Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CRIS Current Research Information System
Machine learning (ML) and deep learning (DL) applications have gained popularity in the field of neuroimaging in recent years. Here, we present a comparison between a state-of-the-art gradient boosting technique, the extreme gradient boosting (XGBoost), and a recently developed DL method, TabPFN, to assess the prediction of cognitive deficit in a large pathological population through structural and functional MRI markers. Overall, our results showed that conventional ML might still be the preferable choice for noisy tabular datasets (like neuroimaging data), also for their better explainability.
De Rosa A.P., D'Ambrosio A., Marzi C., Cirillo M., Bisecco A., Altieri M., et al. (2023). XGBoost vs. TabPFN in Neuroimaging Machine Learning-based analysis. Patron Editore S.r.l..
XGBoost vs. TabPFN in Neuroimaging Machine Learning-based analysis
De Rosa A. P.;D'Ambrosio A.;Marzi C.;Cirillo M.;Bisecco A.;Altieri M.;Diciotti S.;Rocca M. A.;De Stefano N.;Pantano P.;Filippi M.;Tedeschi G.;Gallo A.;Esposito F.
2023
Abstract
Machine learning (ML) and deep learning (DL) applications have gained popularity in the field of neuroimaging in recent years. Here, we present a comparison between a state-of-the-art gradient boosting technique, the extreme gradient boosting (XGBoost), and a recently developed DL method, TabPFN, to assess the prediction of cognitive deficit in a large pathological population through structural and functional MRI markers. Overall, our results showed that conventional ML might still be the preferable choice for noisy tabular datasets (like neuroimaging data), also for their better explainability.
De Rosa A.P., D'Ambrosio A., Marzi C., Cirillo M., Bisecco A., Altieri M., et al. (2023). XGBoost vs. TabPFN in Neuroimaging Machine Learning-based analysis. Patron Editore S.r.l..
De Rosa A.P.; D'Ambrosio A.; Marzi C.; Cirillo M.; Bisecco A.; Altieri M.; Diciotti S.; Rocca M.A.; De Stefano N.; Pantano P.; Filippi M.; Tedeschi G....espandi
File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/964538
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
0
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.