Improving the quality of heart-rate monitoring is the basis for a full-time assessment of people’s daily care. Recent state-of-the-art heart-rate monitoring algorithms exploit PPG and inertial data to efficiently estimate subjects’ beats-per-minute (BPM) directly on wearable devices. Despite the easy-recording of these signals (e.g., through commercial smartwatches), which makes this approach appealing, new challenges are arising. The first problem is fitting these algorithms into low-power memory-constrained MCUs. Further, the PPG signal usually has a low signal-to-noise ratio due to the presence of motion artifacts (MAs) arising from movements of subjects’ arms. In this work, we propose using synthetically generated data to improve the accuracy of PPG-based heart-rate tracking using deep neural networks without increasing the algorithm’s complexity. Using the TEMPONet network as baseline, we show that the HR tracking Mean Absolute Error (MAE) can be reduced from 5.28 to 4.86 BPM on PPGDalia dataset. Noteworthy, to do so, we only increase the training time, keeping the inference step unchanged. Consequently, the new and more accurate network can still fit the small memory of the GAP8 MCU, occupying 429 KB when quantized to 8bits.
Burrello, A., Pagliari, D.J., Bianco, M., Macii, E., Benini, L., Poncino, M., et al. (2022). Improving PPG-based Heart-Rate Monitoring with Synthetically Generated Data [10.1109/BioCAS54905.2022.9948584].
Improving PPG-based Heart-Rate Monitoring with Synthetically Generated Data
Burrello, Alessio;Benini, Luca;Benatti, Simone
2022
Abstract
Improving the quality of heart-rate monitoring is the basis for a full-time assessment of people’s daily care. Recent state-of-the-art heart-rate monitoring algorithms exploit PPG and inertial data to efficiently estimate subjects’ beats-per-minute (BPM) directly on wearable devices. Despite the easy-recording of these signals (e.g., through commercial smartwatches), which makes this approach appealing, new challenges are arising. The first problem is fitting these algorithms into low-power memory-constrained MCUs. Further, the PPG signal usually has a low signal-to-noise ratio due to the presence of motion artifacts (MAs) arising from movements of subjects’ arms. In this work, we propose using synthetically generated data to improve the accuracy of PPG-based heart-rate tracking using deep neural networks without increasing the algorithm’s complexity. Using the TEMPONet network as baseline, we show that the HR tracking Mean Absolute Error (MAE) can be reduced from 5.28 to 4.86 BPM on PPGDalia dataset. Noteworthy, to do so, we only increase the training time, keeping the inference step unchanged. Consequently, the new and more accurate network can still fit the small memory of the GAP8 MCU, occupying 429 KB when quantized to 8bits.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.