In the context of mobile and Internet of Things (IoT) networks, data naturally originates at the edge, making crowdsourcing a convenient and inherent approach to data collection. However, crowdsourcing presents challenges related to privacy, sampling bias, statistical sufficiency, and the need for time-consuming post-processing. To this end, generating synthetic data using Deep Learning techniques emerges as a promising solution to overcome such limitations. In this study, we propose an innovative framework that transcends applications and data types, enabling the conditional generation of crowdsourced datasets with location information in mobile and IoT networks. A crucial aspect of our methodology is its ability to assess uncertainty in newly generated samples and produce calibrated predictions through approximate Bayesian methods. Without loss of generality, we ascertain the validity of our method on the task of Minimization of Drive Test (MDT) data generation, presenting for the first time a comparison of synthetically generated data with an original large-scale MDT set collected from a Mobile Network Operator's network infrastructure. By offering a versatile solution to data generation, our framework contributes to overcoming challenges associated with crowdsourced data, opening up possibilities for advanced analytics and experimentation in mobile and IoT networks.

Skocaj, M., Amorosa, L.M., Lombardi, M., Verdone, R. (2023). GUMBLE: Uncertainty-Aware Conditional Mobile Data Generation using Bayesian Learning. IEEE TRANSACTIONS ON MOBILE COMPUTING, N/A, N/A-N/A [10.36227/techrxiv.24183384.v1].

GUMBLE: Uncertainty-Aware Conditional Mobile Data Generation using Bayesian Learning

Verdone, Roberto
Ultimo
Supervision
;
Lombardi, Michele
Penultimo
Supervision
;
Amorosa, Lorenzo Mario
Secondo
;
Skocaj, Marco
Primo
2023

Abstract

In the context of mobile and Internet of Things (IoT) networks, data naturally originates at the edge, making crowdsourcing a convenient and inherent approach to data collection. However, crowdsourcing presents challenges related to privacy, sampling bias, statistical sufficiency, and the need for time-consuming post-processing. To this end, generating synthetic data using Deep Learning techniques emerges as a promising solution to overcome such limitations. In this study, we propose an innovative framework that transcends applications and data types, enabling the conditional generation of crowdsourced datasets with location information in mobile and IoT networks. A crucial aspect of our methodology is its ability to assess uncertainty in newly generated samples and produce calibrated predictions through approximate Bayesian methods. Without loss of generality, we ascertain the validity of our method on the task of Minimization of Drive Test (MDT) data generation, presenting for the first time a comparison of synthetically generated data with an original large-scale MDT set collected from a Mobile Network Operator's network infrastructure. By offering a versatile solution to data generation, our framework contributes to overcoming challenges associated with crowdsourced data, opening up possibilities for advanced analytics and experimentation in mobile and IoT networks.
2023
Skocaj, M., Amorosa, L.M., Lombardi, M., Verdone, R. (2023). GUMBLE: Uncertainty-Aware Conditional Mobile Data Generation using Bayesian Learning. IEEE TRANSACTIONS ON MOBILE COMPUTING, N/A, N/A-N/A [10.36227/techrxiv.24183384.v1].
Skocaj, Marco; Amorosa, Lorenzo Mario; Lombardi, Michele; Verdone, Roberto
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/955849
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact