Alzheimer's disease (AD) represents the most frequent type of dementia worldwide, and aging is the most important risk factor for the sporadic form of the pathology. The endoplasmic reticulum (ER), the main cellular actor involved in proteostasis, appears significantly compromised in AD due to the accumulation of the beta-amyloid (A beta) protein and the phosphorylated Tau protein. Increasing protein misfolding activates a specific cellular response known as Unfolded Protein Response (UPR), which orchestrates the recovery of ER function. The aim of the present study was to investigate the role of UPR in a murine model of AD induced by intracerebroventricular (i.c.v.) injection of A beta 1-42 oligomers at 3 or 18 months. The oligomer injection in aged animals induced memory impairment, oxidative stress, and the depletion of glutathione reserve. Furthermore, the RNA sequencing and the bioinformatic analysis performed showed the enrichment of several pathways involved in neurodegeneration and protein regulations. The analysis highlighted the significant dysregulation of the protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1 alpha (IRE1 alpha) and activating transcription factor 6 (ATF-6). In turn, ER stress affected the PI3K/Akt/Gsk3 beta and MAPK/ERK pathways, highlighting Mapkapk5 as a potential marker, whose regulation could lead to the definition of new pharmacological and neuroprotective strategies to counteract AD.

The Unfolded Protein Response in a Murine Model of Alzheimer’s Disease: Looking for Predictors / Sita G.; Graziosi A.; Corrieri C.; Ghelli L.; Angelini S.; Cortelli P.; Hrelia P.; Morroni F.. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1661-6596. - ELETTRONICO. - 24:22(2023), pp. 1-20. [10.3390/ijms242216200]

The Unfolded Protein Response in a Murine Model of Alzheimer’s Disease: Looking for Predictors

Sita G.
Co-primo
;
Graziosi A.
Co-primo
;
Corrieri C.;Ghelli L.;Angelini S.;Cortelli P.;Hrelia P.
;
Morroni F.
Ultimo
2023

Abstract

Alzheimer's disease (AD) represents the most frequent type of dementia worldwide, and aging is the most important risk factor for the sporadic form of the pathology. The endoplasmic reticulum (ER), the main cellular actor involved in proteostasis, appears significantly compromised in AD due to the accumulation of the beta-amyloid (A beta) protein and the phosphorylated Tau protein. Increasing protein misfolding activates a specific cellular response known as Unfolded Protein Response (UPR), which orchestrates the recovery of ER function. The aim of the present study was to investigate the role of UPR in a murine model of AD induced by intracerebroventricular (i.c.v.) injection of A beta 1-42 oligomers at 3 or 18 months. The oligomer injection in aged animals induced memory impairment, oxidative stress, and the depletion of glutathione reserve. Furthermore, the RNA sequencing and the bioinformatic analysis performed showed the enrichment of several pathways involved in neurodegeneration and protein regulations. The analysis highlighted the significant dysregulation of the protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1 alpha (IRE1 alpha) and activating transcription factor 6 (ATF-6). In turn, ER stress affected the PI3K/Akt/Gsk3 beta and MAPK/ERK pathways, highlighting Mapkapk5 as a potential marker, whose regulation could lead to the definition of new pharmacological and neuroprotective strategies to counteract AD.
2023
The Unfolded Protein Response in a Murine Model of Alzheimer’s Disease: Looking for Predictors / Sita G.; Graziosi A.; Corrieri C.; Ghelli L.; Angelini S.; Cortelli P.; Hrelia P.; Morroni F.. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1661-6596. - ELETTRONICO. - 24:22(2023), pp. 1-20. [10.3390/ijms242216200]
Sita G.; Graziosi A.; Corrieri C.; Ghelli L.; Angelini S.; Cortelli P.; Hrelia P.; Morroni F.
File in questo prodotto:
File Dimensione Formato  
26 Int J Mol Sci 2023.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 3.41 MB
Formato Adobe PDF
3.41 MB Adobe PDF Visualizza/Apri
Supplementary material.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 4.65 MB
Formato Adobe PDF
4.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/952543
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact