Nowadays, companies need to develop sustainable solutions to be competitive and to respect international standards. It means producing products compliant to target costs, impacts and risks, as well as exploiting sustainable processes. This is particularly challenging for those processes requiring a large consumption of energy, which have high environmental and economic impacts. In this paper the industrial process of plastic material extrusion is considered and analysed. Indeed, it is a highly energy-consuming process that requires monitoring the energy consumption and controlling the process parameters to increase the sustainability and assure the respect of standards. The research is based on lifecycle design (LCD) and sustainable manufacturing principles. The proposed method aims at improving the extrusion process sustainability by identifying the more energy-consuming phases and evaluating the impact of manufacturing process items on the achievement of target values. The industrial case study demonstrates how such a method supports sustainability optimisation and compliance to standards.
PERUZZINI, M., Luzi A, Marilungo E. (2014). Assessing sustainability and supporting compliance to standards in continuous industrial processes. INTERNATIONAL JOURNAL OF PRODUCT LIFECYCLE MANAGEMENT, 7(2-3), 137-165 [10.1504/IJPLM.2014.065862].
Assessing sustainability and supporting compliance to standards in continuous industrial processes
PERUZZINI, MARGHERITA;
2014
Abstract
Nowadays, companies need to develop sustainable solutions to be competitive and to respect international standards. It means producing products compliant to target costs, impacts and risks, as well as exploiting sustainable processes. This is particularly challenging for those processes requiring a large consumption of energy, which have high environmental and economic impacts. In this paper the industrial process of plastic material extrusion is considered and analysed. Indeed, it is a highly energy-consuming process that requires monitoring the energy consumption and controlling the process parameters to increase the sustainability and assure the respect of standards. The research is based on lifecycle design (LCD) and sustainable manufacturing principles. The proposed method aims at improving the extrusion process sustainability by identifying the more energy-consuming phases and evaluating the impact of manufacturing process items on the achievement of target values. The industrial case study demonstrates how such a method supports sustainability optimisation and compliance to standards.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.