We consider mechanisms for producing a significant population of primordial black holes (PBHs) within string inspired single field models of inflation. The production of PBHs requires a large amplification in the power spectrum of curvature perturbations between scales associated with CMB and PBH formation. In principle, this can be achieved by temporarily breaking the slow-roll conditions during inflation. In this work, we identify two string setups that can realise this process. In string axion models of inflation, subleading non-perturbative effects can superimpose steep cliffs and gentle plateaus onto the leading axion potential. The cliffs can momentarily violate the slow-roll conditions, and the plateaus can lead to phases of ultra slow-roll inflation. We thus achieve a string motivated model which both matches the Planck observations at CMB scales and produces a population of light PBHs, which can account for an order one fraction of dark matter. In DBI models of inflation, a sharp increase in the speed of sound sourced by a steep downward step in the warp factor can drive the amplification. In this scenario, discovery of PBHs could indicate non-trivial dynamics in the bulk, such as flux-antibrane annihilation at the tip of a warped throat.
Ogan Özsoy, Susha Parameswaran, Gianmassimo Tasinato, Ivonne Zavala (2018). Mechanisms for Primordial Black Hole Production in String Theory. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018(7), 005-005 [10.1088/1475-7516/2018/07/005].
Mechanisms for Primordial Black Hole Production in String Theory
Susha Parameswaran;Gianmassimo Tasinato;Ivonne Zavala
2018
Abstract
We consider mechanisms for producing a significant population of primordial black holes (PBHs) within string inspired single field models of inflation. The production of PBHs requires a large amplification in the power spectrum of curvature perturbations between scales associated with CMB and PBH formation. In principle, this can be achieved by temporarily breaking the slow-roll conditions during inflation. In this work, we identify two string setups that can realise this process. In string axion models of inflation, subleading non-perturbative effects can superimpose steep cliffs and gentle plateaus onto the leading axion potential. The cliffs can momentarily violate the slow-roll conditions, and the plateaus can lead to phases of ultra slow-roll inflation. We thus achieve a string motivated model which both matches the Planck observations at CMB scales and produces a population of light PBHs, which can account for an order one fraction of dark matter. In DBI models of inflation, a sharp increase in the speed of sound sourced by a steep downward step in the warp factor can drive the amplification. In this scenario, discovery of PBHs could indicate non-trivial dynamics in the bulk, such as flux-antibrane annihilation at the tip of a warped throat.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.