Machine learning (ML) and deep learning (DL) applications have gained popularity in the field of neuroimaging in recent years. Here, we present a comparison between a state-of-the-art gradient boosting technique, the extreme gradient boosting (XGBoost), and a recently developed DL method, TabPFN, to assess the prediction of cognitive deficit in a large pathological population through structural and functional MRI markers. Overall, our results showed that conventional ML might still be the preferable choice for noisy tabular datasets (like neuroimaging data), also for their better explainability.

De Rosa A.P., D'Ambrosio A., Marzi C., Cirillo M., Bisecco A., Altieri M., et al. (2023). XGBoost vs. TabPFN in Neuroimaging Machine Learning-based analysis. Patron Editore S.r.l..

XGBoost vs. TabPFN in Neuroimaging Machine Learning-based analysis

Marzi C.;Diciotti S.;
2023

Abstract

Machine learning (ML) and deep learning (DL) applications have gained popularity in the field of neuroimaging in recent years. Here, we present a comparison between a state-of-the-art gradient boosting technique, the extreme gradient boosting (XGBoost), and a recently developed DL method, TabPFN, to assess the prediction of cognitive deficit in a large pathological population through structural and functional MRI markers. Overall, our results showed that conventional ML might still be the preferable choice for noisy tabular datasets (like neuroimaging data), also for their better explainability.
2023
Convegno Nazionale di Bioingegneria
1
4
De Rosa A.P., D'Ambrosio A., Marzi C., Cirillo M., Bisecco A., Altieri M., et al. (2023). XGBoost vs. TabPFN in Neuroimaging Machine Learning-based analysis. Patron Editore S.r.l..
De Rosa A.P.; D'Ambrosio A.; Marzi C.; Cirillo M.; Bisecco A.; Altieri M.; Diciotti S.; Rocca M.A.; De Stefano N.; Pantano P.; Filippi M.; Tedeschi G....espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/964538
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact