The use of data-driven algorithms for the integration or substitution of current production sensors is becoming a consolidated trend in research and development in the automotive field. Due to the large number of variables and scenarios to consider; however, it is of paramount importance to define a consistent methodology accounting for uncertainty evaluations and preprocessing steps, that are often overlooked in naive implementations. Among the potential applications, the use of virtual sensors for the analysis of solid emissions in transient cycles is particularly appealing for industrial applications, considering the new legislations scenario and the fact that, to our best knowledge, no robust models have been previously developed. In the present work, the authors present a detailed overview of the problematics arising in the development of a virtual sensor, with particular focus on the transient particulate number (diameter <10 nm) emissions, overcome by leveraging data-driven algorithms and a profound knowledge of the underlying physical limitations. The workflow has been tested and validated using a complete dataset composed of more than 30 full driving cycles obtained from industrial experimentations, underlying the importance of each step and its possible variations. The final results show that a reliable model for transient particulate number emissions is possible and the accuracy reached is compatible with the intrinsic cycle to cycle variability of the phenomenon, while ensuring control over the quality of the predicted values, in order to provide valuable insight for the actions to perform.
Pulga, L., Forte, C., Siliato, A., Giovannardi, E., Tonelli, R., Kitsopanidis, I., et al. (2023). Artificial Intelligence Strategies for the Development of Robust Virtual Sensors: An Industrial Case for Transient Particle Emissions in a High-Performance Engine. SAE INTERNATIONAL JOURNAL OF ENGINES, 17(2), 1-17 [10.4271/03-17-02-0014].
Artificial Intelligence Strategies for the Development of Robust Virtual Sensors: An Industrial Case for Transient Particle Emissions in a High-Performance Engine
Giovannardi, EmanueleMembro del Collaboration Group
;Bianchi, Gian MarcoMembro del Collaboration Group
2023
Abstract
The use of data-driven algorithms for the integration or substitution of current production sensors is becoming a consolidated trend in research and development in the automotive field. Due to the large number of variables and scenarios to consider; however, it is of paramount importance to define a consistent methodology accounting for uncertainty evaluations and preprocessing steps, that are often overlooked in naive implementations. Among the potential applications, the use of virtual sensors for the analysis of solid emissions in transient cycles is particularly appealing for industrial applications, considering the new legislations scenario and the fact that, to our best knowledge, no robust models have been previously developed. In the present work, the authors present a detailed overview of the problematics arising in the development of a virtual sensor, with particular focus on the transient particulate number (diameter <10 nm) emissions, overcome by leveraging data-driven algorithms and a profound knowledge of the underlying physical limitations. The workflow has been tested and validated using a complete dataset composed of more than 30 full driving cycles obtained from industrial experimentations, underlying the importance of each step and its possible variations. The final results show that a reliable model for transient particulate number emissions is possible and the accuracy reached is compatible with the intrinsic cycle to cycle variability of the phenomenon, while ensuring control over the quality of the predicted values, in order to provide valuable insight for the actions to perform.File | Dimensione | Formato | |
---|---|---|---|
artificial intelligence strategies postprint.pdf
Open Access dal 09/03/2024
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
1.62 MB
Formato
Adobe PDF
|
1.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.