite and given by its strong
index. In particular, we can assume that K er φ1 is already known at stage 0. In this
case, the idea is to simultaneously build computable presentations B0 and B1 of A0 and
A1, respectively, approximate ∆0

2 isomorphisms θ0 : B0 → A0 and θ1 : B1 → A1, and at
every stage maintain φ1θ1 = θ0. We also build computable bases C0 and C1 in B0 and
B1, respectively.

By Claim 9.1, Nurtazin’s strategy can be used in A1, while the change of θ0 is done
by correcting it via φ1. The brute-force proof of Claim 9.1 can help the reader to see
why this is possible. In that proof, we used a “large enough” coefficient d > 0 to transfer
linear combinations between the two groups; see Remark 9.2. In the present proof, it
is sufficient to use d larger than the order of the kernel of φ1 when we compare our
current best approximations to linear independence in A0 and A1. For instance, we will
never have to correct θ0 independently of θ1 (or vice versa). Then we have to argue, by
induction, that the maps θ1 and θ0 do not have to be corrected on torsion elements.
Thus, since K er φ1 is finite, we will conclude that the induced mapψ1 : B1 → B0 defined
by the ruleψ1 = θ0φ1θ1 is computable and we can compute the strong index of its finite
kernel; this is because θ0 is corrected if, and only if, θ1 is corrected.

9.3.3. The general case. In this case we have to deal with an infinite sequence A0 ←φ1

A1 ←φ2 A2 ←φ3 . . ., but at every stage we work only with finitely many of these Ai . We
will correct θi for the largest i attended so far in the construction, and we will use φ j ,
j ≤ i , to correct θ j for j < i . The only difference is that we will have to correct θi : Bi → Ai

so that the indices of the new images of linearly independent elements in A0 (not Ai )
are smallest possible. This is because we need to argue that in some of these Ai the
image of Ci ⊆ Bi is indeed maximal linearly independent. In contrast with the case
of only two groups described above, we cannot just work with the largest i , since this
largest i will keep increasing at later stages. Nonetheless, Claim 9.1 essentially says that
this minimality of indices can be checked in A0, since independence in Ai is effectively
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coherent with independence in A0. The rest is similar to the case of only two groups
described above. For instance, we need strong indices of the finite kernels ofφi to make
this work.

9.4. Formal proof of Proposition 5.1.

9.4.1. Notation, conventions, and terminology. At the end of stage t −1 we initiate only
the enumeration of Bi for i < t . We label elements of discrete computable groups with
natural numbers; a natural number corresponding to an element will be called the index
of the element. Without loss of generality, we can assume that the kernels of φi , i ≤ t ,
are already computed. Furthermore, we can assume that the order of Ker φi is at most
i ; to do that we effectively replace the system (Ai ,φi ) with a new system where some of
the projections are the identity.

In the construction, we write ξ[t ] to denote the value of any parameter ξ at the end
of stage t . We list Bi so that each x ∈ Bi [t ] is of the form mx = ∑

j<t n j ci , j +d , where
m,n j ≤ t and d is torsion such that the subgroup generated by d lies in Bi [t ]. We call
such a d torsion as seen at stage t . At the end of stage t −1, we have θi [t −1] defined on
all elements of Bi [t ], including ci , j , where i ≤ t and j < t .

9.4.2. The requirements. We build a uniformly computable sequence (Bi ) of discrete
groups such that the uniformly computable set Ci = (ci , j ) j∈N (of indices in Bi ) is a maxi-
mal linearly independent set in Bi . We also defineψi : Bi → Bi−1 so thatψi (ci , j ) = ci−1, j .
At every stage t , we also define partial maps θi [t ] : Bi [t ] → Ai [t ] and ψi [t ] : Bi [t ] →
Bi−1[t ] which satisfy:

ψi [t ] = θ−1
i−1[t ]◦φi [t ]◦θi [t ],

where defined. It is sufficient to meet, for every i , the requirements:

Li : (∀b ∈ Bi )(∃t0)(∀t > t0)θi (b)[t ] = θi (b)[t0];

Ii : θi = limt θi [t ] : Bi → Ai is an isomorphism;

Ri : Ci is maximal linearly independent in Bi ;

Pi :ψi : Bi → Bi−1 is computable, uniformly in i ;

Ki : K er ψi has computable strong index, uniformly in i .

The construction is perhaps best viewed as a movable markers argument, where each
movable marker corresponds to θi (b) ∈ Ai−1 for some b ∈ Bi . We will however not
make movable markers explicit since the main complexity of the proof is not related
to recursion-theoretic combinatorics.

9.4.3. The notion of s-independence. Elements g1, . . . , gk of an abelian group G are s-
independent if, for any choice of n1, . . . ,nk ∈Z such that |ni | ≤ s

n1g1 + . . .+nk gk = 0

implies ni = 0 for all i . Clearly, elements are linearly independent if, and only if, they are
s-independent for all s.

Remark 9.3. Note that g1, . . . , gk are s-independent if, and only if, the map n1g1 + . . .+
nk gk → (n1, . . . ,nk ) ∈⊕

1≤i≤k Z, |ni | ≤ s, is injective.
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9.4.4. The construction. At stage 0, begin with C0 = ; in B0, and let B0 copy A0 via
θ0[0] = I d , i.e., without any nontrivial permutation.

Stage t. We subdivide the stage into several phases:

(a) Choose k < t largest such that θi (ci ,0)[t−1], . . . ,θi (ci ,k )[t−1] are 2(t+1)!-independent
in Ai , i ≤ t . For every i ≤ t , choose di ,k+1, . . .di ,t ∈ Ai and at ,0, . . . , at ,k ∈ At such
that:

(a.1) θi (ci ,0)[t−1], . . . ,θi (ci ,k )[t−1], θi (ci ,k+1)[t−1]+t !di ,k+1, . . . ,θi (ci ,t−1)[t−1]+
t !di ,t−1 together with di ,t form a 2(t +1)!-independent set;

(a.2) φt (at ,r ) = θt−1(ct−1,r ),r ≤ k;
(a.3) di−1, j =φi (di , j ), for each 1 ≤ i ≤ t and k < u ≤ t ;
(a.4) d0,k+1, . . .d0,t ∈ A0 have the smallest possible indices (lexicographically).

(b) For each j ≤ t introduce ct , j , and for every i ≤ t introduce ci ,t , and declare:
(b.1) θi (ci ,t )[t ] = di ,t ;
(b.2) θt (ct , j )[t ] = at , j , j ≤ k (see (a) for the definition of at , j ).

(c) Redefine θi on each ci ,r , where i ≤ t , k < r < t , by setting

θi (ci ,r )[t ] = θi (ci ,r )[t −1]+ t !di ,r .

Declare θi (ci ,u)[t ] = θi (ci ,u)[t −1] for every u ≤ k.
(d) For each i ≤ t and x ∈ Bi [t−1] such that mx =∑

j≤t n j ci , j +d , where d is torsion
such that the subgroup generated by d lies in B [t −1], set

θi (x)[t ] = θi (x)[t −1]+ ∑
t≥r>k

nr t !

m
di ,r [t ].

(e) For every x ∈ At such that mx = ∑
j≤k n j at , j +∑

k< j≤t n j dt , j +d , where |n j | ≤ t
and d is torsion as seen in At [t ], if x does not already have a θt -preimage, intro-
duce a new element b in Bt and define θt (b) = x. In particular, every torsion d
as seen in At [t ] will get a pre-image d ′ in Bt under θt . In Bt , declare

mb = ∑
j≤t

n j ct , j +d ′,

where d ′ = θt (d)[t ].

(f) For i < t , if θi+1[t ] has already been extended, then extend the domain and
range of θi [t ] as follows. For every element a ∈ r ang e (φi+1[t ]◦θi+1[t ])\r ang e (θi [t ]),
introduce a new element b ∈ Bi and declare θi (b)[t ] = a. Define the operation
on Bi [t ] to be the one induced from Ai via θi [t ].

Finally, set ψi [t ] = θ−1
i−1[t ]◦φi [t ]◦θi [t ], i ≤ t and go to the next stage.

9.4.5. The verification. Note that, in (f), each new element b in Bi [t ] satisfies mb =∑
j≤t n j ci , j +d ′ for some n j ≤ t and d ′ torsion as seen in Bi [t ]. This is because di−1, j =

φi (di , j ), for each 1 ≤ i ≤ t by (a.3), and in (b) and (c) the θi [t ]-images of ci , j were specif-
ically defined to agree with (a.3) and, thus, with φi . In other words, the instructions
in (f) can be equivalently re-phrased in terms similar to the instructions in (e), but we
chose a more compact presentation. This in particular justifies the convention stated in
§9.4.1 about the form of each x ∈ Bi [t ] at every stage t .

We need to check that every search initiated at stage t eventually terminates.

Claim 9.4. Every stage of the construction eventually terminates.

Proof. In (a), we search for elements in At which are 2(t +1)!-independent, and whose
ψt -images are 2(t + 1)!-independent in At . If θi (ci ,0), . . . ,θi (ci ,k ) are indeed indepen-
dent, then such elements must exist because the rank of At is infinite. Such elements
(independent or not) will eventually be found.
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In (d), for each x such that mx = ∑
j≤t n j ci , j +d , where d is torsion such that the

subgroup generated by d lies in B [t −1], we set

θi (x)[t ] = θi (x)[t −1]+ ∑
t≥r>k

nr t !

m
di ,r [t ];

such an element exists because m < t by our convention (see §9.4.1). �

Claim 9.5. At the end of every stage t , each θi [t ] is injective.

Proof. By induction on t . At stage 0, θ0[0] is injective since it is the identity map. Sup-
pose θi [t −1] is injective. We suppress i throughout (when possible). Every element x
of B [t −1] satisfies a unique reduced relation mx = ∑

j m j c j +d , where d is torsion (as
already seen in B [t ]) and m,mi ∈Z are reduced.

We first show that redefining θ in (c) and (d) preserves injectivity of θ. Suppose x, z ∈
B [t −1] and therefore θ[t −1] is defined on x, z ∈ domθ[t −1], where

nz =∑
j

n j c j + l ,

mx =∑
j

m j c j +d .

If θ[t − 1] and θ[t ] are equal on the domain of θ[t − 1] then there is nothing to prove.
Suppose θ needs to be redefined. If θ(z)[t ] = θ(x)[t ], then in (d) we define θ(x)[t ] =∑

r>k
mr t !

m
dr +θ(x)[t −1], and we declare θ(z)[t ] equal to w =∑

r>k
nr t !

n
dr +θ(x)[t −1].

These values satisfy the equations:

mθ(x)[t ] = ∑
j≤k

m jθ(c j )[t −1]+ ∑
r>k

mr (θ(cr )[t −1]+ t !dr )+θ(d)[t ],

nθ(z)[t ] = ∑
j≤k

n jθ(c j )[t −1]+ ∑
r>k

nr (θ(cr )[t −1]+ t !dr )+θ(l )[t ].

(Note that, in fact, θ(d)[t ] = θ(d)[t −1] and θ(l )[t ] = θ(l )[t −1], but this is not important
for this particular argument.) The orders of d and l are at most t , and m,n ≤ t . Multiply
the first equation by nt ! and the second by mt !, and then subtract the first one from
the second one. By (a.1) at stage t, the values θ(c j )[t −1] and θ(cr )[t −1]+ t !dr form a
2(t +1)!-independent set. In particular, it must be that, for every r > k, t !nmr = t !mnr ,
and since both m,n 6= 0, we arrive at

mr t !

m
= nr t !

n
, for each r > k.

Now recall that θ(x)[t ] =∑
r>k

mr t !

m
dr +θ(x)[t−1] and θ(z)[t ] =∑

r>k
nr t !

n
dr +θ(x)[t−1].

Since
∑

r>k
nr t !

n
dr = ∑

r>k
mr t !

m
dr by the above remarks, and θ(z)[t ] = θ(x)[t ] by our

assumption, we must have that

θ(z)[t −1] = θ(x)[t −1].

Since θ[t −1] is injective by the inductive hypothesis, z = x.
It remains to argue that injectivity is maintained when we extend the domain of θi in

(e) and ( f ). In other words, now suppose θi (z)[t ] = θi (x)[t ], where at least one of x and
z does not belong to domθi [t −1] and thus was introduced in (e) or (f). Recall that in
(a.1) we chose di ,t to be 2(t+1)!-independent over θi (ci , j )[t−1] and θi (ci ,r )[t−1]+t !di ,r .
In (e), where i = t , different choices of coefficients n j ≤ t and torsion elements d in At

will result in different linear combinations in At ; cf. Remark 9.3. In other words, our
actions in (e) preserve injectivity because if they did not, then this would violate 2(t+1)!-
independence in (a.1). For i < t , recall the instructions in (f). Equality of elements is
decidable in Ai , and we adjoin new elements to Bi only if their respective images in Ai

are not equal. In other words, (f) preserves injectivity by construction. �
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Claim 9.6. For every x ∈ Bi , limt θi (x)[t ] exists. (The requirement Li is met.)

Proof. We use Claim 9.1 throughout. We suppress i . If θ(x)[t ] 6= θ(x)[t − 1], then this

must be because the action in (c) or (d) of stage t : θ(x)[t ] =∑
r

t !nr

m
dr +θ(x)[t −1]. This

involves only finitely many d j that correspond to c j in mx = ∑
j m j c j +d , where d is

torsion as seen in B [t − 1]. The change occurs if, and only if, the θ[t − 1] images of c j

which occur with m j 6= 0 are discovered to be linearly dependent. In this case, we pick
d j and then set θ(c j )[t ] = θ(c j )[t −1]+ t !d j in (c). This implies that these d j are linearly
independent if, and only if, the respective elements θ(c j )[t ] are linearly independent.
We choose the d j to be 2(t +1)!-independent together with some of the c j which stay
2(t +1)!-independent at stage t . We also choose these elements so that the respective
elements in A0 have the least possible indices; see (a.4). After several iterations of this
process we will finally hit the truly independent elements in A0 (thus, in Ai by Claim 9.1)
at some late enough stage s0. It follows that limt θ(x)[t ] exists and is equal to θ(x)[s0].

�

From now on, θi stands for limt θi [t ].

Claim 9.7. Let ai , j = limt θi (ci , j )[t ], and let Di = {ai , j : j ∈ N}. Then Di is maximal
linearly independent in Ai .

Proof. For each i and every stage t , {ci , j : j ≤ t } are held linearly independent in Bi [t ],
and ai , j [t ] = θi (ci , j )[t ] are 2(t +1)!-independent in Ai . By the previous claim, each Di

is linearly independent. When correcting θi in (a), we choose 2(t +1)!-independent el-
ements di , j in Ai such that d0,k+1, . . .d0,t ∈ A0 have the smallest possible indices (lexi-
cographically) in A0; see (a.1). This means that, in particular, the ai , j which were truly
independent remain independent when we redefine them in (c). (This follows from an
elementary analysis of their respective linear spans; we leave the elementary details to
the reader4.) The minimality of indices also implies that, in the limit, every element of
A0 will be in the linear span of D0. By Claim 9.1, each D j is maximal linearly indepen-
dent in A j . �

Claim 9.8. For each i , θi is an isomorphism of Bi onto Ai . (The requirement Ii is met.)

Proof. As before, we suppress i . For any pair of elements x, y ∈ B , x 6= y, there is a stage
s0 large enough such that limt θ(x)[t ] = θ(x)[s0] and limt θ(y)[t ] = θ(y)[s0]. Since θ[s0]
is injective on its domain, we have that θ(x) 6= θ(y). Since at every stage θ[t ] is used to
copy a finite part of A into B , it evidently respects the operations; cf. (d). If x − y = z and
this is preserved by θ[t ] for every s, then it will also be preserved by θ[s0] for s0 so large
that θ is stable on x, y, z. By Claim 9.7, Di = {ai , j : j ∈N} is maximal linearly independent
in Ai . In particular, every element of Ai lies in the linear span of Di . Thus, in (e) and ( f ),
we made sure that any element will eventually be put into the range of θ. It follows that
θ is surjective. �

Claim 9.9. For each i , {ci , j } is maximal linearly independent in Bi . (The requirement
Ri is met.)

Proof. This follows from Claim 9.7 and Claim 9.8. �

Recall that ψi = θ−1
i−1 ◦φi ◦θi .

Claim 9.10. For every i , ψi : Bi → Bi−1 is a surjective homomorphism uniformly com-
putable in i . The strong index of its finite kernel can be computed uniformly in i . (The
requirements Pi and Ki are met.)

4For example, suppose we have a0, a1, a2 and we discover that a1 ∈ Span(a0) but a2 still looks indepen-
dent over a0. Since the index of d1 has to be the least possible, we can have that d1 ∈ Span(a2), and indeed
d1 = a2. But then we will choose d2 to be outside of Span{a0,d1}. The general case of many ai is done by a
straightforward induction.
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Proof. It follows from Claim 9.8 and surjectivity ofφi thatψi = θ−1
i−1◦φi ◦θi is a surjective

homeomorphism. Recall that we say that z is torsion as seen in Bi [t ] if it has order m and
x,2x, . . . , (m−1)x lie in Bi [t ]. Note that K er φi consists of elements torsion within Bi [i ],
because we copy the kernel of φi into Bi via θi [i ] and identify it with the kernel of ψi .
Furthermore, by induction, if z is torsion within Bi [t ], then we have that θi (z)[t ] = θi (z);
this is because in (d) we have θ(z)[t ] 6= θ(z)[t −1] only if z has a non-trivial coefficient in
its ci , j -expansion.

To see why ψi it is computable, use induction. Let s be the first stage at which x̂ =
ψi (x)[s] = θ−1

i−1 ◦φi ◦θi (x)[s] is defined.
We prove by induction on t ≥ s that

φiθi (x)[t ] = θi−1(x̂)[t ];

this property certainly holds for the stage at which Bi is first attended (see (e), (f)).
According to the instructions in (e) we have

θi (x)[t ] =∑
j

t !

m
di , j +θi (x)[t −1],

where the sum
∑

j
t !

m
di , j can possibly be empty, i.e, there are no such di , j . Similarly for

i −1 and x̂:

θi−1(x̂)[t ] =∑
j

t !

m
di−1, j +θi−1(x̂)[t −1],

where di−1, j =φi (di , j ) according to (a.4). Recall that, by our assumption,φiθi (x)[t−1] =
θi−1(x̂)[t −1].

Combine the above equations:

θi−1(x̂)[t ] =φi (
∑

j

t !

m
di−1, j )+φi (θi (x)[t −1]) =

=φi (
∑

j

t !

m
di−1, j +θi (x)[t −1]) =φiθi (x)[t ]

to see that
θi−1(x̂)[t ] =φiθi (x)[t ].

Take s0 so large that θi−1(x̂)[s0] = θi−1(x̂) =φiθi (x)[s0] =φiθi (x). By Claim 9.5, we have
θ−1

i−1φiθi (x)[s0] = θ−1
i−1φiθi (x) = x̂ =ψi (x)[t ]. In other words, once ψi is defined it never

changes, even though θi and θi−1 will perhaps change. �

It is easy to see that the group G is isomorphic to the inverse limit of (Bi ,ψi )i∈N. This
completes the proof of Proposition 5.1.
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