By gluing some copies of a polytope of Kerckhoff and Storm's, we build the smallest known orientable hyperbolic 4-manifold that is not commensurable with the ideal 24-cell or the ideal rectified simplex. It is cusped and arithmetic, and has twice the minimal volume.

Stefano Riolo (2024). A small cusped hyperbolic 4-manifold. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 56(1), 176-187 [10.1112/blms.12922].

A small cusped hyperbolic 4-manifold

Stefano Riolo
2024

Abstract

By gluing some copies of a polytope of Kerckhoff and Storm's, we build the smallest known orientable hyperbolic 4-manifold that is not commensurable with the ideal 24-cell or the ideal rectified simplex. It is cusped and arithmetic, and has twice the minimal volume.
2024
Stefano Riolo (2024). A small cusped hyperbolic 4-manifold. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 56(1), 176-187 [10.1112/blms.12922].
Stefano Riolo
File in questo prodotto:
File Dimensione Formato  
13_A_small_cusped_hyperbolic_4-manifold.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 304.27 kB
Formato Adobe PDF
304.27 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/954100
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact