Data-intensive applications involving irregular memory streams are inefficiently handled by modern processors and memory systems highly optimized for regular, contiguous data. Recent work tackles these inefficiencies in hardware through core-side stream extensions or memory-side prefetchers and accelerators, but fails to provide end-to-end solutions which also achieve high efficiency in on-chip interconnects. We propose AXI-Pack, an extension to ARM's AXI4 protocol introducing bandwidth-efficient strided and indirect bursts to enable end-to-end irregular streams. AXI-Pack adds irregular stream semantics to memory requests and avoids inefficient narrow-bus transfers by packing multiple narrow data elements onto a wide bus. It retains full compatibility with AXI4 and does not require modifications to non-burst-reshaping interconnect IPs. To demonstrate our approach end-to-end, we extend an open-source RISC-V vector processor to leverage AXI-Pack at its memory interface for strided and indexed accesses. On the memory side, we design a banked memory controller efficiently handling AXI-Pack requests. On a system with a 256-bit-wide interconnect running FP32 workloads, AXI-Pack achieves near-ideal peak on-chip bus utilizations of 87% and 39%, speedups of 5.4x and 2.4x, and energy efficiency improvements of 5.3x and 2.1x over a baseline using an AXI4 bus on strided and indirect benchmarks, respectively.

AXI-Pack: Near-Memory Bus Packing for Bandwidth-Efficient Irregular Workloads

Benini, Luca
2023

Abstract

Data-intensive applications involving irregular memory streams are inefficiently handled by modern processors and memory systems highly optimized for regular, contiguous data. Recent work tackles these inefficiencies in hardware through core-side stream extensions or memory-side prefetchers and accelerators, but fails to provide end-to-end solutions which also achieve high efficiency in on-chip interconnects. We propose AXI-Pack, an extension to ARM's AXI4 protocol introducing bandwidth-efficient strided and indirect bursts to enable end-to-end irregular streams. AXI-Pack adds irregular stream semantics to memory requests and avoids inefficient narrow-bus transfers by packing multiple narrow data elements onto a wide bus. It retains full compatibility with AXI4 and does not require modifications to non-burst-reshaping interconnect IPs. To demonstrate our approach end-to-end, we extend an open-source RISC-V vector processor to leverage AXI-Pack at its memory interface for strided and indexed accesses. On the memory side, we design a banked memory controller efficiently handling AXI-Pack requests. On a system with a 256-bit-wide interconnect running FP32 workloads, AXI-Pack achieves near-ideal peak on-chip bus utilizations of 87% and 39%, speedups of 5.4x and 2.4x, and energy efficiency improvements of 5.3x and 2.1x over a baseline using an AXI4 bus on strided and indirect benchmarks, respectively.
2023
2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)
.
.
Zhang, Chi; Scheffler, Paul; Benz, Thomas; Perotti, Matteo; Benini, Luca
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/958546
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact