This paper introduces an R package for ROC analysis in three-class classification problems, for clustered data in the presence of covariates, named ClusROC. The clustered data that we address have some hierarchical structure, i.e., dependent data deriving, for example, from longitudinal studies or repeated measurements. This package implements point and interval covariate-specific estimation of the true class fractions at a fixed pair of thresholds, the ROC surface, the volume under the ROC surface, and the optimal pairs of thresholds. We illustrate the usage of the implemented functions through two practical examples from different fields of research.

To, D., Adimari, G., Chiogna, M. (2023). ClusROC: An R Package for ROC Analysis in Three-Class Classification Problems for Clustered Data. THE R JOURNAL, 15(1), 254-270 [10.32614/rj-2023-035].

ClusROC: An R Package for ROC Analysis in Three-Class Classification Problems for Clustered Data

Chiogna, Monica
Conceptualization
2023

Abstract

This paper introduces an R package for ROC analysis in three-class classification problems, for clustered data in the presence of covariates, named ClusROC. The clustered data that we address have some hierarchical structure, i.e., dependent data deriving, for example, from longitudinal studies or repeated measurements. This package implements point and interval covariate-specific estimation of the true class fractions at a fixed pair of thresholds, the ROC surface, the volume under the ROC surface, and the optimal pairs of thresholds. We illustrate the usage of the implemented functions through two practical examples from different fields of research.
2023
To, D., Adimari, G., Chiogna, M. (2023). ClusROC: An R Package for ROC Analysis in Three-Class Classification Problems for Clustered Data. THE R JOURNAL, 15(1), 254-270 [10.32614/rj-2023-035].
To, Duc-Khanh; Adimari, Gianfranco; Chiogna, Monica
File in questo prodotto:
File Dimensione Formato  
RJ-2023-035.pdf

accesso aperto

Descrizione: pdf editoriale
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Altra tipologia di licenza compatibile con Open Access
Dimensione 776.45 kB
Formato Adobe PDF
776.45 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/963964
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact