We construct a Leray model for a discrete polymatroid with arbitrary building set and we prove a generalized Goresky-MacPherson formula. The first row of the model is the Chow ring of the polymatroid; we prove Poincare duality, Hard Lefschetz, and Hodge-Riemann theorems for the Chow ring. Furthermore, we provide a relative Lefschetz decomposition with respect to the deletion of an element.

Pagaria R., Pezzoli G.M. (2023). Hodge Theory for Polymatroids. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023(23), 20118-20168 [10.1093/imrn/rnad001].

Hodge Theory for Polymatroids

Pagaria R.
;
Pezzoli G. M.
2023

Abstract

We construct a Leray model for a discrete polymatroid with arbitrary building set and we prove a generalized Goresky-MacPherson formula. The first row of the model is the Chow ring of the polymatroid; we prove Poincare duality, Hard Lefschetz, and Hodge-Riemann theorems for the Chow ring. Furthermore, we provide a relative Lefschetz decomposition with respect to the deletion of an element.
2023
Pagaria R., Pezzoli G.M. (2023). Hodge Theory for Polymatroids. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023(23), 20118-20168 [10.1093/imrn/rnad001].
Pagaria R.; Pezzoli G.M.
File in questo prodotto:
File Dimensione Formato  
main IMRN.pdf

Open Access dal 03/03/2024

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 577.72 kB
Formato Adobe PDF
577.72 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/952461
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact