This paper presents a tactile synthesis method to provide roughness and texture coarseness sensations using a selective stimulation approach implemented by a tactile display. Digitizing, elaborating and processing real material surfaces obtain signals. The selection of their frequency range is based on the reactive frequencies of SAI and FAI types receptors. An electro-tactile display provided with a mechanical vibration to stimulate FAII units located at the deeper skin layers has been developed. A SW tool allows to manage selective signals modulation and configuration according to the displayed material. The research aims at overcoming a crucial problem concerning the signals adopted by most electro-tactile displays to stimulate skin mechanoreceptors. The paper focuses on the description of the adopted method and of the implemented software tool to control the tactile display. Preliminary experimentations were carried out to measure the system’s latency, accuracy and reliability. Experimental sessions show a promising system response: minimal latency (30ms), good reliability (>98%) and acceptable accuracy (>70%).

Germani M., Mengoni M., Morichetti P., PERUZZINI, M. (2012). A method for roughness and texture simulation via tactile display. THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA : AMER SOC MECHANICAL ENGINEERS [10.1115/DETC2011-48880].

A method for roughness and texture simulation via tactile display

PERUZZINI, MARGHERITA
2012

Abstract

This paper presents a tactile synthesis method to provide roughness and texture coarseness sensations using a selective stimulation approach implemented by a tactile display. Digitizing, elaborating and processing real material surfaces obtain signals. The selection of their frequency range is based on the reactive frequencies of SAI and FAI types receptors. An electro-tactile display provided with a mechanical vibration to stimulate FAII units located at the deeper skin layers has been developed. A SW tool allows to manage selective signals modulation and configuration according to the displayed material. The research aims at overcoming a crucial problem concerning the signals adopted by most electro-tactile displays to stimulate skin mechanoreceptors. The paper focuses on the description of the adopted method and of the implemented software tool to control the tactile display. Preliminary experimentations were carried out to measure the system’s latency, accuracy and reliability. Experimental sessions show a promising system response: minimal latency (30ms), good reliability (>98%) and acceptable accuracy (>70%).
2012
Proc. of the 7th International ASME/IEEE Conference on Mechatronics & Embedded Systems & Applications
535
544
Germani M., Mengoni M., Morichetti P., PERUZZINI, M. (2012). A method for roughness and texture simulation via tactile display. THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA : AMER SOC MECHANICAL ENGINEERS [10.1115/DETC2011-48880].
Germani M.; Mengoni M.; Morichetti P.; PERUZZINI, MARGHERITA
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/958513
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact