We consider a wide class of four-dimensional effective field theories in which gravity is coupled to multiple four-forms and their dual scalar fields, with membrane sources charged under the corresponding three-form potentials. Four-form flux, quantised in units of the membrane charges, generically generates a landscape of vacua with a range of values for the cosmological constant that is scanned through membrane nucleation. We list various ways in which the landscape can be made sufficiently dense to be compatible with observations of the current vacuum without running into the empty universe problem. Further, we establish the general criteria required to ensure the absolute stability of the Minkowski vacuum under membrane nucleation and the longevity of those vacua that are parametrically close by. This selects the current vacuum on probabilistic grounds and can even be applied in the classic model of Bousso and Polchinski, albeit with some mild violation of the membrane weak gravity conjecture. We present other models where the membrane weak gravity conjecture is not violated but where the same probabilistic methods can be used to tackle the cosmological constant problem.
Liu Yang, Padilla Antonio, Pedro Francisco Gil (2023). The cosmological constant is probably still zero. JOURNAL OF HIGH ENERGY PHYSICS, 2023(10), 1-29 [10.1007/JHEP10(2023)014].
The cosmological constant is probably still zero
Pedro Francisco Gil
2023
Abstract
We consider a wide class of four-dimensional effective field theories in which gravity is coupled to multiple four-forms and their dual scalar fields, with membrane sources charged under the corresponding three-form potentials. Four-form flux, quantised in units of the membrane charges, generically generates a landscape of vacua with a range of values for the cosmological constant that is scanned through membrane nucleation. We list various ways in which the landscape can be made sufficiently dense to be compatible with observations of the current vacuum without running into the empty universe problem. Further, we establish the general criteria required to ensure the absolute stability of the Minkowski vacuum under membrane nucleation and the longevity of those vacua that are parametrically close by. This selects the current vacuum on probabilistic grounds and can even be applied in the classic model of Bousso and Polchinski, albeit with some mild violation of the membrane weak gravity conjecture. We present other models where the membrane weak gravity conjecture is not violated but where the same probabilistic methods can be used to tackle the cosmological constant problem.File | Dimensione | Formato | |
---|---|---|---|
JHEP10(2023)014.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
428.33 kB
Formato
Adobe PDF
|
428.33 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.