Introduction: Urease is an enzyme exploited by many virulent bacteria and fungi to infect the host and exert their virulence. The Gram-negative bacterium Helicobacter pylori relies on the activity of urease to infect the highly acidic human stomach. The activity of urease depends on the presence of a catalytic site containing two Ni(II) ions. In vivo, urease is initially synthesized as an inactive apo-enzyme and requires a post-translational activation process that involves the incorporation of the metal ions into its buried active site. In H. pylori, as well as in other bacteria, this activation process is mediated by four accessory proteins, named UreD, UreF, UreG, and UreE. Targeting the interactions between urease chaperones could potentially inhibit the activation of urease through blocking the Ni(II) ions incorporation, providing a route for the development of antimicrobial strategies against ureolytic pathogens. Methods: In this paper, an evolutionary couplings (EC) approach was adopted to determine the interaction surface between urease and UreD, the first protein that binds the enzyme, preparing it for the subsequent activation steps. Site-directed mutagenesis and an in-cell assay were used to detect urease activity in recombinant bacteria expressing the mutated operon. The obtained data were used to drive a protein-protein docking computational approach. Results and Discussion: The EC prediction retrieved ten pairs of residues lying at the interface between UreD and the urease subunit UreB, likely involved in contacts essential to build the protein complex. These contacts were largely confirmed experimentally, leading to the obtainment of a model for the urease-UreD complex that agrees well with the recently reported experimental cryo-EM structure. This work represents a proof of concept for the calculation of reliable models of protein interaction surfaces in the absence of experimental structures of critical assemblies.

Functional contacts for activation of urease from Helicobacter pylori: an integrated approach using evolutionary couplings, in-cell enzymatic assays, and computational docking / Carosella, Noemi; Brock, Kelly P.; Zambelli, Barbara; Musiani, Francesco; Sander, Chris; Ciurli, Stefano. - In: FRONTIERS IN CHEMICAL BIOLOGY. - ISSN 2813-530X. - STAMPA. - 2:(2023), pp. 1243564..1-1243564..11. [10.3389/fchbi.2023.1243564]

Functional contacts for activation of urease from Helicobacter pylori: an integrated approach using evolutionary couplings, in-cell enzymatic assays, and computational docking

Carosella, Noemi;Zambelli, Barbara;Musiani, Francesco;Ciurli, Stefano
2023

Abstract

Introduction: Urease is an enzyme exploited by many virulent bacteria and fungi to infect the host and exert their virulence. The Gram-negative bacterium Helicobacter pylori relies on the activity of urease to infect the highly acidic human stomach. The activity of urease depends on the presence of a catalytic site containing two Ni(II) ions. In vivo, urease is initially synthesized as an inactive apo-enzyme and requires a post-translational activation process that involves the incorporation of the metal ions into its buried active site. In H. pylori, as well as in other bacteria, this activation process is mediated by four accessory proteins, named UreD, UreF, UreG, and UreE. Targeting the interactions between urease chaperones could potentially inhibit the activation of urease through blocking the Ni(II) ions incorporation, providing a route for the development of antimicrobial strategies against ureolytic pathogens. Methods: In this paper, an evolutionary couplings (EC) approach was adopted to determine the interaction surface between urease and UreD, the first protein that binds the enzyme, preparing it for the subsequent activation steps. Site-directed mutagenesis and an in-cell assay were used to detect urease activity in recombinant bacteria expressing the mutated operon. The obtained data were used to drive a protein-protein docking computational approach. Results and Discussion: The EC prediction retrieved ten pairs of residues lying at the interface between UreD and the urease subunit UreB, likely involved in contacts essential to build the protein complex. These contacts were largely confirmed experimentally, leading to the obtainment of a model for the urease-UreD complex that agrees well with the recently reported experimental cryo-EM structure. This work represents a proof of concept for the calculation of reliable models of protein interaction surfaces in the absence of experimental structures of critical assemblies.
2023
Functional contacts for activation of urease from Helicobacter pylori: an integrated approach using evolutionary couplings, in-cell enzymatic assays, and computational docking / Carosella, Noemi; Brock, Kelly P.; Zambelli, Barbara; Musiani, Francesco; Sander, Chris; Ciurli, Stefano. - In: FRONTIERS IN CHEMICAL BIOLOGY. - ISSN 2813-530X. - STAMPA. - 2:(2023), pp. 1243564..1-1243564..11. [10.3389/fchbi.2023.1243564]
Carosella, Noemi; Brock, Kelly P.; Zambelli, Barbara; Musiani, Francesco; Sander, Chris; Ciurli, Stefano
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/955646
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact