Searches for long-lived particles (LLPs) are among the most promising avenues for discovering physics beyond the Standard Model at the Large Hadron Collider (LHC). However, displaced signatures are notoriously difficult to identify due to their ability to evade standard object reconstruction strategies. In particular, the ATLAS track reconstruction applies strict pointing requirements which limit sensitivity to charged particles originating far from the primary interaction point. To recover efficiency for LLPs decaying within the tracking detector volume, the ATLAS Collaboration employs a dedicated large-radius tracking (LRT) pass with loosened pointing requirements. During Run 2 of the LHC, the LRT implementation produced many incorrectly reconstructed tracks and was therefore only deployed in small subsets of events. In preparation for LHC Run 3, ATLAS has significantly improved both standard and largeradius track reconstruction performance, allowing for LRT to run in all events. This development greatly expands the potential phase-space of LLP searches and streamlines LLP analysis workflows. This paper will highlight the above achievement and report on the readiness of the ATLAS detector for track-based LLP searches in Run 3.

Aad, G., Abbott, B., Abeling, K., Abicht, N.J., Abidi, S.H., Aboulhorma, A., et al. (2023). Performance of the reconstruction of large impact parameter tracks in the inner detector of ATLAS. EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS, 83(11), 1081-1-1081-32 [10.1140/epjc/s10052-023-12024-6].

Performance of the reconstruction of large impact parameter tracks in the inner detector of ATLAS

Alberghi, G. L.;Alfonsi, F.;Bindi, M.;Boscherini, D.;Cabras, G.;Carratta, G.;Cavalli, N.;Clissa, L.;De Castro, S.;Fabbri, F.;Fabbri, L.;Franchini, M.;Gabrielli, A.;Massa, L.;Monzani, S.;Polini, A.;Rinaldi, L.;Romano, M.;Sbarra, C.;Sbrizzi, A.;Semprini-Cesari, N.;Sioli, M.;Todome, K.;Valentinetti, S.;Villa, M.;Vittori, C.;Vivarelli, I.;Zoccoli, A.;
2023

Abstract

Searches for long-lived particles (LLPs) are among the most promising avenues for discovering physics beyond the Standard Model at the Large Hadron Collider (LHC). However, displaced signatures are notoriously difficult to identify due to their ability to evade standard object reconstruction strategies. In particular, the ATLAS track reconstruction applies strict pointing requirements which limit sensitivity to charged particles originating far from the primary interaction point. To recover efficiency for LLPs decaying within the tracking detector volume, the ATLAS Collaboration employs a dedicated large-radius tracking (LRT) pass with loosened pointing requirements. During Run 2 of the LHC, the LRT implementation produced many incorrectly reconstructed tracks and was therefore only deployed in small subsets of events. In preparation for LHC Run 3, ATLAS has significantly improved both standard and largeradius track reconstruction performance, allowing for LRT to run in all events. This development greatly expands the potential phase-space of LLP searches and streamlines LLP analysis workflows. This paper will highlight the above achievement and report on the readiness of the ATLAS detector for track-based LLP searches in Run 3.
2023
Aad, G., Abbott, B., Abeling, K., Abicht, N.J., Abidi, S.H., Aboulhorma, A., et al. (2023). Performance of the reconstruction of large impact parameter tracks in the inner detector of ATLAS. EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS, 83(11), 1081-1-1081-32 [10.1140/epjc/s10052-023-12024-6].
Aad, G.; Abbott, B.; Abeling, K.; Abicht, N. J.; Abidi, S. H.; Aboulhorma, A.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Hoffman, A. C. Abusleme; Achar...espandi
File in questo prodotto:
File Dimensione Formato  
s10052-023-12024-6 (1).pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 6.55 MB
Formato Adobe PDF
6.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/953876
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact