The paper concerns the design of nonparametric low-pass filters that have the property of reproducing a polynomial of a given degree. Two approaches are considered. The first is locally weighted polynomial regression (LWPR), which leads to linear filters depending on three parameters: the bandwidth, the order of the fitting polynomial, and the kernel. We find a remarkable linear (hyperbolic) relationship between the cut-off period (frequency) and the bandwidth, conditional on the choices of the order and the kernel, upon which we build the design of a low-pass filter. The second hinges on a generalization of the maximum concentration approach, leading to filters related to discrete prolate spheroidal sequences (DPSS). In particular, we propose a new class of low-pass filters that maximize the concentration over a specified frequency range, subject to polynomial reproducing constraints. The design of generalized DPSS filters depends on three parameters: the bandwidth, the polynomial order, and the concentration frequency. We discuss the properties of the corresponding filters in relation to the LWPR filters, and illustrate their use for the design of low-pass filters by investigating how the three parameters are related to the cut-off frequency. © 2010 Elsevier B.V. All rights reserved
Proietti T., Luati A. (2011). Low-pass filter design using locally weighted polynomial regression and discrete prolate spheroidal sequences. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 141(2), 831-845 [10.1016/j.jspi.2010.08.006].
Low-pass filter design using locally weighted polynomial regression and discrete prolate spheroidal sequences
LUATI, ALESSANDRA
2011
Abstract
The paper concerns the design of nonparametric low-pass filters that have the property of reproducing a polynomial of a given degree. Two approaches are considered. The first is locally weighted polynomial regression (LWPR), which leads to linear filters depending on three parameters: the bandwidth, the order of the fitting polynomial, and the kernel. We find a remarkable linear (hyperbolic) relationship between the cut-off period (frequency) and the bandwidth, conditional on the choices of the order and the kernel, upon which we build the design of a low-pass filter. The second hinges on a generalization of the maximum concentration approach, leading to filters related to discrete prolate spheroidal sequences (DPSS). In particular, we propose a new class of low-pass filters that maximize the concentration over a specified frequency range, subject to polynomial reproducing constraints. The design of generalized DPSS filters depends on three parameters: the bandwidth, the polynomial order, and the concentration frequency. We discuss the properties of the corresponding filters in relation to the LWPR filters, and illustrate their use for the design of low-pass filters by investigating how the three parameters are related to the cut-off frequency. © 2010 Elsevier B.V. All rights reservedI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.