Importance: The pediatric obesity disease burden imposes the necessity of new effective strategies. Objective: To determine whether oral butyrate supplementation as an adjunct to standard care is effective in the treatment of pediatric obesity. Design, Setting, and Participants: A randomized, quadruple-blind, placebo-controlled trial was performed from November 1, 2020, to December 31, 2021, at the Tertiary Center for Pediatric Nutrition, Department of Translational Medical Science, University of Naples Federico II, Naples, Italy. Participants included children aged 5 to 17 years with body mass index (BMI) greater than the 95th percentile. Interventions: Standard care for pediatric obesity supplemented with oral sodium butyrate, 20 mg/kg body weight per day, or placebo for 6 months was administered. Main Outcomes and Measures: The main outcome was the decrease of at least 0.25 BMI SD scores at 6 months. The secondary outcomes were changes in waist circumference; fasting glucose, insulin, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglyceride, ghrelin, microRNA-221, and interleukin-6 levels; homeostatic model assessment of insulin resistance (HOMA-IR); dietary and lifestyle habits; and gut microbiome structure. Intention-to-treat analysis was conducted. Results: Fifty-four children with obesity (31 girls [57%], mean [SD] age, 11 [2.91] years) were randomized into the butyrate and placebo groups; 4 were lost to follow-up after receiving the intervention in the butyrate group and 2 in the placebo group. At intention-to-treat analysis (n = 54), children treated with butyrate had a higher rate of BMI decrease greater than or equal to 0.25 SD scores at 6 months (96% vs 56%, absolute benefit increase, 40%; 95% CI, 21% to 61%; P < .01). At per-protocol analysis (n = 48), the butyrate group showed the following changes as compared with the placebo group: waist circumference, -5.07 cm (95% CI, -7.68 to -2.46 cm; P < .001); insulin level, -5.41 μU/mL (95% CI, -10.49 to -0.34 μU/mL; P = .03); HOMA-IR, -1.14 (95% CI, -2.13 to -0.15; P = .02); ghrelin level, -47.89 μg/mL (95% CI, -91.80 to -3.98 μg/mL; P < .001); microRNA221 relative expression, -2.17 (95% CI, -3.35 to -0.99; P < .001); and IL-6 level, -4.81 pg/mL (95% CI, -7.74 to -1.88 pg/mL; P < .001). Similar patterns of adherence to standard care were observed in the 2 groups. Baseline gut microbiome signatures predictable of the therapeutic response were identified. Adverse effects included transient mild nausea and headache reported by 2 patients during the first month of butyrate intervention. Conclusions and Relevance: Oral butyrate supplementation may be effective in the treatment of pediatric obesity. Trial Registration: ClinicalTrials.gov Identifier: NCT04620057.

Coppola S., Nocerino R., Paparo L., Bedogni G., Calignano A., Di Scala C., et al. (2022). Therapeutic Effects of Butyrate on Pediatric Obesity: A Randomized Clinical Trial. JAMA NETWORK OPEN, 5(12), 1-13 [10.1001/jamanetworkopen.2022.44912].

Therapeutic Effects of Butyrate on Pediatric Obesity: A Randomized Clinical Trial

Bedogni G.;
2022

Abstract

Importance: The pediatric obesity disease burden imposes the necessity of new effective strategies. Objective: To determine whether oral butyrate supplementation as an adjunct to standard care is effective in the treatment of pediatric obesity. Design, Setting, and Participants: A randomized, quadruple-blind, placebo-controlled trial was performed from November 1, 2020, to December 31, 2021, at the Tertiary Center for Pediatric Nutrition, Department of Translational Medical Science, University of Naples Federico II, Naples, Italy. Participants included children aged 5 to 17 years with body mass index (BMI) greater than the 95th percentile. Interventions: Standard care for pediatric obesity supplemented with oral sodium butyrate, 20 mg/kg body weight per day, or placebo for 6 months was administered. Main Outcomes and Measures: The main outcome was the decrease of at least 0.25 BMI SD scores at 6 months. The secondary outcomes were changes in waist circumference; fasting glucose, insulin, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglyceride, ghrelin, microRNA-221, and interleukin-6 levels; homeostatic model assessment of insulin resistance (HOMA-IR); dietary and lifestyle habits; and gut microbiome structure. Intention-to-treat analysis was conducted. Results: Fifty-four children with obesity (31 girls [57%], mean [SD] age, 11 [2.91] years) were randomized into the butyrate and placebo groups; 4 were lost to follow-up after receiving the intervention in the butyrate group and 2 in the placebo group. At intention-to-treat analysis (n = 54), children treated with butyrate had a higher rate of BMI decrease greater than or equal to 0.25 SD scores at 6 months (96% vs 56%, absolute benefit increase, 40%; 95% CI, 21% to 61%; P < .01). At per-protocol analysis (n = 48), the butyrate group showed the following changes as compared with the placebo group: waist circumference, -5.07 cm (95% CI, -7.68 to -2.46 cm; P < .001); insulin level, -5.41 μU/mL (95% CI, -10.49 to -0.34 μU/mL; P = .03); HOMA-IR, -1.14 (95% CI, -2.13 to -0.15; P = .02); ghrelin level, -47.89 μg/mL (95% CI, -91.80 to -3.98 μg/mL; P < .001); microRNA221 relative expression, -2.17 (95% CI, -3.35 to -0.99; P < .001); and IL-6 level, -4.81 pg/mL (95% CI, -7.74 to -1.88 pg/mL; P < .001). Similar patterns of adherence to standard care were observed in the 2 groups. Baseline gut microbiome signatures predictable of the therapeutic response were identified. Adverse effects included transient mild nausea and headache reported by 2 patients during the first month of butyrate intervention. Conclusions and Relevance: Oral butyrate supplementation may be effective in the treatment of pediatric obesity. Trial Registration: ClinicalTrials.gov Identifier: NCT04620057.
2022
Coppola S., Nocerino R., Paparo L., Bedogni G., Calignano A., Di Scala C., et al. (2022). Therapeutic Effects of Butyrate on Pediatric Obesity: A Randomized Clinical Trial. JAMA NETWORK OPEN, 5(12), 1-13 [10.1001/jamanetworkopen.2022.44912].
Coppola S.; Nocerino R.; Paparo L.; Bedogni G.; Calignano A.; Di Scala C.; de Giovanni di Santa Severina A.F.; De Filippis F.; Ercolini D.; Berni Cana...espandi
File in questo prodotto:
File Dimensione Formato  
Coppola_et_al_2022.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 978.66 kB
Formato Adobe PDF
978.66 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/959507
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 16
social impact