By gluing some copies of a polytope of Kerckhoff and Storm's, we build the smallest known orientable hyperbolic 4-manifold that is not commensurable with the ideal 24-cell or the ideal rectified simplex. It is cusped and arithmetic, and has twice the minimal volume.
Stefano Riolo (2024). A small cusped hyperbolic 4-manifold. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 56(1), 176-187 [10.1112/blms.12922].
A small cusped hyperbolic 4-manifold
Stefano Riolo
2024
Abstract
By gluing some copies of a polytope of Kerckhoff and Storm's, we build the smallest known orientable hyperbolic 4-manifold that is not commensurable with the ideal 24-cell or the ideal rectified simplex. It is cusped and arithmetic, and has twice the minimal volume.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
13_A_small_cusped_hyperbolic_4-manifold.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
304.27 kB
Formato
Adobe PDF
|
304.27 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.