We prove a real interpolation characterization for some non Euclidean Hölder spaces, built on the Lie structure induced by a class of ultra-parabolic Kolmogorov-type operators satisfying the Hörmander condition. As a by-product we also obtain an approximation property for intrinsically regular functions on the whole space.
Antonello Pesce (2024). Approximation and interpolation in Kolmogorov-type groups. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 535(2), 1-18 [10.1016/j.jmaa.2024.128139].
Approximation and interpolation in Kolmogorov-type groups
Antonello PescePrimo
2024
Abstract
We prove a real interpolation characterization for some non Euclidean Hölder spaces, built on the Lie structure induced by a class of ultra-parabolic Kolmogorov-type operators satisfying the Hörmander condition. As a by-product we also obtain an approximation property for intrinsically regular functions on the whole space.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022247X2400060X-main.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Creative commons
Dimensione
424.18 kB
Formato
Adobe PDF
|
424.18 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.