Nowadays industrial system design has to face a big issue: offering new advanced functionalities, guaranteeing high performances, respecting the competitive pressure, limiting the environmental impact, expanding the company’s market share, being usable and easy to control. In a nutshell, they have to be sustainable in respect with planet, profit and people. In this context, Design for Sustainability (D4S) promotes a sustainable design practice, where all impacts are considered and optimized. However, D4S methods usually focus on one single aspect at a time (e.g. eco-design addresses environmental issues, ergonomics investigates physical human-product interaction, etc.). In practice, industrial systems design requires numerous aspects to be integrated and optimized contemporarily and interactively: mechanics, electronics, system control, management of material and information flows, human-machine interface, human-product interaction, as well as impacts on environment, costs and human factors. The present research proposes an analytical approach for an early sustainability assessment based on a set of Key Performance Indicators (KPIs) considering the three aspects of sustainability (environment, cost and humans) and a feature-based approach, to support their easy and preventive analysis.
PERUZZINI, M., PELLICCIARI, M. (2016). Early sustainability assessment to design competitive industrial systems.
Early sustainability assessment to design competitive industrial systems
PERUZZINI, MARGHERITA;
2016
Abstract
Nowadays industrial system design has to face a big issue: offering new advanced functionalities, guaranteeing high performances, respecting the competitive pressure, limiting the environmental impact, expanding the company’s market share, being usable and easy to control. In a nutshell, they have to be sustainable in respect with planet, profit and people. In this context, Design for Sustainability (D4S) promotes a sustainable design practice, where all impacts are considered and optimized. However, D4S methods usually focus on one single aspect at a time (e.g. eco-design addresses environmental issues, ergonomics investigates physical human-product interaction, etc.). In practice, industrial systems design requires numerous aspects to be integrated and optimized contemporarily and interactively: mechanics, electronics, system control, management of material and information flows, human-machine interface, human-product interaction, as well as impacts on environment, costs and human factors. The present research proposes an analytical approach for an early sustainability assessment based on a set of Key Performance Indicators (KPIs) considering the three aspects of sustainability (environment, cost and humans) and a feature-based approach, to support their easy and preventive analysis.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.