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ClusROC: An R Package for ROC Analysis
in Three-Class Classification Problems for
Clustered Data
by Duc-Khanh To, Gianfranco Adimari, and Monica Chiogna

Abstract This paper introduces an R package for ROC analysis in three-class classification problems,
for clustered data in the presence of covariates, named ClusROC. The clustered data that we address
have some hierarchical structure, i.e., dependent data deriving, for example, from longitudinal studies
or repeated measurements. This package implements point and interval covariate-specific estimation
of the true class fractions at a fixed pair of thresholds, the ROC surface, the volume under the ROC
surface, and the optimal pairs of thresholds. We illustrate the usage of the implemented functions
through two practical examples from different fields of research.

1 Introduction

In clinical studies, receiver operating characteristic (ROC) surface analysis is widely used to evaluate
the accuracy of a diagnostic test (or biomarker) when there are three ordinal disease classes (or
diagnostic groups). See Nakas (2014) for a comprehensive review. Although the clinical context
is where ROC surface analysis finds its natural application, other contexts, such as economics and
engineering, very often face the problem of evaluating the accuracy of a classifier.

Within the ROC surface analysis framework, the following quantities are typically objects of
interest: ROC surface, VUS (volume under ROC surface), and optimal pair of thresholds. Statistical
methods for evaluating such quantities have been widely discussed in the statistical literature. We
cite, among others, papers by Nakas and Yiannoutsos (2004); Xiong et al. (2006); Nakas et al. (2010);
Attwood et al. (2014); Bantis et al. (2017); To Duc et al. (2016). Moreover, on the Comprehensive R
Archive Network (CRAN), there are several packages implementing estimation methods for ROC
surface analysis, for instance, trinROC (Noll and Reinhard, 2022), ThresholdROC (Sara et al., 2021)
and bcROCsurface (To, 2021).

Most of the existing methods for ROC surface analysis have focused on a standard setting, in which
measurements on statistical units are realizations of independent random variables, and the diagnostic
test, or, more broadly, the classifier, is not influenced by any covariate. In some studies, however, not
only the classifier can be affected by some covariates that characterize the units themselves (e.g. age,
gender), but statistical units can be enrolled in clusters (e.g., families, genotype, communities, etc.).
When statistical units are drawn from clusters, they can no longer be treated as independent. Indeed,
units from the same cluster are typically more similar to each other than they will be to statistical
units from other clusters. Therefore, unobserved variables may induce statistical dependence between
observations within clusters that may be uncaptured by covariates. For such kinds of clustered
data, which have a hierarchical structure and are dependent, Xiong et al. (2018) proposed the use
of a standard linear mixed-effects model (McCulloch and Searle, 2001) to account for clusters and
covariates’ effects on the classifier. Then, the authors developed an approach to estimate the VUS,
under an assumption of normality. Based on the model in Xiong et al. (2018), To et al. (2022) developed
an estimation procedure for the ROC surface and methods for choosing the optimal pair of thresholds.
The authors also discussed a variant of their approach, based on the Box-Cox transformation, useful
when the normality assumption is (not heavily) violated.

In this paper, we introduce our R package for ROC surface analysis with clustered data, named
ClusROC. The package (with related details) is available on CRAN at http://CRAN.Rproject.org/
package=ClusROC. In the package, we implement procedures for estimating the parameters of the
models (with and without the Box-Cox transformation), and for making inferences about the ROC
surface, and the optimal pair of thresholds, by following methods outlined in To et al. (2022). In
addition, we also implement a procedure for estimating the VUS, as discussed in Xiong et al. (2018).

In the following sections, we first briefly present the reference model and the inferential procedures
for ROC surface analysis with clustered data. Then, we describe the ClusROC package and illustrate
its use through two real datasets. The last section provides a brief conclusion.
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2 The ROC surface analysis for clustered data

Here we briefly review methods proposed by Xiong et al. (2018) and To et al. (2022). Details and
theoretical results can be found in the original articles. For convenience, as in the quoted papers, we
refer to some clinical studies in the presentation and use appropriate language for that area.

The models

Let Y be the diagnostic test result, on a continuous scale, and let Y1, Y2, Y3 be the test results for subjects
in classes 1, 2, and 3, respectively. We assume that higher values of test results are associated with
higher severity of the disease, and the severity of the disease grows with the class (i.e., class 3 is the
worst). Let X1, . . . , Xp be p covariates, possibly associated with the test Y.

Let c be the total number of clusters, randomly selected from the population. For the k-th cluster,
k = 1, . . . , c, let nki be the total number of subjects belonging to class i, i = 1, 2, 3 and let nk =
nk1 + nk2 + nk3 be the total sample size within the cluster. Note that nki might be equal to 0 for some
clusters. The linear mixed-effects model for the clustering effect on the test result Y, as well as for
covariates’ effects, is written as follows (Xiong et al., 2018; To et al., 2022):

Y1 = αk1
+ z⊤1 β1 + ε1,

Y2 = αk2 + z⊤2 β2 + ε2, (1)

Y3 = αk3 + z⊤3 β3 + ε3,

where (Y1, Y2, Y3) is a triplet of test scores from three randomly sampled subjects from the three
disease classes, (k1, k2, k3), ki ∈ {1, . . . , c}, are cluster memberships indicating the clusters from
which Y1, Y2, Y3 are observed, zi = (1, x1i, . . . , xpi)

⊤ are fixed (i.e., not random) covariates values, and
βi = (β0i, β1i, . . . , βpi)

⊤, i = 1, 2, 3, are vectors of parameters representing covariates effects. In model
(1), αk are random effects accounting for the presence of clusters, and εi are subject-level random errors.
We assume that: (i) the random effects αk and the subject-level random errors εi follow a normal
distribution, i.e., αk ∼ N (0, σ2

c ) and εi ∼ N (0, σ2
i ) with i = 1, 2, 3; (ii) α1, α2, . . . , αc and ε1, ε2, ε3 are all

independent (see also, McCulloch and Searle, 2001).

Let β = (β⊤
1 , β⊤

2 , β⊤
3 )⊤ with βi = (β0i, β1i, . . . , βpi)

⊤, and θ = (σc, σ1, σ2, σ3)
⊤ be the unknown

parameters in model (1). By using a restricted (or residual) maximum likelihood (REML) estimation

approach, a consistent estimator γ̂ = (β̂
⊤

, θ̂
⊤
)⊤ of γ = (β⊤, θ⊤)⊤ can be obtained. Under some

regularity conditions, we have γ̂
.∼ N (γ, Λ). The asymptotic covariance matrix Λ can be consistently

estimated by using the sandwich formula (Liang and Zeger, 1986; Kauermann and Carroll, 2001; Mancl
and DeRouen, 2001).

In some practical situations, data distributions may be skewed and the normality assumption
might be violated. For such cases, To et al. (2022) considered the application of Box-Cox transformation
for linear mixed-effects models (Lipsitz et al., 2000; Gurka et al., 2006):

Y(λ)
1 = αk1

+ z⊤1 β1 + ε1,

Y(λ)
2 = αk2 + z⊤2 β2 + ε2, (2)

Y(λ)
3 = αk3 + z⊤3 β3 + ε3,

where Y(λ)
i is the Box-Cox transformed response, Y(λ)

i = (Yλ
i − 1)/λ if λ ̸= 0 and Y(λ)

i = log(Yi) if
λ = 0, with i = 1, 2, 3, Yi > 0, and λ is the transformation parameter (Box and Cox, 1964). Assumptions
about the random effects αk and the subject-level random errors εi are the same as in model (1). To
obtain λ̂ and the REML estimator γ̂, To et al. (2022) applied the method proposed by Gurka and
Edwards (2011) which is based on the scaled Box-Cox transformation model (Gurka et al., 2006). The
estimator of the variance-covariance matrix of the REML estimator γ̂ is obtained again by applying
the sandwich formula.

ROC surface analysis

According to the model (1), at a given vector z of covariates’ values, Yi ∼ N (z⊤βi, σ2
c + σ2

i ) with
z = (1, x1, . . . , xp)⊤ and i = 1, 2, 3. To et al. (2022) further assume that z⊤β1 < z⊤β2 < z⊤β3, i.e., that
the stochastic dominance for the three classes holds at z.

For given thresholds t1 and t2 (t1 < t2), the covariate-specific true class fractions (TCFs) are written
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as TCF1(t1; z) = Φ
(

t1−z⊤β1√
σ2

c +σ2
1

)
, TCF2(t1, t2; z) = Φ

(
t2−z⊤β2√

σ2
c +σ2

2

)
− Φ

(
t1−z⊤β2√

σ2
c +σ2

2

)
and TCF3(t2; z) = 1 −

Φ
(

t2−z⊤β3√
σ2

c +σ2
3

)
, where Φ(·) is the cumulative distribution function of the standard normal distribution.

Moreover, by setting TCF1(t1; z) = p1 and TCF3(t2; z) = p3, the covariate-specific ROC surface can be
defined as a function of (p1, p3), i.e.,

ROCs(p1, p3; z) = Φ

Φ−1(1 − p3)
√

σ2
c + σ2

3 + z⊤β3 − z⊤β2√
σ2

c + σ2
2


− Φ

Φ−1(p1)
√

σ2
c + σ2

1 + z⊤β1 − z⊤β2√
σ2

c + σ2
2

 , (3)

if Φ−1(p1) <
Φ−1(1−p3)

√
σ2

c +σ2
3+z⊤β3−z⊤β1√

σ2
c +σ2

1

; otherwise, ROCs(p1, p3; z) = 0.

Based on the above expressions, for clustered data, To et al. (2022) considered covariate-specific
estimation of the TCFs at a fixed pair of thresholds (t1, t2) and estimation of the ROC surface for each
pair (p1, p3). Moreover, the authors proposed methods to estimate covariate-specific optimal pairs of
thresholds (t+1 , t+2 ) by considering three different criteria: (i) maximization of the covariate-specific
generalized Youden index (GYI); (ii) minimization of the covariate-specific Euclidean distance between
the ideal point (1, 1, 1) and the point (TCF1(t1; z), TCF2(t1, t2; z), TCF3(t2; z)) (CtP); (iii) maximization
of the covariate-specific volume of the cuboid under the covariate-specific ROC surface (MV). Resulting
estimators are shown to be consistent and asymptotically normal, with asymptotic covariance matrices
estimable by using the plug-in method. The normal approximation results can be used to construct
suitable (joint) confidence regions.

Starting from model (1), covariate-specific inference on the VUS is discussed in Xiong et al. (2018),
where maximum likelihood (ML) methods for point and interval estimation are proposed. In particular,
Xiong et al. (2018) showed that covariate-specific ML VUS estimator θ̂(z) is the summation of five
components: θ̂1(z) = P̂r(Y1 < Y2 < Y3, k1 = k2 = k3|z), θ̂2(z) = P̂r(Y1 < Y2 < Y3, k1 = k2 ̸= k3|z),
θ̂3(z) = P̂r(Y1 < Y2 < Y3, k1 = k3 ̸= k2|z), θ̂4(z) = P̂r(Y1 < Y2 < Y3, k1 ̸= k2 = k3|z), and
θ̂5(z) = P̂r(Y1 < Y2 < Y3, k1 ̸= k2 ̸= k3|z).

In cases where the assumption of normality for Y1, Y2 and Y3 is unrealistic, inferential procedures
for covariate-specific TCFs, ROC surface, optimal pair of thresholds (and VUS) can be obtained starting
from model (2); see Section 3.3 in To et al. (2022).

3 Overview of R package ClusROC

The ClusROC package implements techniques for ROC surface analysis, in case of clustered data and
the presence of covariates. The package comprises five major functions:

• clus_lme(): This function fits the linear mixed-effects model (1) under the normality assump-
tion, or the model (2) when the Box-Cox transformation is used.

• clus_roc_surface(): This function estimates and makes a 3D plot of covariate-specific ROC
surfaces.

• clus_opt_thres3(): This function estimates the covariate-specific optimal pair of thresholds.

• clus_vus(): This function estimates the covariate-specific VUS.

• clus_tcfs(): This function estimates the covariate-specific TFCs at a specified pair of thresholds.

The ClusROC package can be installed directly from CRAN by using the code below:

install.packages("ClusROC")

Also, it can be installed from GitHub (“toduckhanh/ClusROC”), by using the function install_github()
from devtools package:

library(devtools)
install_github("toduckhanh/ClusROC")
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Description

The REML estimation in function clus_lme() is based on the function lme() of package nlme (Pinheiro
et al., 2022). The function clus_lme() needs, firstly, specification of a fixed_formula which is a two-
sided linear formula object describing the fixed-effects part of the model for three classes, with the
response on the left of ~ operator and the terms, separated by + operators, on the right. Secondly, the
arguments name_class and name_clust are needed to specify the name of the variables indicating
the disease classes (or diagnostic groups) and the clusters in the data, respectively. To enable the
Box-Cox transformation, users need to set the argument boxcox as TRUE. The Box-Cox parameter λ is
estimated by a grid search on the interval (−2, 2). This interval is suggested by Gurka and Edwards
(2011), but users can change this range by setting the argument interval_lambda. Before fitting the
model, clus_lme() determines the ordering of the disease groups based on the average values of test
results in each disease group. If an ordering is provided by the user via the argument levl_class, the
ordering of the mean values is still obtained to confirm the input ordering. In case of disagreement
between the two orderings, the one based on the averages of test results is adopted. The function
plot() provides three diagnostic plots for the model fitted by clus_lme(), namely, a Q-Q plot for
residuals, a Fitted vs. Residuals plot, and a Q-Q plot for cluster effects. These plots exploit the ggplot2
package (Hadley et al., 2022).

The functions clus_roc_surface(), clus_opt_thres3(), clus_vus() and clus_tcfs() are the
main functions to perform the ROC surface analysis for clustered data. All of them require the output
of clus_lme() as an argument. When one of the above functions is called, a check on the monotone
ordering assumption is performed. That is, for a given value of the covariates, say z, the three predicted
mean values of the test results in the three diagnostic groups, i.e., z⊤ β̂1, z⊤ β̂2 and z⊤ β̂3, are computed
and compared. If the assumption (z⊤ β̂1 < z⊤ β̂2 < z⊤ β̂3) is not met, the ROC surface analysis is not
performed at z.

The function clus_roc_surface() estimates a covariate-specific ROC surface at a single point for
covariates and makes a 3D plot to display the estimated covariate-specific ROC surface by using rgl
package (Duncan et al., 2021). This function also allows plotting an ellipsoidal confidence region for
TCFs at a given pair of thresholds, in the ROC surface space. If the constructed confidence region is
outside the unit cube, a probit transformation (Bantis et al., 2017) is automatically applied to obtain an
appropriate confidence region, which is inside the unit cube.

The function clus_opt_thres3() gives the estimated covariate-specific optimal pair of thresholds
as defined by the criteria GYI, CtP, and MV at multiple points of the covariates. The optimization is
done by using the function optim() with the “L-BFGS-B” method; however, users can select other
optimization methods, such as, “BFGS” or “Nelder-Mead”. The function returns also the estimated
asymptotic variance-covariance matrix of the (estimated) covariate-specific optimal pair of thresholds.
Under the normality assumption, the asymptotic variance-covariance matrix is estimated by the
Delta method. If the Box-Cox transformation is applied, a nonparametric bootstrap procedure for
clustered data is used to estimate the asymptotic variance-covariance matrix. To speed up the bootstrap
procedure, users can set the argument parallel as TRUE to enable parallel computing support. Users
can also select the number of CPUs needed for the computation. After calling clus_opt_thres3(), the
function plot() can be used to display confidence regions (and point estimates) of covariate-specific
optimal pairs of thresholds.

The function clus_vus() estimates the covariate-specific VUS at multiple points of the covariates
by using the integrate() routine. This function also performs the statistical test for the null hypothesis
H0 : VUS = 1/6 versus the alternative HA : VUS > 1/6. This statistical test is a formal assessment of
the adequacy of a diagnostic test in a three-class classification problem via its VUS at given covariates
values. After calling clus_vus(), users can apply ci_clus_vus() to obtain confidence intervals for
covariate-specific VUS. Three types of confidence intervals are computed: normal approximation-
based; after logit and probit transformations.

The function clus_tcfs() estimates covariate-specific TCFs at a specified pair of thresholds, given
one or multiple points for the covariates. This function also implements the Delta method to estimate
the asymptotic variance-covariance matrix of the estimated covariate-specific TCFs. Note that, if the
Box-Cox transformation is applied for the linear mixed-effects model, the pair of threshold values
must be provided in the original scale.

Applications

To illustrate the use of the ClusROC package, we provide two examples with the MouseNeurons dataset
and EnergyEthiopia, which are included in the package.
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The glutamatergic neurons

To et al. (2022) used the MouseNeurons dataset to evaluate the ability of the Lysosomal Associated
Membrane Protein Family Member 5 (Lamp5) gene to discriminate three types of glutamatergic
neurons, namely Layer 2/3 Intratelencephalic (L2/3 IT), Layer 4 (L4) and Layer 5 Pyramidal Tract
(L5 PT) neurons. A full version of the data is publicly available at http://portal.brain-map.org/
atlases-and-data/rnaseq/mouse-v1-and-alm-smart-seq.

This dataset includes 860 observations (brain cells) and the following variables: the expression of
the Lamp5 gene (diagnostic test/biomarker), the mouse genotype (which yields 23 clusters), the class
labels (L2/3 IT, L4, and L5 PT), and the sex and age (in days) of the mouse. Below, we illustrate the
use of the ClusROC package using this data.

Step 1: Load library and data

> library(ClusROC)
> data("MouseNeurons")

The above code loads the ClusROC package and the MouseNeurons data into R.

Step 2: Model fitting
In this step, we fit a linear mixed-effects model with Lamp5_cpm as a response and age_days as a
covariate, under the Box-Cox transformation, by using function clus_lme():

> out_md <- clus_lme(fixed_formula = Lamp5_cpm ~ age_days,
+ name_class = "subclass_label", name_clust = "genotype_id",
+ data = MouseNeurons, boxcox = TRUE)
The ordered levels of classes are specified by the order of
averages of the test values for each class:
L4 < L5 PT < L2/3 IT

As, in this case, the rank-ordered nature of the biomarker concerning the classes is not given, the
monotone ordering was specified by ordering the classes according to the rank of the biomarker’s
sample means in the three groups. The results are shown as follows.

> print(out_md)

CALL: clus_lme(fixed_formula = Lamp5_cpm ~ age_days, name_class = "subclass_label",
name_clust = "genotype_id", data = MouseNeurons, boxcox = TRUE)

Coefficients:
Est. Std.Error z-value p-value

subclass_labelL4 0.78770 5.95328 0.132 0.89474
subclass_labelL4:age_days 0.45039 0.18193 2.476 0.01330 *
subclass_labelL5 PT 34.30543 12.27946 2.794 0.00521 **
subclass_labelL5 PT:age_days 0.20995 0.10652 1.971 0.04872 *
subclass_labelL2/3 IT 49.34642 20.88162 2.363 0.01812 *
subclass_labelL2/3 IT:age_days 0.08991 0.08306 1.082 0.27907
sigma_c 6.78582 4.15973 -- --
sigma_1 15.02492 7.12012 -- --
sigma_2 11.24066 5.70949 -- --
sigma_3 11.14321 6.07808 -- --
lambda 0.44565 -- -- --
ICC 0.22848 -- -- --
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Number of observations: 860
Number of clusters: 23
Sample size within cluster:

Min Max Average
1.0000 330.0000 37.3913

Box-Cox transformation: TRUE

The diagnostic plots for the fitted model are obtained by the following command (see Figure 1):
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Figure 1: The diagnostic plots for the linear mixed-effects model.

> plot(out_md)

The plots suggest that the assumptions of normality and homogeneity of variances are satisfied. To
help the reader evaluate the need for transforming the data, we also fitted the linear mixed-effects
model without the Box-Cox transformation. The results are reported in Appendix, showing that the
assumptions are violated.

Step 3: ROC surface analysis
After fitting the linear mixed-effects models of interest and verifying the normality assumption and
the homogeneity of variances assumption, the ROC surface analysis can be performed. First, let us
start with the estimation for covariate-specific VUS.

> out_vus <- clus_vus(out_clus_lme = out_md,
+ newdata = data.frame(age_days = c(54, 60, 66)))
> print(out_vus)

CALL: clus_vus(out_clus_lme = out_md, newdata = data.frame(age_days = c(54,
60, 66)))

Covariate-specific VUS:
Covariates Values Est. Std.Error z-value p-value

54 0.541 0.0505 7.42 <0.001 ***
60 0.514 0.0535 6.49 <0.001 ***
66 0.485 0.0582 5.47 <0.001 ***

---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
z-value and p-value are for testing the null hypothesis H0: VUS = 1/6 vs HA: VUS > 1/6

In this case, we are interested in computing the (estimated) covariate-specific VUS at three different
ages of mice, i.e., 54, 60, and 66 days. The 95% confidence intervals for covariate-specific VUS are
obtained by:

> ci_clus_vus(out_vus)

The 95% confidence intervals for covariate-specific VUS:
Covariates Values Normal approximation Logit transformation Probit transformation
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54 (0.442, 0.640) (0.442, 0.637) (0.442, 0.638)
60 (0.409, 0.618) (0.410, 0.616) (0.410, 0.617)
66 (0.371, 0.599) (0.374, 0.598) (0.373, 0.599)

As shown in the results, we can see three types of confidence intervals: normal approximation-based;
after logit and probit transformations.

One obtains an estimate and a plot of the covariate-specific ROC surface, at, for example, the age
of 58 days, as follows:

> clus_roc_surface(out_clus_lme = out_md, newdata = data.frame(age_days = 58),
+ main = "Age-Specific ROC surface, at 58 days")

The result is displayed in Figure 2(a). A plot of a 95% ellipsoidal confidence region for TCFs at a fixed
pair of threshold, for instance, (t1, t2) = (350, 1350) is obtained as follows:

> clus_roc_surface(out_clus_lme = out_md, newdata = data.frame(age_days = 58),
+ main = "Age-Specific ROC surface, at 58 days",
+ ellips = TRUE, thresholds = c(350, 1350))

The 95% ellipsoidal confidence region for TCFs and covariate-specific ROC surface are displayed in
2(b), together.

(a) (b)

Figure 2: The plots of covariate-specific ROC surface at Age as 58 days: (a) without an ellipsoidal
confidence region; (b) with an ellipsoidal confidence region for TCFs at t1 = 350 and t2 = 1350.

Estimates of covariate-specific TCFs at several values of the covariate, for a fixed pair of thresholds,
are obtained by:

> clus_tcfs(out_clus_lme = out_md, newdata = data.frame(age_days = c(54, 58, 62)),
+ thresholds = c(350, 1350), ap_var = TRUE)

CALL: clus_tcfs(out_clus_lme = out_md, newdata = data.frame(age_days = c(54,
58, 62)), thresholds = c(350, 1350), apVar = TRUE)

Covariate-specific TCFs at (350,1350) :
Covariate(s) Values TCF 1 TCF 2 TCF 3 Se.TCF 1 Se.TCF 2 Se.TCF 3

54 0.576 0.632 0.522 0.113 0.0242 0.0630
58 0.533 0.620 0.533 0.119 0.0242 0.0604
62 0.490 0.607 0.544 0.124 0.0244 0.0592

The results consist of three-point estimates of covariate-specific TCFs at the fixed pair of thresholds
(350, 1350), corresponding to three different values of age, 54, 58, and 62 (days), and the associated
standard errors (Se). Note that, for the function roc_surface() and clus_tcfs(), if the Box-Cox
transformation is applied, the pair of thresholds values must be provided in the original scale.

The following call performs the estimation of the covariate-specific optimal pair of thresholds, and
the corresponding asymptotic variance-covariance matrices, at three different ages of mice: 55, 65 and
75 days. Here, we consider all criteria, i.e., GYI, CtP and MV.
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> out_thresh <- clus_opt_thres3(method = c("GYI", "CtP", "MV"), out_clus_lme = out_md,
+ newdata = data.frame(age_days = c(55, 65, 75)),
+ ap_var = TRUE,
+ control = list(n_boot = 1000, parallel = TRUE,
+ ncpus = 8))

In this case, a nonparametric bootstrap procedure for clustered data estimates the asymptotic variance-
covariance matrix of the (estimated) covariate-specific optimal thresholds. Hence, we used a parallel
computation with 8 CPUs ( Windows 10 Pro 64-bit, Intel(R) Core(TM) i7-7700, 3.6 GHz) to speed up
this process ( the computation time for the parallel bootstrap process is about 15 minutes). As a general
recommendation, we advise the user to switch to parallel computation not only in cases similar to the
one tackled in this example but whenever the computational times appear to be too slow. The results
are shown below.

> print(out_thresh)

CALL: clus_opt_thres3(method = c("GYI", "CtP", "MV"), out_clus_lme = out_md,
newdata = data.frame(age_days = c(55, 65, 75)), ap_var = TRUE,
control = list(n_boot = 1000, parallel = TRUE, ncpus = 8))

Covariate-specific optimal pair of thresholds:
Covariate(s) Values Method Threshold 1 Threshold 2 TCF 1 TCF 2 TCF 3

55 Generalized Youden Index 530 1170 0.706 0.429 0.630
55 Closest to Perfection 446 1260 0.647 0.534 0.575
55 Max Volume 460 1260 0.658 0.525 0.575
65 Generalized Youden Index 627 1240 0.671 0.395 0.613
65 Closest to Perfection 538 1350 0.612 0.508 0.550
65 Max Volume 548 1350 0.619 0.502 0.550
75 Generalized Youden Index 731 1320 0.632 0.361 0.597
75 Closest to Perfection 639 1450 0.575 0.482 0.524
75 Max Volume 644 1450 0.578 0.480 0.523

Standard errors of Covariate-specific optimal pair of thresholds:
Covariate(s) Values Method SE. Threshold 1 SE. Threshold 2

55 Generalized Youden Index 61.1 130.0
55 Closest to Perfection 73.8 85.7
55 Max Volume 66.7 85.8
65 Generalized Youden Index 98.6 120.0
65 Closest to Perfection 115.0 87.1
65 Max Volume 98.7 84.3
75 Generalized Youden Index 133.0 147.0
75 Closest to Perfection 146.0 140.0
75 Max Volume 126.0 121.0

The following call is needed to plot 95% confidence regions for the covariate-specific optimal pairs of
thresholds, and the result is shown in Figure 3.

> plot(out_thresh, colors = c("forestgreen", "blue", "red"),
+ xlims = c(250, 1250), ylims = c(750, 1750), names.labels = "Age in days:",
+ size.point = 0.9)

House cooking fuel choice

We use the dataset EnergyEthiopia to illustrate the use of the package for evaluating a classifier in a
three-class setting with panel data. The EnergyEthiopia data, included in the package, is a subset of
the panel dataset discussed in Alem et al. (2016). The full dataset is collected in 4 cities of Ethiopia
(Addis Ababa, Awassa, Dessie and Mekelle) within three different years: 2000, 2004 and 2009. Each
household participated in the study at most three times (three years). For each time, the information on
household energy choice and some covariates such as expenditure, demographic indicators, household
size and educational status, are recorded. Alem et al. (2016) used the full dataset to investigate the
determinants of household fuel cooking choice and energy transition in urban Ethiopia, based on a
random-effects multinomial logistic model.

The dataset, named EnergyEthiopia, includes 2088 observations from 1123 households living in
Addis Ababa and the following variables:
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Figure 3: The 95% confidence regions for the age-specific optimal pairs of thresholds for three values
of age: 55, 65, and 75.

• the cooking energy states of a household (energy2) with three categories: clean fuel only
(denoted as 1), a mix of clean and biomass fuel (2) and biomass fuel only (1);

• log real consumption per adult equivalent units (lrconsaeu);

• the household size (hhs);

• the log of firewood price (lfirewood_pr);

• the log of charcoal price (lcharcol_pr);

• the log of kerosene price (lkerosene_pr);

• the log of electricity price (lelectric_pr).

We are interested in evaluating the ability of the log real consumption per adult equivalent units to
discriminate three cooking energy states for a household, given the information provided by some
covariates, such as the household size, the prices of firewood, charcoal and kerosene. Above, the term
“clean fuel only” refers to clean energy sources such as electricity, gas and kerosene; whereas, “biomass
fuel only” refers to energy sources such as firewood, charcoal, dung and crop residues. In our analysis,
the 1123 households make up the clusters.

> library(ClusROC)
> data("EnergyEthiopia")

As the first step, we fit a linear mixed-effects model for the response variable lrconsaeu with the
covariates: hhs_ft, lfirewood_pr, lcharcol_pr and lkerosene_pr. Here hhs_ft is a factor represent-
ing four levels of the household size: small (1 ≤ hhs ≤ 4), medium (5 ≤ hhs ≤ 8), large (9 ≤ hhs ≤ 12)
and very large (hhs ≥ 13).

> out_md_enery <- clus_lme(
+ fixed_formula = lrconsaeu ~ hhs_ft + lfirewood_pr + lcharcol_pr + lkerosene_pr,
+ name_class = "energy2", name_clust = "uqid",
+ data = EnergyEthiopia, boxcox = FALSE
+ )
The ordered levels of classes are specified by the order of
averages of the test values for each class:
3 < 2 < 1

As in the first application, we still have no information about the rank-ordered nature of the classifier
(lrconsaeu) concerning the classes, so the monotone ordering was specified by ordering the classes
according to the rank of the sample means of lrconsaeu inside the three groups. The results are shown
as follows.

> print(out_md_enery)
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CALL: clus_lme(fixed_formula = lrconsaeu ~ hhs_ft + lfirewood_pr +
lcharcol_pr + lkerosene_pr, name_class = "energy2", name_clust = "uqid",
data = EnergyEthiopia, boxcox = FALSE)

Coefficients:
Est. Std.Error z-value p-value

energy23 4.93925 0.11856 41.661 < 2e-16 ***
energy23:hhs_ftmedium -0.48145 0.09126 -5.275 1.33e-07 ***
energy23:hhs_ftlarge -0.77942 0.12139 -6.421 1.36e-10 ***
energy23:hhs_ftvery large -0.92139 0.14911 -6.179 6.44e-10 ***
energy23:lfirewood_pr -0.09812 0.04806 -2.042 0.04119 *
energy23:lcharcol_pr -0.01146 0.08398 -0.136 0.89150
energy23:lkerosene_pr -0.13069 0.09731 -1.343 0.17927
energy22 5.14705 0.08235 62.502 < 2e-16 ***
energy22:hhs_ftmedium -0.39801 0.06730 -5.914 3.33e-09 ***
energy22:hhs_ftlarge -0.60084 0.09475 -6.341 2.28e-10 ***
energy22:hhs_ftvery large -0.63877 0.18434 -3.465 0.00053 ***
energy22:lfirewood_pr 0.02983 0.04203 0.710 0.47793
energy22:lcharcol_pr -0.10345 0.05570 -1.857 0.06329 .
energy22:lkerosene_pr -0.24888 0.08953 -2.780 0.00544 **
energy21 5.05581 0.05928 85.283 < 2e-16 ***
energy21:hhs_ftmedium -0.40857 0.04612 -8.859 < 2e-16 ***
energy21:hhs_ftlarge -0.57306 0.06944 -8.252 < 2e-16 ***
energy21:hhs_ftvery large -0.74813 0.17193 -4.351 1.35e-05 ***
energy21:lfirewood_pr 0.05490 0.02776 1.978 0.04793 *
energy21:lcharcol_pr -0.11632 0.03957 -2.940 0.00328 **
energy21:lkerosene_pr 0.13104 0.06246 2.098 0.03590 *
sigma_c 0.47835 0.02062 -- --
sigma_1 0.55878 0.03409 -- --
sigma_2 0.49135 0.02568 -- --
sigma_3 0.57106 0.02103 -- --
ICC 0.43933 -- -- --
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Number of observations: 2088
Number of clusters: 1123
Sample size within cluster:

Min Max Average
1.000000 3.000000 1.859305
Box-Cox transformation: FALSE

The diagnostic plots shown in Figure 4 seem to suggest that the normality assumption and the
homogeneity of variances are reliable.

> plot(out_md_enery)

We estimate the covariate-specific VUS at four different combinations of the covariates, when the
value of hhs_ft changes from “small” to “very large”, the values of lfirewood_pr, lcharcol_pr and
lkerosene_pr are fixed as 1, −1 and 2, respectively. Here, the values “1” and “2” of lfirewood_pr and
lkerosene_pr refer to the very high price of the firewood, and the kerosene, respectively, while the
value “-1” of lcharcol_pr refers to the very low price of the charcoal. The results of the covariate-
specific VUS estimation procedure are displayed below.

> out_vus_enery <- clus_vus(
+ out_clus_lme = out_md_enery,
+ newdata = data.frame(hhs_ft = c("small", "medium", "large", "very large"),
+ lfirewood_pr = c(1, 1, 1, 1),
+ lcharcol_pr = c(-1, -1, -1, -1),
+ lkerosene_pr = c(2, 2, 2, 2))
+ )
> print(out_vus_enery)

CALL: clus_vus(out_clus_lme = out_md_enery, newdata = data.frame(hhs_ft = c("small",
"medium", "large", "very large"), lfirewood_pr = c(1, 1,
1, 1), lcharcol_pr = c(-1, -1, -1, -1), lkerosene_pr = c(2,
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Figure 4: The diagnostic plots for the linear mixed-effects model (EnergyEthiopia data).

2, 2, 2)))

Covariate-specific VUS:
Covariates Values Est. Std.Error z-value p-value
(small, 1, -1, 2) 0.380 0.0674 3.17 <0.001 ***

(medium, 1, -1, 2) 0.404 0.0639 3.72 <0.001 ***
(large, 1, -1, 2) 0.443 0.0693 3.99 <0.001 ***

(very large, 1, -1, 2) 0.440 0.0862 3.17 <0.001 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
z-value and p-value are for testing the null hypothesis H0: VUS = 1/6 vs HA: VUS > 1/6

The estimated covariate-specific VUSs suggest that the accuracy of lrconsaeu increases as the house-
hold size increases while the other covariates are fixed. The inference results for covariate-specific
VUS indicate that the lrconsaeu can be considered as a classifier for distinguishing a household using
biomass fuel only from others using either clean fuel only or a mixed fuel. However, its accuracy is not
so high. We also compute the 95% confidence intervals for the covariate-specific VUS at four different
points.

> ci_clus_vus(out_vus_enery)

The 95\% confidence intervals for covariate-specific VUS:
Covariates Values Normal approximation Logit transformation Probit transformation
(small, 1, -1, 2) (0.248, 0.512) (0.259, 0.518) (0.257, 0.517)

(medium, 1, -1, 2) (0.279, 0.529) (0.287, 0.533) (0.286, 0.532)
(large, 1, -1, 2) (0.307, 0.579) (0.314, 0.580) (0.313, 0.580)

(very large, 1, -1, 2) (0.271, 0.609) (0.284, 0.609) (0.281, 0.609)

Since the covariate point ("large", 1, -1, 2) gives the highest covariate-specific VUS estimate
among the considered points, we plot the covariate-specific ROC surface at this point, to visualize the
covariate-specific TCFs at all possible pairs of thresholds. The result is displayed in Figure 5.

> clus_roc_surface(
+ out_clus_lme = out_md_enery,
+ newdata = data.frame(hhs_ft = "large", lfirewood_pr = 1,
+ lcharcol_pr = -1, lkerosene_pr = 2),
+ file_name = "ROCS_Energy_ex1.png"
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+ )

Figure 5: The plot of covariate-specific ROC surface at the covariate point ("large", 1, -1, 2).

Now, suppose we consider a pair of thresholds as (t1, t2) = (3.75, 4.75). The results of the
estimation of the covariate-specific TCFs at that pair, associated with four different covariate points,
are obtained by:

> clus_tcfs(out_clus_lme = out_md_enery,
+ newdata = data.frame(
+ hhs_ft = c("small", "medium", "large", "very large"),
+ lfirewood_pr = c(1, 1, 1, 1), lcharcol_pr = c(-1, -1, -1, -1),
+ lkerosene_pr = c(2, 2, 2, 2)),
+ thresholds = c(3.75, 4.75), ap_var = TRUE)

CALL: clus_tcfs(out_clus_lme = out_md_enery, newdata = data.frame(hhs_ft = c("small",
"medium", "large", "very large"), lfirewood_pr = c(1, 1,
1, 1), lcharcol_pr = c(-1, -1, -1, -1), lkerosene_pr = c(2,
2, 2, 2)), thresholds = c(3.75, 4.75), ap_var = TRUE)

Covariate-specific TCFs at (3.75,4.75) :
Covariate(s) Values TCF 1 TCF 2 TCF 3 Se.TCF 1 Se.TCF 2 Se.TCF 3
(small, 1, -1, 2) 0.126 0.415 0.839 0.0569 0.0617 0.0366

(medium, 1, -1, 2) 0.312 0.526 0.671 0.0906 0.0247 0.0532
(large, 1, -1, 2) 0.467 0.532 0.588 0.1100 0.0147 0.0612

(very large, 1, -1, 2) 0.543 0.529 0.495 0.1230 0.0247 0.1080

Finally, we obtain the covariate-specific optimal pairs of thresholds at four different covariate
points, based on all criteria, i.e., GYI, CtP and MV.

> out_thresh_enery <- clus_opt_thres3(
+ method = c("GYI", "CtP", "MV"), out_clus_lme = out_md_enery,
+ newdata = data.frame(hhs_ft = c("small", "medium", "large", "very large"),
+ lfirewood_pr = c(1, 1, 1, 1),
+ lcharcol_pr = c(-1, -1, -1, -1),
+ lkerosene_pr = c(2, 2, 2, 2)),
+ ap_var = TRUE
+ )
> print(out_thresh_enery)

CALL: clus_opt_thres3(method = c("GYI", "CtP", "MV"), out_clus_lme = out_md_enery,
newdata = data.frame(hhs_ft = c("small", "medium", "large",

"very large"), lfirewood_pr = c(1, 1, 1, 1), lcharcol_pr = c(-1,
-1, -1, -1), lkerosene_pr = c(2, 2, 2, 2)), ap_var = TRUE)

Covariate-specific optimal pair of thresholds:

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 266

Covariate(s) Values Method Threshold 1 Threshold 2 TCF 1 TCF 2 TCF 3
(small, 1, -1, 2) Generalized Youden Index 4.52 5.18 0.460 0.370 0.661
(small, 1, -1, 2) Closest to Perfection 4.51 5.35 0.455 0.453 0.572
(small, 1, -1, 2) Max Volume 4.51 5.35 0.454 0.452 0.575

(medium, 1, -1, 2) Generalized Youden Index 4.13 4.78 0.509 0.363 0.657
(medium, 1, -1, 2) Closest to Perfection 4.08 4.94 0.481 0.465 0.574
(medium, 1, -1, 2) Max Volume 4.07 4.93 0.480 0.464 0.578
(large, 1, -1, 2) Generalized Youden Index 3.91 4.59 0.553 0.379 0.669
(large, 1, -1, 2) Closest to Perfection 3.84 4.74 0.514 0.486 0.591
(large, 1, -1, 2) Max Volume 3.83 4.73 0.512 0.483 0.597

(very large, 1, -1, 2) Generalized Youden Index 3.84 4.50 0.592 0.369 0.627
(very large, 1, -1, 2) Closest to Perfection 3.74 4.63 0.535 0.485 0.560
(very large, 1, -1, 2) Max Volume 3.74 4.63 0.535 0.483 0.562

Standard errors of Covariate-specific optimal pair of thresholds:
Covariate(s) Values Method SE. Threshold 1 SE. Threshold 2
(small, 1, -1, 2) Generalized Youden Index 0.234 0.1040
(small, 1, -1, 2) Closest to Perfection 0.112 0.0914
(small, 1, -1, 2) Max Volume 0.114 0.0932

(medium, 1, -1, 2) Generalized Youden Index 0.166 0.0990
(medium, 1, -1, 2) Closest to Perfection 0.110 0.0868
(medium, 1, -1, 2) Max Volume 0.111 0.0891
(large, 1, -1, 2) Generalized Youden Index 0.158 0.1090
(large, 1, -1, 2) Closest to Perfection 0.122 0.0954
(large, 1, -1, 2) Max Volume 0.123 0.0988

(very large, 1, -1, 2) Generalized Youden Index 0.192 0.1640
(very large, 1, -1, 2) Closest to Perfection 0.154 0.1390
(very large, 1, -1, 2) Max Volume 0.154 0.1410

The 95

> plot(out_thresh_enery, colors = c("orange", "red", "blue", "forestgreen"),
+ file_name = "optThres_energy_ellip.pdf", nrow_legend = 2,
+ width = 6, height = 4)
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Figure 6: The 95% confidence regions for the age-specific optimal pairs of thresholds for four covariate
points (in the house cooking fuel choice example).

4 Conclusion

This paper introduces the ClusROC package, the first R package for ROC surface analysis in three-
class classification problems, for clustered data and in the presence of covariates. The package allows
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obtaining point estimates and confidence regions for true class fractions, ROC surface estimates and
plots, point and interval estimates of VUS, and point estimates and confidence regions for optimal pair
of thresholds. In the last case, three different criteria can be used: GYI, CtP, and MV. The package is
available on Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=
ClusROC. The functions in the package are described and implemented using, as examples, the real
datasets MouseNeurons and EnergyEthiopia provided in the package itself.

The linear mixed-effects model relies on the assumptions of normality and homoscedasticity.
When such assumptions do not hold, the Box-Cox transformation can be employed. In these cases, a
bootstrap procedure is needed to estimate the elliptical confidence regions for the optimal thresholds.
This procedure can take a long computation time depending on the size of the data (either the number
of clusters or the sample size within the clusters). For this reason, we recommend users enable the
parallel computation option, which is already implemented within the function clus_opt_thres3().
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6 Appendix

To help the reader evaluate the need for transforming the data, we report here the results of the
analysis based on the linear mixed-effects model without the Box-Cox transformation. The results
show that the assumptions of normality and homoscedasticity are violated.

> out_md_0 <- clus_lme(fixed_formula = Lamp5_cpm ~ age_days,
+ name_class = "subclass_label", name_clust = "genotype_id",
+ data = MouseNeurons)
The ordered levels of classes are specified by the order of
averages of the test values for each class:
L4 < L5 PT < L2/3 IT
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> print(out_md_0)

CALL: clus_lme(fixed_formula = Lamp5_cpm ~ age_days, name_class = "subclass_label",
name_clust = "genotype_id", data = MouseNeurons)

Coefficients:
Est. Std.Error z-value p-value

subclass_labelL4 -378.9740 208.6613 -1.816 0.0693 .
subclass_labelL4:age_days 11.3966 1.4166 8.045 8.62e-16 ***
subclass_labelL5 PT 558.0245 89.6372 6.225 4.80e-10 ***
subclass_labelL5 PT:age_days 8.6915 0.6581 13.207 < 2e-16 ***
subclass_labelL2/3 IT 1227.4463 251.7121 4.876 1.08e-06 ***
subclass_labelL2/3 IT:age_days 5.0032 3.4950 1.432 0.1523
sigma_c 330.1655 68.9777 -- --
sigma_1 529.2924 9.1052 -- --
sigma_2 514.0238 12.5033 -- --
sigma_3 611.5288 30.7857 -- --
ICC 0.2638 -- -- --
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Number of observations: 860
Number of clusters: 23
Sample size within cluster:

Min Max Average
1.0000 330.0000 37.3913

Box-Cox transformation: FALSE

> plot(out_md_0)
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Figure 7: The diagnostic plots for the linear mixed-effects model for MouseNeurons data, without
Box-Cox transformation.
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