When processing visual information from the surroundings, human vision depends on the constant integration of form and motion cues. Dynamic Glass patterns (GPs) may be used to study how such visual integration occurs in the human visual system. Dynamic GPs are visual stimuli composed of two or more unique frames consisting of different configurations of dot pairs, called dipoles, presented in rapid succession. Previous psychophysical studies showed that the discrimination of translational and circular dynamic GPs is influenced by both the number of unique frames and the pattern update rate. In this study, we manipulated these two variables to assess their influence on the discrimination threshold of circular, radial, and spiral GPs, partially replicating previous findings on circular GPs. Our results indicate that circular GPs are more easily perceived than radial and spiral GPs, showing lower discrimination thresholds. Furthermore, we found that discrimination thresholds vary as a function of the number of unique frames but not as a function of the pattern update rate. Specifically, coherence thresholds decreased with increasing the number of unique frames. In conclusion, our findings support the existence of spatial summation of form signals coming from the unique frames that generate complex GPs. On the other hand, they do not support temporal integration of local form-motion signals based on the pattern update rate.
Roccato, M., Campana, G., Vicovaro, M., Donato, R., Pavan, A. (In stampa/Attività in corso). Perception of complex Glass patterns through spatial summation across unique frames. VISION RESEARCH, 216, 1-9 [10.1016/j.visres.2024.108364].
Perception of complex Glass patterns through spatial summation across unique frames
Pavan, Andrea
Ultimo
Conceptualization
In corso di stampa
Abstract
When processing visual information from the surroundings, human vision depends on the constant integration of form and motion cues. Dynamic Glass patterns (GPs) may be used to study how such visual integration occurs in the human visual system. Dynamic GPs are visual stimuli composed of two or more unique frames consisting of different configurations of dot pairs, called dipoles, presented in rapid succession. Previous psychophysical studies showed that the discrimination of translational and circular dynamic GPs is influenced by both the number of unique frames and the pattern update rate. In this study, we manipulated these two variables to assess their influence on the discrimination threshold of circular, radial, and spiral GPs, partially replicating previous findings on circular GPs. Our results indicate that circular GPs are more easily perceived than radial and spiral GPs, showing lower discrimination thresholds. Furthermore, we found that discrimination thresholds vary as a function of the number of unique frames but not as a function of the pattern update rate. Specifically, coherence thresholds decreased with increasing the number of unique frames. In conclusion, our findings support the existence of spatial summation of form signals coming from the unique frames that generate complex GPs. On the other hand, they do not support temporal integration of local form-motion signals based on the pattern update rate.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.