In the present note we establish an almost-optimal solvability result for Kirchhoff-type problems of the following form{--M (||Delta u||L2(Omega)) = u= fz(x,u) in f(x, u) in Omega,u >=, L2(omega) u > 0, in Omega u = 0 on partial derivative Omega.partial differential n. where f has sublinear growth and M is a non-decreasing map with M(0) >= 0. Our approach is purely variational, and the result we obtain is resemblant to the one established by Brezis and Oswald (Nonlinear Anal., 1986) for sublinear elliptic equations.

Biagi, S., Vecchi, E. (2024). ON A BREZIS-OSWALD-TYPE RESULT FOR DEGENERATE KIRCHHOFF PROBLEMS. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 44(3), 702-717 [10.3934/dcds.2023122].

ON A BREZIS-OSWALD-TYPE RESULT FOR DEGENERATE KIRCHHOFF PROBLEMS

Vecchi, E
2024

Abstract

In the present note we establish an almost-optimal solvability result for Kirchhoff-type problems of the following form{--M (||Delta u||L2(Omega)) = u= fz(x,u) in f(x, u) in Omega,u >=, L2(omega) u > 0, in Omega u = 0 on partial derivative Omega.partial differential n. where f has sublinear growth and M is a non-decreasing map with M(0) >= 0. Our approach is purely variational, and the result we obtain is resemblant to the one established by Brezis and Oswald (Nonlinear Anal., 1986) for sublinear elliptic equations.
2024
Biagi, S., Vecchi, E. (2024). ON A BREZIS-OSWALD-TYPE RESULT FOR DEGENERATE KIRCHHOFF PROBLEMS. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 44(3), 702-717 [10.3934/dcds.2023122].
Biagi, S; Vecchi, E
File in questo prodotto:
File Dimensione Formato  
Biagi_Vecchi_DCDS_Accepted_Manuscript.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 526.58 kB
Formato Adobe PDF
526.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/957231
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact