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Abstract 35 

When processing visual information from the surroundings, human vision depends on the 36 

constant integration of form and motion cues. Dynamic Glass patterns (GPs) may be used to 37 

study how such visual integration occurs in the human visual system. Dynamic GPs are 38 

visual stimuli composed of two or more unique frames consisting of different configurations 39 

of dot pairs, called dipoles, presented in rapid succession. Previous psychophysical studies 40 

showed that the discrimination of translational and circular dynamic GPs is influenced by 41 

both the number of unique frames and the pattern update rate. In this study, we manipulated 42 

these two variables to assess their influence on the discrimination threshold of circular, radial, 43 

and spiral GPs, partially replicating previous findings on circular GPs. Our results indicate 44 

that circular GPs are more easily perceived than radial and spiral GPs, showing lower 45 

discrimination thresholds. Furthermore, we found that discrimination thresholds vary as a 46 

function of the number of unique frames but not as a function of the pattern update rate. 47 

Specifically, coherence thresholds decreased with increasing the number of unique frames. In 48 

conclusion, our findings support the existence of spatial summation of form signals coming 49 

from the unique frames that generate complex GPs. On the other hand, they do not support 50 

temporal integration of local form-motion signals based on the pattern update rate. 51 

 52 

Keywords: Form-motion integration, static Glass patterns, dynamic Glass patterns; complex 53 

shapes; form summation, global form. 54 
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1. Introduction 68 

A long-standing view of visual neuroscience has considered the visual system as 69 

hierarchically organized, beginning with the primary visual cortex (V1), and separating into 70 

the ventral and dorsal streams; the first reaching area V4 and inferotemporal areas, and the 71 

second the middle temporal area (MT) and parietal areas (Gustavsen & Gallant, 2003; 72 

Mishkin et al., 1983; Ungerleider & Mishkin, 1982; Ungerleider & Haxby, 1994). These two 73 

streams have been associated with the processing of form and motion cues, respectively 74 

(Mishkin et al., 1983; Shen et al., 1999; Ungerleider & Mishkin, 1982). However, mounting 75 

experimental evidence has initiated a reevaluation of this rigid dichotomy suggesting an 76 

alternative perspective, portraying the brain as a complex and interconnected network 77 

(Amano et al., 2009; Apthorp et al., 2013; for a review see Donato et al., 2020; Edwards et 78 

al., 2013; Englund & Palomares, 2012; Fang & He, 2005; Geisler, 1999; Kourtzi et al., 2008; 79 

Krekelberg et al., 2003, 2005; Mather et al., 2012; Sheth & Young, 2016; Tang et al., 2015). 80 

In this context, Edwards et al. (2013) investigated how static orientation cues influence the 81 

spatial integration of 1D and 2D motion signals in global-Gabor and global-plaid stimuli. 82 

Local-motion information can yield either 1-dimensional (1D) or 2-dimensional (2D) 83 

solutions. Specifically, 1D signals arise when the aperture problem remains unsolved, leading 84 

to each signal representing an estimate of the local-orthogonal component of the object’s 85 

motion. On the other hand, 2D signals emerge when the aperture problem is resolved, 86 

resulting in each signal representing an estimate of the object’s motion. In their study, 87 

Edwards et al. (2013) found that orientation cues impact the perceived direction of global-88 

Gabor stimuli (1D signal) but not global-plaid stimuli (2D signals). This investigation 89 

contributes to our understanding of how static orientation cues affect global motion 90 

mechanisms. 91 

An example of the crosstalk between the dorsal and the ventral streams is given by a 92 

category of visual stimuli called dynamic Glass patterns (GPs), broadly employed to 93 

investigate how form and motion features are processed in the visual system (Barlow & 94 

Berry, 2010; Krekelberg et al., 2003; Pavan et al., 2017; Smith et al., 2002, 2007). GPs 95 

consist of pairs of dots, known as dipoles, which can be spatially arranged using geometric 96 

transformations to create various global configurations. These configurations can be 97 

categorized as either simple or complex. Simple GPs have straightforward structures, like 98 

translational patterns, representing only one dipole orientation. On the other hand, a global 99 

representation of the stimulus must be formed by integrating various dipole orientations for 100 
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complex GPs, such as circular, radial, spiral, and hyperbolic patterns (Chen, 2009; Kelly et 101 

al., 2001; Nankoo et al., 2012). In this context, "simple" and "complex" are used to describe 102 

these two categories of GPs. 103 

Moreover, GPs can be made of either a single still frame that creates static GPs or 104 

multiple unique frames shown in rapid succession that create dynamic GPs (Donato et al., 105 

2020, 2021; Nankoo et al., 2012; Pavan et al., 2017, 2021). A peculiar characteristic of 106 

dynamic GPs is that they do not show dipole-to-dipole correspondence throughout the frames 107 

because dipoles are randomly reallocated in the space, yet they maintain a constant 108 

geometrical configuration (e.g., circular, spiral, etc.). For these characteristics, dynamic GPs 109 

evoke an illusory directional motion congruent to the dipoles’ axes. Consequently, the 110 

stimulus is perceived to move translationally or circularly, although there is not an exact 111 

trajectory such as upward, downward, clockwise, or counterclockwise. In the current study, 112 

we will refer to the visual effect triggered by dynamic GPs as non-directional motion (Donato 113 

et al., 2021), although other studies refer to this effect as implied motion (Krekelberg et al., 114 

2003, 2005; Joshi et al., 2020, 2021). We decided not to use the term implied motion because, 115 

in many studies on visual perception, this is employed to indicate implicit motion represented 116 

in static pictures, such as a photograph that displays a person or an animal in the act of 117 

running (Friedman & Stevenson, 1975; Lorteije et al., 2006; Pavan et al., 2011; Yamamoto & 118 

Miura, 2012).  119 

Previous studies have shown that the perception of GPs varies based on their global 120 

configuration and the number of frames. Dynamic GPs have lower thresholds than static GPs, 121 

and circular GPs have lower thresholds than translational GPs (Achtman et al., 2003; Day & 122 

Palomares, 2014; Donato et al., 2021; Kurki & Saarinen, 2004; Nankoo et al., 2012, 2015). 123 

Different studies attempted to explain this perceptual difference, for example, Ohla et al. 124 

(2005) used event-related potentials (ERPs) to explore the human neurophysiological 125 

correlates of GP perception. The visual stimuli were circular, translational, and random GPs, 126 

displayed using two isoluminant hues. Participants were asked to press a button on the 127 

keypad when they saw a different color, red or violet. The authors hypothesized that the 128 

N170 component had to produce the highest ERP amplitudes for circular GPs. This 129 

hypothesis has its roots in previous studies that showed that the N170 component is 130 

associated with complex visual features, specifically, the processing of edge detection in 131 

Kanizsa figures (Herrmann & Bosch, 2001) and facial perception (Itier & Taylor, 2004). In 132 

fact, their findings revealed that circular patterns elicited a broader N170 component 133 
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amplitude than translational GPs. The N170 component seems to be evoked by visual areas 134 

around V4, and previous evidence showed that V4 and the inferotemporal cortex (IT) are 135 

more sensitive to complex GPs than simple GPs (Chen, 2009; Donato et al., 2021). In fact, 136 

these cortical regions have been thought to be more sensitive to specific contour features such 137 

as acute curvature relative to the shape’s center (Pasupathy & Connor, 1999, 2002; Yau et al., 138 

2013) - probably because they are characterized by brain cells tuned to circular shapes 139 

(Desimone et al., 1984;  David et al., 2006; Gallant et al., 1993, 1996; Kim et al., 2019; 140 

Pasupathy, 2006; Tanaka, 1996). However, other studies such as Hegdé & Van Essen (2007) 141 

observed different results showing that there are no significant differences in V4 in the 142 

processing of simple and complex shapes. Specifically, the authors compared shape 143 

representation in visual areas V2 and V4 and recorded monkeys’ brain cell responses while 144 

they were exposed to various visual stimuli. The stimuli included 48 grating stimuli and 80 145 

contour stimuli, grouped into subclasses based on orientation, spatial frequency, size, and 146 

shape. The aim was to investigate the selectivity of different form cues important for image 147 

segmentation and object recognition. The results revealed that V4 is not more sensitive to 148 

complex shapes than V2 (Anzai et al., 2007; Hegdé & Van Essen, 2007). In support of the 149 

evidence found by Ohla et al. (2005), there is an electrophysiological study by Pei et al. 150 

(2005), in which the authors analyzed the event-related potentials (ERPs) in response to 151 

circular, radial, translational, and random/noise GPs (i.e., the control condition). The time-152 

averaged responses of circular and radial GPs differed more from the control condition than 153 

the responses of translational GPs.  154 

Dynamic GPs are distinguished by their pattern update rate and the number of unique 155 

frames. These attributes play a pivotal role in generating non-directional motion (Or et al., 156 

2007; Pavan et al., 2021; Ross et al., 2000). In a psychophysical study, Nankoo et al. (2015) 157 

focused on disentangling the role of these two factors in the perception of translational GPs. 158 

The number of unique frames and the pattern update rate were combined into a set of nine 159 

conditions, including a static condition and eight dynamic conditions. The task was a two-160 

alternative forced choice (2AFC) where participants had to indicate whether the presented GP 161 

was coherent or not. The results suggested that the number of unique frames (but not the 162 

pattern update rate) had a key role in lowering the thresholds of GPs.  163 

The present study examined how the number of unique frames and pattern update rate 164 

affect participants’ discrimination thresholds in different types of complex GPs: concentric, 165 

radial, clockwise spiral, and counterclockwise spiral GPs. To achieve this, we used the same 166 
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method as Nankoo et al. (2015). The objective was to determine whether participants’ 167 

discrimination coherence thresholds for complex dynamic GPs solely depend on the number 168 

of unique frames or also on the pattern update rate. If participants’ sensitivity to complex GPs 169 

depends on the number of unique frames, we should expect that coherence thresholds 170 

decrease as the number of unique frames increases; this would indicate spatial summation of 171 

multiple complex form signals across static unique frames. On the other hand, if participants’ 172 

sensitivity depends on the pattern update rate, a decrease in coherence thresholds is expected 173 

as increasing the pattern update rate, regardless of the number of unique frames; this would 174 

indicate temporal integration of local motion signals as the pattern update rate increases. 175 

However, a decrease in the coherence threshold as a function of both the number of unique 176 

frames and pattern update rate would indicate the coexistence and interplay of both 177 

mechanisms in the perception of complex and dynamic patterns. 178 

 179 

2. Methods 180 

2.1.Participants 181 

Sixteen individuals participated in the experiment. This sample size was determined before 182 

starting the data collection by using G*Power (Faul et al., 2007, 2009; Mayr et al., 2007) to 183 

attain a power greater than 0.9 with an effect size of 0.25. All individuals had normal vision 184 

or normal vision with correction. The experiment involved binocular viewing of the stimuli. 185 

Each participant attended four sessions on four distinct days: one session with circular GPs, 186 

one with radial GPs, one with clockwise spiral GPs, and one with counterclockwise spiral 187 

GPs. Nine females and seven males with a mean age of 22.44 years (SD: 2.65 yrs.) 188 

constituted the sample. One of the authors (MR) performed the experiment, while the 189 

remaining participants were naïve. Prior to their participation in the experiment, participants 190 

were provided with a comprehensive overview of the study to obtain their written consent. 191 

The experiment was conducted in accordance with the Declaration of Helsinki of the World 192 

Medical Association (World Medical Association, 2013). The project has been approved by 193 

the Ethics Committee for Psychological Research at the University of Padova (protocol 194 

number: 4466). 195 

 196 

2.2.Apparatus 197 

A 20-inch HP p1230 monitor with a spatial resolution of 1024 x 768 pixels and a 198 

refresh rate of 60 Hz was used to display the stimuli. Each pixel subtended 2.13 arcmin. All 199 
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the participants sat in a dimly lit room, with their eyes 57 cm away from the screen. Matlab 200 

Psychtoolbox-3 (http://psychtoolbox.org/) was used to present the stimuli (Brainard, 1997, 201 

Kleiner et al., 2007, Pelli & Vision, 1997). 202 

 203 

2.3.Stimuli 204 

Circular, radial, clockwise spiral, and counterclockwise spiral GPs were utilized in the 205 

experiment as visual stimuli (see Fig. 1). All GPs were generated as ensembles of 2146 white 206 

dipoles (Michelson contrast: 0.99, density: 6%) on a black background (Donato et al., 2021; 207 

Nankoo et al., 2015). Each dot had a diameter of 0.04 deg and a distance between them of 208 

0.25 deg. GPs were displayed in a circular window surrounded by an annulus with a 209 

maximum radius of 5.35 deg (diameter: 10.7 deg). Static GPs consisted of a single unique 210 

frame. Instead, dynamic GPs comprised two or more unique frames displayed in rapid 211 

succession (each frame had a duration of 0.0167-s). Stimuli were presented for 0.2-s. Table 1 212 

reports the sequence and number of unique frames constituting the static and dynamic GPs 213 

that were presented, together with the relative pattern update rate (Donato et al., 2021; 214 

Nankoo et al., 2015). It should be noted that since under condition 1 the same 12 unique 215 

frames are presented for 0.2-s, the resulting update rate is 5Hz and thus the GPs are perceived 216 

as static. At the center of the circular aperture, a gray fixation point with a diameter of 0.3 217 

degrees was constantly present. 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 

 230 

 231 
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Condition Sequence of Unique 

Frames 

Number of Unique 

Frames 

Pattern Update 

Rate (Hz) 

1 AAAAAAAAAAAA 1 5 

2 ABCDEFGHIJKL 12 60 

3 AAAAAABBBBBB 2 10 

4 AAABBBAAABBB 2 20 

5 ABABABABABAB 2 60 

6 AAABBBCCCDDD 4 20 

7 ABCDABCDABCD 4 60 

8 AABBCCDDEEFF 6 30 

9 ABCDEFABCDEF 6 60 

 232 
Table 1. Temporal conditions used in the experiment. The pattern update rate (Hz) is 233 

provided together with the sequence and the number of unique frames. The arrangements of 234 

the unique frames are denoted by the letters in the second column (each letter stands for a 235 

unique frame). This grouping of unique frames and pattern update rate were the same as in 236 

Donato et al. (2021) and Nankoo et al. (2015). 237 

 238 
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 239 

Figure 1. Representation of the stimuli (a) and procedure (b) used in the experiment. For 240 

illustration purposes, these GPs examples do not contain all the 2146 dipoles. Panel (a) shows 241 

the different GP types used; from left to right: radial, circular, spiral clockwise, and spiral 242 

counterclockwise. In panel (b) the most coherent (circular) pattern is displayed in the first 243 

temporal interval, whereas in the second interval a noise GP is displayed. The temporal 244 

interval of the coherent GP was randomized across trials. The panel only shows a circular 245 

GP, but in the experiment radial and spiral patterns were also used. 246 

 247 

3. Procedure 248 

Four two-hour sessions were completed by participants over four days. The four 249 

sessions adopted the same procedure but employed different types of complex dynamic GPs 250 

(i.e., either circular, radial, or spiral - clockwise and counterclockwise). The order of the four 251 

sessions was randomized across participants. At the start of each session, each participant 252 
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received instructions on the type of GP displayed and completed 30 trials to become familiar 253 

with the stimulus and task. Each trial consisted of a fixation point of 1-s, two temporal 254 

intervals of 0.2-s each, and a blank interval of 0.5-s. One of the two intervals always 255 

contained a coherent GP and the other interval a noise GP (Figure 1b). The presentation order 256 

of the two intervals was randomized across trials. Observers performed a two-interval forced-257 

choice task (2IFC) in which they had to report whether the coherent GP was displayed in the 258 

first interval by pressing the key “A” on a standard Italian computer keyboard or in the 259 

second interval by pressing the key “L”. An Updated Maximum-Likelihood (UML) staircase 260 

procedure with a 1 up – 3 down rule was used for estimating participants’ parameters of the 261 

psychometric function (Shen & Richards, 2012; Shen, Dai, & Richards, 2014). Each staircase 262 

terminated after 150 trials. For each participant, the coherence threshold was calculated from 263 

the best parameters of the Cumulative Gaussian estimated with the UML procedure, finding 264 

the coherence corresponding to the 79% correct performance from the psychometric function. 265 

The order of the nine temporal conditions (Table 1) was randomized among the participants 266 

and throughout the sessions. 267 

 268 

4. Results 269 

Figure 2 shows the discrimination thresholds as a function of number of unique frames 270 

and pattern update rate, separately for each pattern type.  271 
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 272 

Figure 2. Individual discrimination threshold as a function of the number of unique frames 273 

for each pattern update rate. The number of unique frames is represented on the horizontal 274 

axis. The points with different colors represent the five different pattern update rates. The red 275 

squares represent the means with standard errors. 276 

 277 

We first evaluated the shape of the distribution of the individual thresholds for each 278 

combination of pattern type and number of unique frames. No major deviations from 279 

normality were detected, as the Shapiro-Wilk test showed no statistically significant p-values 280 

for 16 out 20 combinations (a skewness coefficient >1 emerged for only two combinations). 281 

The visual examination of Figure 2 indicates a potential association between the 282 

number of unique frames and/or the pattern update rate, and the discrimination threshold, 283 

which may be suitably modeled by a negative exponent power function. This conjecture was 284 

substantiated through quantitative analysis, to be expounded later in this subsection. 285 

Consequently, to have linear distributions, we implemented a logarithmic transformation on 286 

the discrimination thresholds, unique frame count, and pattern update rate. 287 



12 
 

 

The initial phase of the analysis examined the impact of the number of unique frames 288 

and the pattern update rate on discrimination thresholds, assessing their combined influence. 289 

As depicted in Figure 2 and corroborated by forthcoming statistical analyses, the effects of 290 

these two variables exhibited consistency across various GP types. Consequently, an initial 291 

assessment of their influence on discrimination thresholds could be conducted independently 292 

of the pattern type factor. The subsequent phase of the analysis was dedicated to investigating 293 

the influence of pattern types (i.e., circular, radial, clockwise spiral, counterclockwise spiral) 294 

on discrimination thresholds. 295 

The lme4 package (Bates et al., 2015) was employed to fit linear mixed-effects 296 

models to the dataset. The log-likelihood ratio test was conducted using the anova() function 297 

from the lmerTest package (Kuznetsova et al., 2017). A univariate model with the number of 298 

unique frames as the fixed effect and the by-subject intercept as the random effect 299 

demonstrated a significantly superior fit to the data compared to a null model comprising 300 

solely the by-subject random intercept (χ2(1) = 125.5, p < .001). Incorporating the update rate 301 

as a second predictor into the model did not yield a statistically significant enhancement in 302 

model performance (χ2(1) = 1.66, p = .197). In contrast, augmenting the model initially 303 

featuring only the update rate with the number of unique frames as a second predictor 304 

significantly improved its performance (χ2(1) = 52.55, p < .001). Lastly, adding the 305 

interaction term between the number of unique frames and the update rate to the model 306 

initially featuring only the number of unique frames did not improve the model performance 307 

in a statistically significant manner (χ2(2) = 1.84, p = .398). These findings suggest that the 308 

discrimination threshold was influenced by the number of unique frames, while the pattern 309 

update rate showed no discernible impact. 310 

 The null model, along with the two single-predictor models, the additive model, and 311 

the interaction model, underwent comparison employing several fit indices, which were 312 

computed utilizing the compare_performance() function within the easystats package 313 

(Lüdecke et al., 2021, 2022). The relevant data can be found in Table 2. Regarding the AIC 314 

index, the results suggest a modest preference for the model with the number of unique 315 

frames as the sole predictor over the model with two predictors. A distinct advantage for the 316 

former model became evident in the comparison based on the BIC index. 317 

 318 

 319 
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Model 
AIC 

(weights) 

 
AICc 

(weights) 

BIC 
(weights) 

R2 
(conditional) 

ICC 
 

RMSE 
 

Sigma 

Null 
-462.328 (< 

.001) 
-462.286 (< 
.001) 

-449.26 (< 
.001) 

.194 .194 
 

.154 
 

.156 

Update rate  
-534.983 (< 

.001) 
-534.912 (< 

.001) 
-517.558 (< 

.001) 
.295 .218 

.144 .146 

N. unique 
frames  

-585.868 
(.542) 

-585.798 
(.463) 

-568.444 
(.913) 

.356 .236 
.137 .139 

N. unique 
frames + 

Update rate 

-585.532 
(.458) 

-585.426 
(.385) 

-563.751 
(.087) 

.357 .236 
 

.137 
 

.139 

N. unique 
frames x 

Update rate 

 
-583.712 

(.187) 

 
-583.564 

(.152) 
-557.575 .357 .236 

 
.137 

 
.139 

 320 

Table 2.  This table presents a comparative analysis of fit indices for various statistical 321 

models, including the null model, two single-predictor models, and the additive model. Each 322 

model had a by-subject intercept as a random effect. 323 

 324 

 Following the determination that the discrimination threshold was impacted by the 325 

number of unique frames and not by the update rate, our focus shifted to examining the 326 

potential effects of the pattern type. We constructed a linear mixed-effects model for the data, 327 

incorporating the number of unique frames and the pattern type as fixed effects, with the 328 

inclusion of the by-subject intercept as a random effect. The number of frames was treated as 329 

a quantitative predictor, while the pattern type was considered a categorical predictor. This 330 

model exhibited a significantly better fit to the data when compared to the model featuring 331 

only the number of unique frames as a single predictor (χ2(3) = 375.24, p < .001). This 332 

finding implies a substantial influence of the pattern type on the discrimination threshold. 333 

 Introducing the interaction between these two predictors did not yield a significant 334 

enhancement in model performance (χ2(3) = 1.75, p = .626), indicating that the impact of the 335 

number of unique frames on the discrimination threshold remained consistent across all four 336 

pattern types. Table 3 presents the fit indices for the three models, confirming that the 337 

additive model achieved optimal performance. It is important to note that in this context we 338 

did not consider the update rate, based on the outcomes of the initial phase of the analyses. 339 

 340 
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Model 
AIC 

(weights) 

AICc 
(weights) BIC (weights) 

R2 
(condition

al) 
ICC 

 
RMSE 

 
Sigma 

N. unique 
frames 

-585.868 
(<.001) 

-585.798 
(<.001) 

-568.444 
(<.001) 

.356 .236 
.137 .139 

N. unique 
frames + 
Pattern 

type 

 
-955.106 

(.893) 
 

 
-954.908 

(.902) 
-924.613 

(.999) 
.669 .385 

 
.098 

 
.1002 

N. unique 
frames x 
Pattern 

type 

-950.861 
(.107) 

 
-950.471 

(.098) 
-907.3 (<.001) .669 .384 

 
.098 

 
.1004 

 341 

Table 3. Comparison of fit indices for three models of discrimination threshold. Model 1 342 

includes only the number of unique frames as a predictor, Model 2 incorporates both the 343 

number of unique frames and pattern type as predictors, treating pattern type as categorical, 344 

and Model 3 is an interaction model combining both predictors. Each model had a by-subject 345 

intercept as a random effect. 346 

 347 

 Graphical assessments were conducted using the check_model() function within the 348 

easystats package (Lüdecke et al., 2021, 2022) to scrutinize the assumptions of the additive 349 

model. Noteworthy deviations from these assumptions were not observed. The data exhibited 350 

a tendency towards linear distribution, the residuals did not significantly deviate from 351 

normality (p = .291), no outliers were identified (Cook’s distance < 0.7), and the random 352 

effects followed a normal distribution. However, a minor violation of the assumption of 353 

homoscedasticity of the residuals was detected (p < .001), primarily attributable to reduced 354 

variability in the thresholds for extreme values. 355 

 Utilizing the estimate_contrast() function within the easystats package (Lüdecke et 356 

al., 2021, 2022), we conducted post hoc t-tests, adjusted for Bonferroni correction, to 357 

compare the mean thresholds across the four pattern types. All comparisons yielded 358 

statistically significant results (ts > 4.01, ps < .001), except for the comparison between 359 

clockwise spiral and counterclockwise spiral patterns (t(553.01) = 0.78, p ≈ 1). The circular 360 

pattern exhibited the lowest discrimination threshold, followed by the radial pattern, with the 361 

two spiral patterns demonstrating higher thresholds (see Figure 2). Additionally, post hoc t-362 

tests were carried out to compare the mean thresholds among the five levels of the number of 363 
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unique frames. All these comparisons reached statistical significance (ts > 4.0, ps < .004), 364 

except for the comparison between six and twelve frames (t(553) = 1.45, p ≈ 1). As illustrated 365 

in Figure 2, the threshold displayed a consistent decrease with increasing the number of 366 

unique frames. 367 

 368 

Four distinct power functions were deduced based on the parameters of the additive model: 369 

 370 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑝𝑎𝑡𝑡𝑒𝑟𝑛: 𝑦 = 29.61𝑥 −0.6 371 𝑅𝑎𝑑𝑖𝑎𝑙 𝑝𝑎𝑡𝑡𝑒𝑟𝑛: 𝑦 = 30.2𝑥 −0.6 372 𝐶𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛: 𝑦 = 44.67𝑥 −0.6 373 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛: 𝑦 = 43.65𝑥 −0.6  374 
 375 

where y is the discrimination threshold expressed as percentage and x is the number of unique 376 

frames. It is worth noting that the exponent remains constant throughout the four equations, 377 

which reflects the lack of interaction between the number of unique frames and the pattern 378 

type (i.e., the effect of the number of unique frames on the threshold remains consistent 379 

across the four pattern types). The effects of the pattern type are reflected in the varying 380 

parameter a in each equation. 381 

 Lastly, we conducted a comparison of three distinct models: the power function 382 

model (y=ax-b), the exponential function model (y = abx), and the simple linear model (y = 383 

ax+b). Each model incorporated the pattern type and the number of unique frames as fixed 384 

effects, alongside the by-subject intercept as a random effect. In the power function model, 385 

both the threshold and the number of frames underwent log-transformation. In the 386 

exponential function model, solely the threshold underwent log-transformation, while no 387 

transformations were applied in the linear model. These non-nested models were compared 388 

solely through the fit indices presented in Table 4. The provided indices unequivocally 389 

support the power function model. 390 

 391 

 392 

 393 

 394 

 395 



16 
 

 

Model 
AIC (weights) BIC (weights) R2 (conditional) ICC 

Power -955.1 (>.999) -924.6 (>.999) .669 .385 

Exponential -893.4 (<.001) -862.9 (<.001) .631 .358 

Additive 3942.3 (<.001) 3972.8 (< .001) .304 .304 

Table 4. Comparative indices of fit for three non-nested models. This table presents a 396 

comparison of three distinct models: the power function model, the exponential function 397 

model, and the simple linear model. Each model incorporates the pattern type and the number 398 

of unique frames as fixed effects, alongside the by-subject intercept as a random effect. 399 

 400 

Finally, it is noteworthy to mention that the same analyses performed on the thresholds 401 

were also conducted on Beta values. The results supported the null model, indicating that 402 

neither the number of unique frames nor the update rate influenced the Beta. The type of 403 

pattern appeared to have an influence, albeit weak, on the Beta values. Specifically, upon 404 

examining the confidence intervals, it was observed that circular GPs had the highest Beta 405 

values, suggesting that participants were more sensitive or better at discriminating circular 406 

GPs. In contrast, counterclockwise spiral GPs, and especially clockwise spiral GPs, exhibited 407 

the lowest Beta values. Radial GPs had Beta values lower than circular GPs and higher than 408 

counterclockwise and clockwise spiral GPs. Subsequent post hoc comparisons showed that 409 

the only statistically significant difference was between circular GPs and clockwise spiral 410 

GPs. Due to the strong negative skewness in the Beta values distributions, an additional 411 

analysis was performed on the inverse-log transformed Beta values. The results were 412 

substantially equivalent to those of the analysis performed on untransformed values, 413 

confirming the overall reliability and robustness of the main findings. 414 

 415 

5. Discussion 416 

In the last decades, dynamic GPs have been largely used to provide evidence in support of 417 

the interaction between the ventral and the dorsal streams in the visual system (for a review, 418 

see Donato et al., 2020). Simple and complex global configurations in GPs can be easily 419 

detected when dipoles are coherently displayed. Global perception in static and dynamic GPs 420 

depends dramatically on integration mechanisms that combine local features (i.e., dipoles 421 
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orientation) into a global percept (Day & Palomares, 2014; Prazdny, 1986). Previous studies 422 

showed that the perception of dynamic GPs is significantly affected by specific spatial and 423 

temporal characteristics such as inter-dipoles distance (or dipoles density), luminance 424 

contrast, pattern update rate, etc. (Day & Palomares, 2014; Donato et al., 2021; Lin et al., 425 

2017; Nankoo et al., 2015; Palomares et al., 2010; Pradzny, 1984; Wilson et al., 2004). Even 426 

though some studies explored how spatial and temporal cues influence dynamic GPs 427 

perception, the mechanisms of temporal and spatial summation across multiple frames in 428 

complex dynamic GPs have not been fully examined. In the current study, we addressed this 429 

question by investigating the role of the pattern update rate and the number of unique frames 430 

in the perception of complex GPs, respectively circular, radial, spiral clockwise, and spiral 431 

counterclockwise. We found that circular GPs have lower discrimination thresholds 432 

compared to the other complex configurations tested, specifically radial, spiral clockwise, and 433 

counterclockwise. Conversely, spiral GPs, either clockwise or counterclockwise, were the 434 

most difficult to perceive, showing the highest discrimination thresholds, a result in line with 435 

previous studies (Nankoo et al., 2012; Seu and Ferrera, 2001; Schmidtmann et al., 2015). For 436 

example, Seu and Ferrera (2001) tested participants’ detection thresholds over three types of 437 

complex GPs – i.e., circular, radial, and spiral. Participants were asked to indicate which of 438 

the two intervals presented on the screen contained the coherent GP (signal range 0-50%) 439 

while the other interval contained a random/noise GP (signal range 0%). The authors found 440 

that spiral GPs have the highest detection thresholds compared to circular and radial GPs, 441 

meaning that this was the most difficult configuration to detect. This result can be explained 442 

through the hypothesis of symmetry (Mach, 1914) according to which radial and circular GPs 443 

are characterized by infinite symmetry axes, yet the same does not apply to spiral GPs. Lines 444 

of symmetry can be positively correlated with better sensitivity for radial and circular 445 

configurations (Seu and Ferrera, 2001). Another study by Kelly et al. (2001) compared the 446 

detection threshold of circular, radial, and translational GPs in human participants and 447 

pigeons. In both humans and pigeons, the detection thresholds degraded when noise (i.e., 448 

random dipoles) increased. However, pigeons showed the same detection thresholds trend 449 

among the three configurations, whereas humans showed the highest thresholds (i.e., the 450 

worst performance) in detecting translational GPs - this pointed to a different form processing 451 

between humans and pigeons.  452 

Interestingly, a similar pattern of results is shown by another class of visual stimuli called 453 

random dot kinematograms (RDKs) (Morrone et al., 1999). RDKs are made of single dots 454 
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that, differently from GPs, follow a precise trajectory throughout the frames. Morrone et al. 455 

(1999) measured the detection thresholds for spiral RDKs and circular RDKs that induced a 456 

percept of expansion or contraction. They found that spiral RDKs were the most difficult 457 

pattern to detect. This evidence leads to thinking that RDKs and GPs might share an 458 

overlapping neural network that processes similarly complex configurations.   459 

Moreover, our results confirmed previous evidence indicating that static GPs are more 460 

difficult to discriminate than dynamic GPs regardless of the temporal condition, even in the 461 

case of complex configurations (Burr & Ross, 2006; Donato et al., 2020, 2021; Joshi et al., 462 

2020; Joshi et al., 2021; Nankoo et al., 2012, 2015; Pavan et al., 2017, 2021; Van Grootel et 463 

al., 2017). Our investigation aligns with the observations made by Nankoo et al. (2015) 464 

regarding translational GPs. Their study reveals a consistent pattern, where the condition 465 

involving two unique frames emerges as the most problematic. Parallel to their observations, 466 

our data also indicates that increasing the update rate beyond 20 Hz does not yield benefits, 467 

with the 60 Hz rate exhibiting poorer performance compared to lower rates. This trend is 468 

specific to the configuration with two unique frames, as opposed to configurations with four, 469 

six, and twelve unique frames, which still demonstrate advantages with higher update rates. 470 

Remarkably, the GPs with a 60 Hz update rate were the least effective for the condition with 471 

two unique frames, extending beyond the translational GPs explored by Nankoo et al. (2015) 472 

and encompassing all four GP types examined in our study. Additionally, we previously 473 

conducted a study (Pavan et al., 2021) to psychophysically investigate the level at which 474 

global orientation is extracted from translational GPs using the tilt after-effect (TAE) and 475 

manipulating the spatiotemporal properties of the adapting pattern. The TAE is a visual 476 

phenomenon where prolonged exposure to a pattern or stimulus tilted in a particular direction 477 

leads to a perceptual distortion in the opposite direction when subsequently viewing a neutral 478 

pattern. Essentially, it causes an optical illusion of tilt in the opposite direction from the 479 

original stimulus. In that study, we found that the TAE peaked at a temporal frequency of 480 ∼30 Hz, suggesting that orientation-selective units responding to translational GPs are 481 

sensitive to high temporal frequencies. Moreover, the TAE from translational GPs peaked at 482 

lower spatial frequencies than the dipoles’ spatial constant. These effects are consistent with 483 

form-motion integration at low and intermediate levels of visual processing.  484 

We also found a significant influence of the number of unique frames (i.e., spatial 485 

information) on the perception of complex GPs suggesting that spatial summation of form 486 

signals shapes the perception of dynamic complex GPs regardless of the patterns’ 487 
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configuration and the frequency of presentation of the frame sequence. Spatial summation is 488 

the ability of the visual system to integrate different visuospatial information that, in our case, 489 

comes from the number of different dipoles presented across the sequence of unique frames 490 

composing the GP. Previous studies explored spatial summation manipulating the size of the 491 

signal area instead of the number of frames forming the stimulus and demonstrated that 492 

circular GPs show a stronger spatial summation compared to translational GPs (Wilson et al 493 

1997; Wilson & Wilkinson, 1998). Wilson and Wilkinson (1998) aimed to study global form 494 

processing and spatial summation in translational, circular, radial, and hyperbolic GPs. GPs 495 

were split into eight pie-shaped segments alternating either random dipoles or coherently 496 

oriented dipoles with a small number of random dipoles. Separately, they also used a GP 497 

divided into an outer annulus with noise dipoles and an inner annulus with signal dipoles to 498 

estimate the pooling mechanisms by varying the radius at which the shift between noise and 499 

coherent dipoles occurred. Participants were asked to perform a two-interval forced-choice 500 

task in which they had to indicate whether the coherent GP was contained in the first or in the 501 

second interval – the remaining interval contained the noise GP with random dipoles 502 

orientation. In this study, Wilson & Wilkinson (1998) hypothesized that form processing is 503 

the result of an articulated process of coding, filtering, and linear summation that involves the 504 

various visual areas hierarchically. According to this model, there are three main levels 505 

according to which orientation signal is processed: a first level of coding and filtering of 506 

individual orientation signals, a second level of noise filtration and correction of the 507 

processed signal, and finally a third level of integration and spatial summation of the signals 508 

coded and selected in the previous steps. These three levels of processing take place 509 

respectively in V1, V2, and finally V4 - a system of increasing specialization as proposed by 510 

Ostwald and colleagues (2008). 511 

However, Schmidtmann et al. (2015) pointed out that spatial summation in circular GPs is 512 

not additive (of which linear summation is a special case) but probabilistic. Their general aim 513 

was to investigate the summation mechanisms for different oriented textures including 514 

circular, radial, spiral, and translational GPs. They tested whether oriented textures are 515 

processed according to probability summation (PS) or additive summation (AS) (Kurki et al., 516 

2003; Wilson et al., 1997; Wilson & Wilkinson, 1998). The main assumption of AS is that 517 

various stimulus features add together in a unified mechanism (Kingdom et al., 2015; 518 

Kingdom & Prins, 2016). In the case of linear summation, it predicts that the features of a 519 

stimulus are linearly combined (Kingdom & Prins, 2016). On the other hand, PS assumes that 520 
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the different channels or mechanisms responsible for detecting stimuli operate independently 521 

of each other. In other words, the response of one channel does not affect the response of 522 

another. According to this model, the increased probability of detecting a stimulus in the 523 

presence of multiple stimuli is due to the greater likelihood that at least one of the stimuli will 524 

either exceed the threshold or produce the strongest signal, thus enhancing the overall 525 

detection performance (Kingdom et al., 2015; Kingdom & Prins, 2016). PS, however, has not 526 

been fully tested to explain spatial summation. AS and PS have been treated in the context of 527 

two broad theories, the Signal Detection Theory (SDT) and High-Threshold Theory (HTT). 528 

HTT was described by Quick (1974) to analyze how we detect specific signals. It assumes the 529 

existence of a fixed and notably high detection threshold, rendering stimuli below this 530 

threshold invisible (Kingdom & Prins, 2016). Differently, according to the SDT there is not a 531 

fixed threshold value that influences the detection process; however, it proposes that 532 

perceptual decisions rely on an internal representation that follows a sampling distribution 533 

with specific mean and variance. These two features play a crucial role in determining how 534 

easily we can differentiate one stimulus from others (Kingdom & Prins, 2016). Schmidtmann 535 

et al. (2015) measured the signal-to-noise ratio needed for detection while varying the size of 536 

the signal area, with the remaining area containing noise (i.e., random dipoles/Gabors 537 

orientations). The task was to determine which of the two successively presented stimulus 538 

arrays contained the target texture using the method of constant stimuli. One of the stimuli 539 

consisted of noise only, whereas the other contained a variable fraction of coherent 540 

orientation. The authors found that the degree of summation was not additive or linear and 541 

GPs detection sensitivity was not linked to the configuration used. Therefore, their study did 542 

not support the hypothesis of specialized detectors for circular configurations and showed 543 

that probability summation explains the mechanisms underlying circular, radial, spiral, and 544 

translational GPs detection. This topic continues to be a matter of debate due to a recent 545 

investigation conducted by Green and colleagues in 2018, which examined radial frequency 546 

patterns and indicated that the most accurate description for global shape processing is the 547 

AS. Therefore, the mechanisms of integration of local form cues into a global coherent 548 

percept remains a topic of ongoing investigation with no definitive consensus regarding the 549 

existence of dedicated global form detectors. However, it is important to note that the primary 550 

focus of the present study differs from investigating summation types (i.e., additive, or 551 

probabilistic). 552 
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 In conclusion, our study sheds light on several aspects of complex GPs processing - first 553 

and foremost, our findings support the notion that circular configurations in GPs are 554 

inherently easier to perceive than spiral and radial, and that dynamic GPs are easier to 555 

discriminate than static GPs. Interestingly, our study suggests that the pattern update rate may 556 

not play a pivotal role in the perception of complex GPs. Finally, our findings not only 557 

contribute to our understanding of complex GP perception but also underscore the necessity 558 

for continued investigation in this field. Exploring new insights into spatial and temporal 559 

processing in GPs and testing additional combinations and interactions between pattern 560 

update rates and unique frames is essential to provide a more nuanced understanding of their 561 

potential effects. 562 

  563 

6. Conclusions 564 

In conclusion, our findings demonstrate that form information given by dipoles’ 565 

orientation in complex GPs is summed throughout the frames and this helps the human visual 566 

system to discriminate coherent and complex GPs from noise GPs. However, the rate at 567 

which this process occurs does not seem to play a crucial role in discriminating complex 568 

global configurations in GPs. Lastly, our study confirms that dynamic GPs are easier to detect 569 

than static GPs and circular GPs are the easiest to detect compared to spiral and radial GPs.  570 
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Appendix 974 

In our implementation of the UML procedure, the Cumulative Gaussian was selected 975 

as psychometric function (Donato et al., 2021): 976 
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 979 

where α is the center of the psychometric function, β is associated with the slope, γ is the 980 

proportion correct for chance performance (i.e., 0.5), which set the lower bound of the 981 

psychometric function, and λ is the difference between the upper asymptote of the function 982 

and one, indicating the lapses rate.  983 

The initial signal strength, i.e., number of coherently oriented dipoles, was set at 2000 984 

dipoles, with limits in the interval [100 2000]. The range of the parameter α was in the 985 

interval [200 1900], with a prior uniform distribution. The range of the parameter β was in the 986 

interval [0.05 20] with a prior uniform distribution, and the range of the parameter λ was in 987 

the interval [0 0.1], again with a prior uniform distribution. 988 

For each participant, the coherence threshold was calculated from the best parameters 989 

of the Cumulative Gaussian estimated with the UML procedure, finding the coherence 990 

corresponding to the 79% correct performance from the psychometric function. 991 
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