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Hodge Theory for Polymatroids
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We construct a Leray model for a discrete polymatroid with arbitrary building set and we prove a generalized

Goresky-MacPherson formula. The first row of the model is the Chow ring of the polymatroid; we prove Poincaré

duality, Hard Lefschetz, and Hodge-Riemann theorems for the Chow ring. Furthermore, we provide a relative Lefschetz

decomposition with respect to the deletion of an element.
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1 Introduction

Recently, long standing conjectures about log-concavity of graphs and matroids have been brilliantly solved by
studying the Chow ring of matroids [Huh12, HK12, Len13, HW17, AHK18, BHM+20, ADH20, BEST21]. A
natural question is whether the corresponding results hold for polymatroids [BEST21, Question 1.5].

Discrete polymatroids generalize arrangements of subspaces in the same way as matroids generalize
hyperplane arrangements. Moreover polymatroids codify invariants of hypergraphs as matroids do with graphs.
Polymatroids have application in combinatorial optimization [Edm70, Sch03], in Coding theory [GJLR20], and
in commutative algebra [HH02]. The class of polytopes known as integral generalized permutohedra [Pos09]
and the class of discrete polymatroids are essentially equivalent. The base polytope of a discrete polymatroid
[Edm70] is always a generalized permutohedron lying in the closed positive orthant and, conversely, every integral
generalized permutohedron with this property indeed comes from the base polytope of a discrete polymatroid.
In other words, these two families coincide up to a translation; see e.g. [Fer22, Section 3.2] for a brief account,
and [CL20, Theorem 3.17] for a proof of this equivalence.

The easiest definition of polymatroid is a pair P = (E, cd) where E is a finite ground set and cd: 2E → N
is a increasing submodular function. If P is realized by a subspace arrangement, then cd is the codimension of
the corresponding flat.

In the case of arrangements of subspaces, De Concini and Procesi [DCP95] have constructed a wonderful
model, i.e. a smooth projective variety that contains the complement of the arrangement as open subset. This
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wonderful model YG is obtained from Pr by a sequence of blowups along some linear subspaces; this collection
of subspaces is called building set G. The variety YG is used for studying the complement of the subspace
arrangement, by considering the Leray spectral sequence for the inclusion of the complement in the wonderful
model YG . The spectral sequence collapses at the third page yielding a Leray model (also known as Morgan
algebra [Mor78]) for the rational homotopy type.

Inspired by the realizable case, we provide a combinatorial definition of building set for polymatroids and
we introduce a Leray model B(P,G) for a polymatroid with building set. In the case of matroids the Leray model
was recently studied by Bibby, Denham, and Feichtner [BDF21]. The last combinatorial object that we need is
the G-nested set complex n(P,G). In the realizable case this complex remembers whether the intersection of the
corresponding divisors in YG is non-empty.

The problem of computing the cohomology of the complement of a subspace arrangement was solved by
Goresky and MacPherson [GM88] and by De Concini and Procesi [DCP95] with different techniques. Goresky and
MacPherson have used the stratified Morse theory to describe the additive cohomology with integer coefficients
of the complement in terms of a poset. De Concini and Procesi have provided the aforementioned Morgan algebra
(alias the Leray model) that describes the ring structure of the cohomology with rational coefficients. These two
results were connected by Yuzvinsky [Yuz02, Yuz99] constructing a smaller rational model CM, however this
connection was found only for the maximal building set.

We extend these results to the non-realizable setting and to arbitrary building sets, see Theorems 3.14 and
3.15, by using the critical monomial algebra CM(P,G).

Theorem. The inclusion CM(P,G) ↪→ B(P,G) is a quasi-isomorphism. Moreover

H •(B(P,G)) ∼= H •(CM(P,G)) ∼=
⊕
f∈L

⊗
g∈F

H̃2 cd(g)−2−•

(
n((0̂, g),G)

)
.

In the realizable case with maximal building set, the above decomposition specializes to the Goresky-
MacPherson formula.

The Leray model contains a subalgebra DP(P,G) as the first row of the spectral sequence, we call this
algebra the Chow ring of the polymatroid. For subspace arrangements, DP(P,G) is the cohomology (indeed the
Chow ring) of the wonderful model YG . The combinatorial Chow ring for matroids was studied by Feichtner and
Yuzvinsky [FY04] and later by Huh, Katz, and Adiprasito [Huh12, HK12, AHK18] and others.

We prove that the Chow ring DP(P,G) of a polymatroid satisfies the Kähler package (see Theorems 4.7
and 4.21).

Theorem. The algebra DP(P,G) satisfy the Poincaré duality property. Moreover, there exists a simplicial cone
ΣP,G contained in DP1(P,G) such that for each ` ∈ ΣP,G the Hard-Lefschetz theorem and the Hodge-Riemann
relations hold.

We prove the above theorem using methods similar to ones in [AHK18]. A second and easier proof of
the Kähler package for matroid was given in [BHM+22] using a semismall decomposition; the decomposition
is the first step through the singular Hodge theory [BHM+20]. In the realizable setting the decomposition is
induced by a map between wonderful models that is semismall (for semismall maps in algebraic geometry see
[dCM02, dCM09]). In the case of polymatroids the corresponding map is not semismall, hence we cannot deduce
the Kahler package using this method. However, we obtain a relative Lefschetz decomposition of the Chow ring
(see Theorem 5.4).

Theorem. Let DP(a) be the Chow ring for the polymatroid P \ a where an element a ∈ E is removed from the
ground set. The Chow ring DP(P,G) decomposes into irreducible DP(a)-modules as

DP(P,G) = DP(a)⊕
⊕
f∈Sa

nf⊕
k=1

xkf DP(a) .

Moreover, these irreducibles are explicitly described by:

xkf DP(a)
∼= DP((P \ a)f\a, (G \ a)f\a)⊗DP(Pf ,Gf )[k].

The reduced characteristic polynomial of a nonempty polymatroid is defined by

χP (λ) =

∑
A⊆E(−1)|A|λcd(E)−cd(A)

λ− 1
. (1)

As final step we relate the coefficients of the reduced characteristic polynomial to the Hodge-Riemann bilinear
form (see Theorem 6.4). In order to do that, we restrict to the case of the maximal building set and we fix an
isomorphism deg : DPr(P,Gmax)→ Q.
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Theorem. There exist elements α, β ∈ DP1(P,Gmax) such that

χP (λ) =

r∑
i=0

(−1)i deg(αiβr−i)λi.

The element α belongs to the closure of the σ-cone (morally it is nef), but in general β is not in the closure
of the ample cone. Hence, the coefficients of the reduced characteristic polynomial do not form a log-concave
sequence (see Remark 6.6). Indeed every finite sequence of non-positive integers can appear as a substring of
the coefficients.

Techniques

The techniques used for our proof are various and inspired by [FY04, BDF21, Yuz02, AHK18, BHM+22].
In Section 2 we make use of Gröbner bases to give two explicit additive bases of the Leray model. In

Section 3, by using algebraic Morse theory, we compute the cohomology of the Leray model generalizing the
Goresky-MacPherson formula. In Section 4, we use an inductive procedure to prove the Kähler package. The main
difference with the previous methods is that we do not have partial building sets as in [BDF21] nor order filters
as in [AHK18]. Our induction is based on the cardinality of the building set, and the inductive step involved
completely different polymatroids. Section 5 is devoted to the proof of the relative Lefschetz decomposition
using some lemmas from the previous sections. The reduced characteristic polynomial is studied in Section 6.
We prove the claimed equality by showing that both polynomials satisfy the same recursion. In this proof we
use the properties of the Möbius function for posets.

Finally, Section 7 contains an explicit and exhaustive example that illustrates our definitions and properties.

Acknowledgements

The authors thank Corrado De Concini for holding a mini-course on log-concavity results at the winter school
“Geometry, Algebra and Combinatorics of Moduli Spaces and Configurations IV”. The authors also thank the
organizers of the conference for having created this opportunity.

2 The Leray model

For general references about polymatroids we suggest [Wel76].

Definition 2.1. A polymatroid P = (E, cd) on the ground set E is a codimension function cd: 2E → N
satisfying:

(C1) cd(∅) = 0,

(C2) if A ⊆ B, then cd(A) ≤ cd(B), and

(C3) if A,B ⊆ E, then cd(A ∪B) + cd(A ∩B) ≤ cd(A) + cd(B).

A polymatroid is a matroid if the codimension of singletons are either zero or one.

The closure of a subset A ⊆ E is the subset

{a ∈ E | cd(A ∪ {a}) = cd(A)}.

A flat is a closed set and the collection of flats forms a lattice LP , that we call the poset of flats. We use the
notation max(X) with X ⊆ LP for the set of maximal elements of X.

Definition 2.2 (Geometric building set). Let P = (E, cd) be a polymatroid and let L be its lattice of flats. A
subset G in L \ {0̂} is called a geometric building set if for any x ∈ L the morphism of lattices:

ϕx :
∏

y∈max(G≤x)

[0̂, y]→ [0̂, x]

induced by the inclusions is an isomorphism and the equality

cd(x) =
∑

y∈max(G≤x)

cd(y)

holds.
We define F (P,G, x) = max(G≤x) the set of G-factors of x.
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Definition 2.3 (G-nested set complex). A subset S of G is called G-nested if, for any set of incomparable
elements x1, . . . , xt in S of cardinality at least two, the join x1 ∨ · · · ∨ xt is not contained in G. The G-nested
sets form an abstract simplicial complex n(P,G).

We suggest to visualize a (realizable) polymatroid (E, cd) as a collection of linear subspaces Se for e ∈ E in a
fixed complex vector space V . For each A ⊆ E, the codimension cd(A) is the codimension of the corresponding
flat ∩a∈ASa. The (geometric) building set G is a good choice of some flats to blow up, in order to obtain a
wonderful model YG with some exceptional divisors Dg ⊂ YG , g ∈ G indexed by G. A subset S of G is G-nested
if and only if the corresponding divisors {DW }W∈S have non empty intersection.

The following proposition summarizes the main properties of building and nested sets.

Proposition 2.4. Let P be a polymatroid with poset of flats L and G be a building set. Then:

1. For each g ∈ G, x ∈ L with x ≥ g, there exists a unique G-factor p of x such that p ≥ g.

2. If g, h ∈ G and g ∧ h > 0̂, then g ∨ h ∈ G.

3. If S is a G-nested set, then the G-factors of
∨
S are the maximal elements in S (i.e. F (P,G,

∨
S) = max(S)).

4. Let S be a G-nested set, the Hasse diagram of S (as subset of L) is a forest.

Proof . For (1) see [FK04, Proposition 2.5(1)], for (2) see [BDF21, Proposition 2.5.3(b)], and for (3) see [FK04,
Proposition 2.8]. In order to prove (4) we suppose that the Hasse diagram ΓS of S is not a forest. Thus there
exist two incomparable elements g, h ∈ S and t ∈ S such that g ∧ h ≥ t ∈ S; in particular g ∧ h > 0̂. By part (2)
we get that g ∨ h ∈ G but this contradicts the definition of nested set. Therefore ΓS is a forest.

Let P = (E, cd) be a polymatroid, L be its poset of flats, and G be a building set in L. Let R(G) = Q[eg, xg |
g ∈ G] be the bigraded commutative algebra with exterior generators eg in bidegree (0, 1) and commutative
generators xg in bidegree (2, 0).

This algebra is equipped with a differential d of bidegree (2,−1) defined on generators by d(eg) = xg,
d(xg) = 0. Fix a linear extension � of the order on G, this gives a reverse order among the e-variables and
among the x-variables, i.e. xh ≺ xg and eh ≺ eg if and only if h � g. We also set xg ≺ eh for each g, h. The
algebra R(G) has a monomial basis given by:

eTx
b
S := eg1 · · · egtx

b1
h1
· · ·xbshs

where T = {g1, . . . , gt} with gi ∈ G satisfying g1 ≺ g2 ≺ · · · ≺ gt, S = {h1, . . . , hs} with hi ∈ G and b =
(b1, . . . , bs) is a s-tuple of positive integers. We define the element:

cg =
∑
h∈G
h≥g

xh.

Definition 2.5 (The Leray model of a polymatroid). Let I(G) be the ideal of R(G) generated by

(i) eTxS whenever S ∪ T /∈ n(P,G),

(ii) eTxSc
b
g whenever S, T ⊆ G, g ∈ G and b ≥ cd(g)− cd(

∨
(S ∪ T )<g).

The ideal I(G) is preserved by the differential d, so the quotient

B(P,G) = R(G)�I(G)

is a bigraded differential algebra, called the Leray model of the polymatroid.

In the realizable case, the Leray model B(P,G) is the second page of the Leray spectral sequence for the
natural inclusion

V \ ∪e∈ESe ∼= YG \ ∪g∈GDg ↪→ YG .

This spectral sequence collapses at the third page, hence it becomes a differential bigraded algebra also known
as the Morgan algebra [Mor78].
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Remark 2.6. Let eTxSc
b
g be a monomial of type (ii) and let

S′ = S ∩max(S ∪ T )<g and T ′ = max(S ∪ T )<g \ S.

The monomial eT ′xS′c
b
g divides eTxSc

b
g. Thus, when we consider a monomial of type (ii) we can always assume

that S ∩ T = ∅, S ∪ T is an antichain and
∨

(S ∪ T ) < g.

Theorem 2.7. The generators of type (i) and (ii) of the ideal I(G) of Definition 2.5 form a Gröbner basis with
respect to the deg-lex order.

Proof . We adapt the method used in [FY04, Theorem 2] and in [BDF21, Theorem 5.3.1]. We are fixing a linear
extension of the order on G with xg ≺ eh for each g, h. We consider the deg-lex monomial order on R(G) and
we explicitly compute S-polynomials.

Case (i)-(i) Since relations type (i) are monomials the S-polynomials is zero.

Case (i)-(ii) Now we consider f1 = eTxS of type (i) and f2 = eAxBc
b
g of type (ii). We assume that

∨
(A ∪B) <

g (see Remark 2.6). Let U = T ∪A, V = B ∪ S r {g}, therefore the S-polynomial is

S(f1, f2) = eUxV x
b
g − eUxV cbg = eUxV (xbg − cbg).

If g /∈ S, we have that S ⊆ V and therefore

S(f1, f2) = ±eA\T eTxSxV \S(xbg − cbg)

is divisible by eTxS .

Then, assume g ∈ S, since S ∪ T is not nested we have that U ∪ V ∪ {g} is not nested. If U ∪ V is not
nested, then S(f1, f2) would be divisible by eUxV .

So assume U ∪ V is nested, (thus we have g /∈ U ∪ V ) since U ∪ V ∪ {g} is not nested the S-polynomial
modulo eUxV xg became

S(f1, f2) ≡ eUxV
(∑
f>g

xf
)b
.

The set U ∪ V ∪ {g} contains a non trivial antichain Y whose join
∨
Y = y is in G and Y must contain g

since U ∪ V is nested; let y′ =
∨

(Y r {g}). We have

b = cd(g)− cd
( ∨
l∈A∪B
l<g

l
)

≥ cd(g ∨ y′)− cd
( ∨
l∈A∪B
l<g

l ∨ y′
)

≥ cd(y)− cd
( ∨
l∈U∪V
l<y

l
)

= b′

and so eUxV c
b
y is a relation of type (ii). We claim that modulo relations of type (i)

S(f1, f2) ≡ eUxV cby.

To obtain this, we show that if f ∈ G with f > g and f � y, then U ∪ V ∪ {f} is not nested. Suppose
that U ∪ V ∪ {f} is nested and consider the antichain Y ′ = max(Y r {g} ∪ {f}) ⊆ U ∪ V ∪ {f}. The
set Y ′ is nested and by Proposition 2.4 the G-factors of

∨
(Y r {g} ∪ {f}) are exactly the elements of

Y ′ = {y1, . . . , yk, f}. We have ∨
(Y r {g} ∪ {f}) = y′ ∨ f ≥ y′ ∨ g = y.

By definition of G-factor we have two cases:

• y ≤ yi for a certain i. But this is impossible since yi < y;

• y ≤ f contrary to the assumption f 6≥ y.
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Thus, U ∪ V ∪ {f} is not nested and S(f1, f2) reduces to zero.

Case (ii)-(ii) Let f1 = eTxSc
d
g and f2 = eAxBc

f
h be two relations of type (ii). We may assume

∨
(S ∪ T ) < g

and
∨

(A ∪B) < h (see Remark 2.6). We have the following cases:

First g = h and d ≤ f , then the S-polynomial is

S(f1, f2) = eT∪AxS∪Bc
d
g(x

f−d
g − cf−dg );

which is divisible by eTxSc
d
g.

Second g 6= h, g /∈ B, h /∈ S, we also assume that h � g. The S-polynomial is

S(f1, f2) = eT∪AxS∪B(xfhc
d
g − xdgc

f
h).

Let y = eT∪AxS∪Bc
d
g(c

f
h − x

f
h), which is divisible by f1 = eTxSc

d
g and has a leading term smaller or equal

to that of S(f1, f2). The remainder

S(f1, f2) + y = eT∪AxS∪B(cdg − xdg)c
f
h,

is divisible by f2 = eAxBc
f
h, and reduces to zero.

Finally, assume g 6= h and g ∈ B, by Remark 2.6 we must have g ≺ h and h /∈ S. Let U = T ∪A and
V = S ∪B r {g}, the S-polynomial is

S(f1, f2) = eUxV (xfhc
d
g − xdgc

f
h).

Let y = eUxV c
d
g(c

f
h − x

f
h), which is divisible by f1 = eTxSc

d
g and has a leading term smaller or equal to

that of S(f1, f2). It remains to verify that

S(f1, f2) + y = eUxV (cdg − xdg)c
f
h

reduces to zero. First, through division by f2 = eAxBc
f
h, since g ∈ B we have

S(f1, f2) + y ≡ eUxV
(∑
k>g

xk

)d
cfh. (2)

We claim that for any k > g, k 6≥ h we have

eUxV xkc
f
h ≡ eUxV xkc

f
h∨k ≡ 0

modulo relations of type (i) and (ii). For the first claim, if p ≥ h but p � h ∨ k then {p, k} is not nested by
Proposition 2.4 and we can divide by the relation xhxp of type (i). The last claim follows since h ∨ k ∈ G
by Proposition 2.4 and

f ≥ cd(h)− cd(
∨

(A ∪B))

≥ cd(h ∨ k)− cd(
∨

(U ∪ V ∪ {k})).

Therefore, the element in eq. (2) reduces to

S(f1, f2) + y ≡ eUxV cd+f
h .

Since d+ f ≥ cd(h)− cd(
∨

(U ∪ V ∪ {k})) we may divide by eUxV c
d+f
h and reduce to zero.

This completes the proof.

Corollary 2.8. The algebra B(P,G) has an additive basis given by the monomials eTx
b
S such that S ∪ T ∈

n(P,G) and 0 < b(s) < cd(s)− cd(
∨

(S ∪ T )<s) for all s ∈ S.

Proof . An additive basis for the algebra B(P,G) is given by all the monomials which are not divisible by the
initial monomials of the Gröbner basis provided by Theorem 2.7. The proof follows immediately.
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We now provide a second presentation for the algebra B(P,G) using a different set of generators (τg and σg
for g ∈ G). This second presentation is inspired by the work of Yuzvinsky [Yuz99, Yuz02] and in the matroidal
case coincides with the simplicial presentation of Backman, Eur, and Simpson [BES20].

Theorem 2.9. The morphism

ϕ : Λ[τg | g ∈ G]⊗Q[σg | g ∈ G]→ B(P,G)

defined by ϕ(τg) =
∑

h≥g eh and by ϕ(σg) =
∑

h≥g xh, is surjective with kernel generated by:

(i)
∏
t∈T (τt − τg)

∏
s∈S(σs − σg) for S ∪ T a non-trivial antichain and g =

∨
(S ∪ T ) ∈ G,

(ii)
∏
t∈T (τt − τg)

∏
s∈S(σs − σg)σbg for g ∈ G and b = cd(g)− cd(

∨
(S ∪ T )<g).

We will identify the elements τg, σg with their images in B(P,G). In the realizable case the element σg is the
fundamental class of Dg, the total transform of the flat g. Analogously, τg is the sum of irreducible components
of the total transform of the flat g. The elements σg can be also seen in the following way: consider the inclusion
YG ↪→

∏
h∈G Pcd(h)−1 of [DCP95], σg is the pullback of the hyperplane class of the factor Pcd(g)−1.

Before the proof of Theorem 2.9 we need a couple of technical lemmas.

Lemma 2.10. Let g ∈ G and S = {s1, . . . sn} ⊂ G such that
∨
S ≤ g, set b = cd(g)− cd(

∨
S). Consider a set

A = {a1, . . . , an} ⊂ G such that ai ≥ si and ai 6≥ g for all i = 1, . . . , n. Then

yAc
b
g = 0,

where yai is equal to eai or xai and yA = ya1 · · · yan .

Proof . Define the element h =
∨
A ∨ g, we first prove the equality yAσ

b
g = yAσ

b
h and then yAσ

b
h = 0.

We show that h ∈ G. Let h′ ∈ G be the unique G-factor of h such that h′ ≥ g. For each ai we have h′ ∧ ai ≥ si
and so ai ∨ h′ ∈ G. By maximality of h′ we have ai ≤ h′ for all i. Therefore h = h′ ∈ G.

Firstly, let g′ ∈ G be any element such that g′ ≥ g and g′ 6≥ h. Suppose that A ∪ {g′} is a G-nested set. Then
the G-factors of h ∨ g′ are the maximal elements of A ∪ {g′} by Proposition 2.4. So there exists an element in
A ∪ {g′} bigger or equal to h, this is impossible since g′ 6≥ h and ai 6≥ g. It follows that A ∪ {g′} is not G-nested
and yAxg′ = 0.

Finally, we show that yAσ
b
h = 0. Indeed, b ≥ cd(g)− cd(g ∧

∨
A) which is bigger than cd(h)− cd(

∨
A) by

submodularity of cd. Applying the relations of type (ii) in Definition 2.5 we complete the proof.

Lemma 2.11. The elements
∏
t∈T (τt − τg)

∏
s∈S(σs − σg)σbg for g ∈ G, and b = cd(g)− cd(

∨
(S ∪ T )<g) belong

to the kernel of ϕ.

Proof . From the argument of Remark 2.6 we may assume that S ∩ T = ∅, S t T is an antichain, and∨
(S ∪ T ) ≤ g.

We have

ϕ
(∏
t∈T

(τt − τg)
∏
s∈S

(σs − σg)σbg
)

=
∑
A,B

eAxB

(∑
l≥g

xl

)b
,

where the sum is taken over the sets A = (ai)i and B = (bj)j such that ai ≥ ti, bj ≥ sj , ai 6≥ g, and bj 6≥ g. Each

term eAxB

(∑
l≥g xl

)b
is zero by Lemma 2.10.

Proof of Theorem 2.9. Let ≺ be a reverse linear extension of the order on G with xg ≺ eh and σg ≺ τh for each
g, h. Now we consider the basis formed respectively by the σg, τh and by the xg,eh ordered with ≺; with respect
of these two basis the matrix associated to the morphism ϕ is upper unitriangular and therefore invertible. It
follows that the map ϕ is surjective.

We want to prove that kerϕ is generated by relations of type (i) and (ii) of Theorem 2.9. From Lemma
2.11 we know that elements of the form (ii) belong to kerϕ. The relations (i) are a particular case of relations
(ii) with b = 0. Let J be the ideal generated by relations of type (i) and (ii), we denote also by in(J) the initial
ideal of J . It suffices to prove that

dim C�in(J) ≤ dimR(G)�in(I(G))
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where C = Λ[τg | g ∈ G]⊗Q[σg | g ∈ G]. Let K ⊆ in(I) be the ideal generated by the leading monomial of relation
of type (i) and (ii), since

dim C�K ≥ dim C�in(J)

it suffices to check that

dim C�K = dimR(G)�in(I(G)). (3)

The leading monomials of relation type (i) are of the form τTσS where S ∪ T is not G-nested; the leading
monomials of relation type (ii) are of the form τTσSσ

b
g whenever S, T ⊆ G, g ∈ G and b = cd(g)− cd(

∨
(S ∪

T )<g). The monomials in C, which are not divisible by the these two type of leading monomials, are of the form
τTσ

m
S with S ∪ T ∈ n(P,G) and 0 < m(s) < cd(s)− cd(

∨
(S ∪ T )<s) for all s ∈ S. Hence eq. (3) follows. Since

the map ϕ is surjective it is also injective; and the initial ideal in(J) is equal to K. Therefore, relations of type
(i) and (ii) form a Gröbner basis for kerϕ.

From the proof of Theorem 2.9 we obtain also the following corollary:

Corollary 2.12. The set of monomials τTσ
m
S with S ∪ T ∈ n(P,G) and, for each s ∈ S, 0 < m(s) < cd(s)−

cd(
∨

(S ∪ T )<s) is an additive basis of B(P,G).

See Section 7 for an example of the application of Corollary 2.8 and Corollary 2.12.

3 Generalized Goresky-MacPherson formula

In this section we generalize the Goresky-MacPherson formula (see [GM88]) to the non-realizable case and
to arbitrary building set. The choice of the minimal building set yields a significantly smaller nested set
complex and it can be useful in practical computations. Other generalizations of this formula can be found
in [BLZ15, Des18, MP22].

3.1 Critical monomials

Definition 3.1. A standard monomial eTxS (resp. τTσS) is a monomial that appears in the basis given by
Corollary 2.8 (resp. by Corollary 2.12).

For any standard monomial τTσ
b
S we extend the function b by setting b(g) = 0 for g 6∈ S.

Definition 3.2. Let τTσ
b
S be a standard monomial. An element g ∈ G is called critical with respect to the

monomial τTσ
b
S if g ∈ T and b(g) = cd(g)− cd(

∨
(S ∪ T )<g)− 1. If every element of S ∪ T is critical with respect

to τTσ
b
S then the monomial τTσ

b
S is called critical.

Notice that if the monomial τTσ
b
S is critical, then S ⊆ T and so the critical monomial is uniquely determined

by T .

Definition 3.3. The critical monomial associated with T ∈ n(P,G) is

cµ(T ) = τTσ
b
S ,

where S = {t ∈ T | cd(t)− cd(
∨

(S<t)) > 1} and b(s) = cd(s)− cd(
∨

(T<s))− 1 for all s ∈ S.

In Theorem 3.14 we will prove that the linear span of critical monomials form a subcomplex (indeed a
subalgebra) of B(P,G). Moreover, we will show that this subalgebra is quasi-isomorphic to the Leray model.
This first lemma implies that the span of critical monomials is a sub-complex.

Lemma 3.4. For every critical monomial cµ(T ) we have

d(cµ(T )) =
∑

t∈T\max(T )

(−1)|T≺t|cµ(T \ {t}).

Proof . Let cµ(T ) = τTσ
b
S , we have

d(cµ(T )) =
∑
t∈T

(−1)|T≺t|τT\{t}σ
b
Sσt
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=
∑

t∈T\min(T )

(−1)|T≺t|τT\{t}σ
b
Sσt,

because if t ∈ min(T ) then b(t) = cd(t)− 1 and so σ
cd(t)
t = 0.

Fix t ∈ T \min(T ), the set R = max(T<t) is nonempty. By using relation (ii) of Theorem 2.9 and the fact
that τ2

t = 0, we have

τRσ
b
Rσ

b(t)+1
t =

∑
r∈R

(−1)|R≺r|τR\{r}τtσ
b
Rσ

b(t)+1
t

=
∑
r∈R

(−1)|R≺r|τR\{r}τtσ
b
R\{r}σ

b(t)+b(r)+1
t ,

where in the last equality we used

0 = τt(σr − σt)σb(t)+1
t

∏
l 6=r

(τl − τt) = τtτR\{r}(σr − σt)σ
b(t)+1
t .

Notice that T ∈ n(P,G) implies cd(
∨
R) = cd(

∨
(R \ {r})) + cd(r) and cd(

∨
(R \ {r}) ∨

∨
(T<r)) = cd(

∨
(R \

{r})) + cd(
∨

(T<r)); so bT\{r}(t) = bT (t) + bT (r) + 1. Therefore

τRσ
b
Rσ

b(t)+1
t =

∑
r∈R

(−1)|R≺r|cµ((R \ {r}) ∪ {t})

and finally:

d(cµ(T )) =
∑

t∈T\min(T )

∑
r∈max(T<t)

(−1)|T≺r|µ(T \ {r})

=
∑

r∈T\max(T )

(−1)|T≺r|µ(T \ {r}),

because T is a forest by Proposition 2.4. This conclude the proof.

We want to apply algebraic Morse theory to the complex B(P,G). We refer to [JW09] for basic definitions
and properties of algebraic Morse theory.

We define the following matching M: for each non-critical monomial τTσ
b
S let g ∈ S ∪ T be the smallest

(with respect to ≺) non-critical element. If g belongs to T , then the pair (τTσ
b
S , τTr{g}σ

b
Sσg) is in M.

The algebraic Morse theory, together with Lemma 3.5 and Proposition 3.8, implies that the complex of
critical monomials is quasi-isomorphic to the Leray model.

Lemma 3.5. The set M is a matching. Moreover, a monomial is critical if and only if it is critical for the
matching M.

Proof . We check that each non-critical monomial appears exactly once inM and that all monomials inM are
non-critical.

By definition if the monomial τTσ
b
S appears in the first position inM, it is non-critical. Moreover τTr{g}σ

b
Sσg

is non-critical because S ∪ {g} 6⊆ T r {g}. So every monomial in the matching is non-critical.
Vice versa, if τTσ

b
S is a non-critical monomial, let g be the minimal non-critical element in S ∪ T . If g ∈ T

then τTσ
b
S appears in the matching (in the first position). Otherwise, g ∈ S \ T so the monomial τT τg

σbS
σg

is basic

and non-critical. Notice that an element f ∈ G is critical for τTσ
b
S if and only if is critical for τT τg

σbS
σg

. Therefore

the pair (τT τg
σbS
σg
, τTσ

b
S) is in M.

Definition 3.6. Given a standard monomial τTσ
b
S we define m(T, S, b) as the multiset {ga(g) | g ∈ G} where

a(g) is the sum of the exponents of τg and σg in the monomial τTσ
b
S . Moreover, we order these multisets

lexicographically using the reverse order on G.

As an example, if h < g then h ≺ g and {h2} � {h, g}.

Definition 3.7. Let G be the directed graph whose vertices are the standard monomials with a directed edge
from τTσ

b
S to τT ′σ

b′

S′ if the monomial τT ′σ
b′

S′ appears with a nonzero coefficient in d(τTσ
b
S).

Let GM be the directed graph G with all directed edges in M reversed.
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Proposition 3.8. The matching M is a Morse matching.

Proof . We show that the graph GM is acyclic.

Although m is not a term order (because m(τg) = m(σg)) it has the property that for any relation of
Theorem 2.9 ∏

t∈T

(τt − τg)
∏
s∈S

(σs − σg)σbg (4)

with
∨

(S ∪ T ) ≤ g the monomial τTσSσ
b
g has m(T, S, b) strictly bigger than any other monomial in the expansion

of eq. (4). Moreover m is multiplicative.

First notice that:

d(τTσ
b
S) =

∑
g∈T

(−1)|T≺g|τT\gσ
b
Sσg

=
∑
g∈T

g non-critical

(−1)|T≺g|τT\gσ
b
Sσg +

∑
g∈T

g critical

(−1)|T≺g|τT\gσ
b
Sσg

=
∑
g∈T

g non-critical

(−1)|T≺g|τT\gσ
b
Sσg +

∑
some T ′,S′,b′

m(T ′,S′,b′)≺m(T,S,b)

αT ′,S′,b′τT ′σ
b′

S′ ,

where αT ′,S′,b′ are some coefficients. In the last equality we used the relations of Theorem 2.9 in order to write
the non-standard monomials τT\gσ

b
Sσg as linear combination of standard ones. Notice also that if the pair

(τTσ
b
S , τT\gσ

b′

S∪g) is inM then m(T, S, b) = m(T \ g, S ∪ {g}, b′). Hence the function m is weakly decreasing on
every direct path in GM, so it is constant on every directed cycle.

It is enough to prove that there are no alternating directed cycles, i.e. cycles such that for every pair of
consecutive edges exactly one is in M. Suppose that there exists a directed cycle and consider two consecutive

edges. We can assume that the first one is in M and the second one is not. The first edge is (τTσ
b
S , τT τg

σbS
σg

)

for some non-critical monomial τTσ
b
S with g the smaller non-critical element and g ∈ S \ T . The second edge

is (τT τg
σbS
σg
, τT ′σ

b′

S′) for some standard monomial τT ′σ
b′

S′ . Since the value of m is constant on the cycle we have

that τT ′σ
b′

S′ = τT\{f}τg
σbS
σg
σf for some f ∈ T non-critical for the monomial τT τg

σbS
σg

. These two edges are shown

below.

τTσ
b
S

τT τg
σbS
σg

τT\{f}τg
σbS
σg
σf

The sets of critical elements for τTσ
b
S and for τT τg

σbS
σg

coincide, so both g and f are non-critical for τT τg
σbS
σg

. By

minimality of g we have g ≺ f and T ≺ (T \ {f}) ∪ {g} = T ′.

We have proved that in every alternating path after two steps the set indexing the variable τ strictly
increases. Therefore there are no alternating cycles.

3.2 Multiplicative structure

We want to describe the product of two critical monomials in B(P,G).

Let (g1, g2, . . . , gk) be a list of elements in G and recall that ≺ is a linear extension of the order on G. Define

λ̃(g1, g2, . . . , gk) = (f1, f2, . . . , fk)

where fi is the unique G-factor of g1 ∨ g2 ∨ · · · ∨ gi bigger than gi guaranteed by Proposition 2.4(1). Define
λ(g1, g2, . . . , gk) = λ̃(g1, g2, . . . , gk) if (f1, f2, . . . , fk) form a G-nested set and fi ≺ fi+1 for i = 1, . . . , k − 1. Set
λ(g1, g2, . . . , gk) = 0 otherwise. We will use the convention that cµ(0) = 0 and cµ(∅) = 1. Let π ∈ Sk be a
permutation, we write π(g1, g2, . . . , gk) for the list (gπ(1), gπ(2), . . . , gπ(k)) and we denote the concatenation of
two lists T1 and T2 by T1 ∪ T2.
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Remark 3.9. If λ̃(g1, g2, . . . , gk) = (f1, f2, . . . , fk), then g1 ∨ g2 ∨ · · · ∨ gj = f1 ∨ f2 ∨ · · · ∨ fj . Moreover,
λ(g1, g2, . . . , gk) = 0 if there exist i < j such that gj ≤ gi. Indeed, fj ≤ f1 ∨ f2 ∨ · · · ∨ fj−1 and {f1, . . . , fj}
is G-nested, hence fj = fc for some c < j contradicting fc ≺ fj .

Let T1 and T2 be two lists of elements in G and π ∈ S|T1∪T2| be a permutation. If λ(π(T1 ∪ T2)) 6= 0 then
the last element of π(T1 ∪ T2) belongs to max(T1 ∪ T2).

In the particular case when G is the maximal building set and T1, T2 are chains in G, λ(π(T1 ∪ T2)) is zero
if π is not a (|T1|, |T2|)-shuffles.

The following proposition describes the multiplication of critical monomials using shuffles.

Proposition 3.10. Let T1 and T2 be G-nested sets. If cd(
∨

(T1 ∪ T2)) < cd(
∨
T1) + cd(

∨
T2), then

cµ(T1)cµ(T2) = 0. Otherwise

cµ(T1)cµ(T2) =
∑

π∈S|T1∪T2|

sgn(π)cµ(λπ(T1 ∪ T2)).

Before the proof of Proposition 3.10 we need two technical lemmas.

Lemma 3.11. Let T1 and T2 be nested sets such that T1 ∪ T2 is G-nested and cd(
∨
T1) + cd(

∨
T2) =

cd(
∨

(T1 ∪ T2)). Then

cµ(T1)cµ(T2) = (−1)scµ(T1 ∪ T2),

where s is the length of the permutation that reorder T1 and T2. Moreover:

cµ(T1)cµ(T2) =
∑

π∈S|T1∪T2|

sgn(π)cµ(λπ(T1 ∪ T2)).

Proof . Notice that [0̂,
∨

(T1 ∪ T2)] = [0̂,
∨
T1]× [0̂,

∨
T2] with the same codimension, therefore

cµ(T1)cµ(T2) = (−1)scµ(T1 ∪ T2).

Since each subset of T1 ∪ T2 is G-nested, for each π ∈ S|T1∪T2| we have λ̃π(T1 ∪ T2) = π(T1 ∪ T2) by (3) of
Proposition 2.4. Hence λπ(T1 ∪ T2) is zero for all permutations π except for the unique permutation that
reorders T1 and T2.

Lemma 3.12. Suppose that T is a G-nested set and g ∈ G such that cd(g ∨
∨
T )− cd(

∨
T ) = cd(g)−

cd(
∨
T<g). Set b = cd(g)− cd(

∨
T<g)− 1, then

cµ(T )τgσ
b
g =

∑
π∈S|T |+1

sgn(π)cµ(λπ(T ∪ {g})), (5)

where the sum is taken over all permutations of T ∪ {g}.

Proof . We prove the statement by induction on |T |.
If g ≥

∨
T , it follows directly from the definitions cµ(T )τgσ

b
g = cµ(T ∪ {g}) =

∑
π∈S|T |+1

sgn(π)cµ(λπ(T ∪
{g})).

Let f = g ∨
∨
T , h be the unique G-factor of f bigger than g and set T ′ = T≤h ∪ {g}, T ′′ = T6≤h. Notice

that T ′′ = ∅ if and only if f ∈ G. Define t′ and t′′ the cardinality of T ′ and T ′′ respectively.
If T ′′ 6= ∅, by using the inductive hypothesis and Lemma 3.11, we have

cµ(T )τgσ
b
g = (−1)scµ(T ′′)cµ(T ′ \ {g})τgσbg

= (−1)scµ(T ′′)
∑

α∈St′′

sgn(α)cµ(λα(T ′))

=
∑
α∈St′

(−1)s+sα sgn(α)cµ(T ′′ t λα(T ′))

=
∑

π∈St′+t′′

sgn(π)cµ(λπ(T ∪ {g})),
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where s corresponds to the permutation that reorders T ′′ and T ′ \ {g}, sα to the permutation that reorders
T ′′ and α(T ′). The set T ′′ ∪ λα(T ′) is G-nested for all α ∈ St′ such that λα(T ′) 6= 0 and in this case
cd(
∨
T ′′) + cd(

∨
λα(T ′)) = cd(

∨
(T ′′ ∪ λα(T ′))).

Otherwise T ′′ = ∅ and f ∈ G. Let Y = {g1, g2, . . . , gk} = max(T ∪ {g}) numbered such that g = gk. We

assume g � t for all t ∈ T , the general case differs only by a sign. We have
∏k
i=1(τgi − τf ) = 0 and so

τY =

k∑
i=1

(−1)k−iτY \{gi}∪{f}.

Set b(gi) = cd(gi)− cd(
∨
T<gi)− 1, for all i ≤ k we have (σgi − σf )

∏
j 6=i(τgj − τf ) = 0 and

0 = (σb(gi)gi − σb(gi)f )τf
∏
j 6=i

(τgj − τf ) = (σb(gi)gi − σb(gi)f )τf
∏
j 6=i

τgj ,

so τY \{gi}∪{f}σ
b(gi)
gi = τY \{gi}∪{f}σ

b(gi)
f . Therefore we have

cµ(T )τgσ
b
g = (−1)scµ(T \ Y )

k∏
i=1

τgiσ
b(gi)
gi

= (−1)scµ(T \ Y )

k∑
i=1

(−1)k−i
∏
j 6=i

τgjσ
b(gj)
gj τfσ

b(gi)
f

=

k−1∑
i=1

(−1)ti+1cµ(T \ {gi})τgσbgτfσ
b(gi)
f + cµ(T ∪ {f}),

where s (and ti) is the length of the permutation that reorder T \ Y and Y \ {g} (respectively T \ {gi} and
{gi}). The last summand corresponds to the identity permutation. Apply the inductive hypothesis on the terms
cµ(T \ {gi})τgσbg so that

(−1)ti+1cµ(T \ {gi})τgσbgτfσ
b(gi)
f =

∑
π

sgn(π)cµ(λπ(T ∪ {g}))

where the sum is taken over all permutations π in S|T |+1 that sends the element gi in the last position. Since
every π such that λπ(T ∪ {g}) 6= 0 has in the last position an element of max(T ∪ {g}), the result follows.

Proof of Proposition 3.10. For the first part notice that cµ(Ti) is in bidegree (2(cd(
∨
Ti)− |Ti|), |Ti|) for i = 1, 2.

Let f =
∨

(T1 ∪ T2), the product cµ(T1)cµ(T2) can be rewritten as sum of standard monomials using only
relations of type ∏

s∈S

(τs − τg)
∏
t∈T

(σt − σg)σbg

for
∨

(S ∪ T ) ≤ g ≤ f . The standard monomials τSσ
b
T with

∨
(S ∪ T ) ≤ f have bidegree at most (2(cd(f)−

|S|), |S|). Therefore, if cd(f) < cd(
∨
T1) + cd(

∨
T2) then cµ(T1)cµ(T2) = 0 by degree argument.

We prove the second statement by induction on |T2|. The base case T2 = ∅ is trivial. If
∨
T2 /∈ G then there

exist T3 and T4 nonempty G-nested sets such that T2 = T3 t T4 and [0̂,
∨
T2] = [0̂,

∨
T3]× [0̂,

∨
T4]. Applying

Lemma 3.11 and the inductive step we have

cµ(T1)cµ(T2) = (−1)scµ(T1)cµ(T3)cµ(T4)

= (−1)s
∑

α∈St1+t3

sgn(α)cµ(λα(T1 ∪ T3))cµ(T4)

= (−1)s
∑

α∈St1+t3

sgn(α)
∑

β∈St1+t2

sgn(β)cµ(λβ(α(T1 ∪ T3), T4))

=
∑

π∈St1+t2

sgn(π)cµ(λπ(T1 ∪ T2)),

where ti = |Ti|.
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Now we deal with the case
∨
T2 ∈ G. Let g = maxT2 ∈ G, T ′2 = T2 \ {g}, and m = cd(g)− cd(T ′2)− 1. We

have

cµ(T1)cµ(T2) = cµ(T1)cµ(T ′2)τgσ
m
g

=
∑

α∈St1+t2−1

sgn(α)cµ(λα(T1 ∪ T ′2))τgσ
m
g

=
∑

α∈St1+t2−1

sgn(α)
∑

β∈St1+t2

sgn(β)cµ(λβ(α(T1 ∪ T ′2) ∪ {g}))

=
∑

π∈St1+t2

sgn(π)cµ(λπ(T1 ∪ T2)),

where we used the inductive hypothesis on T1 and T ′2 and Lemma 3.12 on λα(T1 ∪ T ′2) and {g}.

We define the algebra of critical monomials abstractly, by generators and relations.

Definition 3.13. Let CM(P,G) be the Q-vector space generated by all the G-nested sets T ∈ n(P,G) with
bidegree (2(cd(

∨
T )− |T |), |T |). The differential is defined on the base by

d(T ) =
∑

t∈T\max(T )

(−1)|T≺t|(T \ {t})

and the product by T · S = 0 if cd(
∨

(T ∪ S)) < cd(
∨
T ) + cd(

∨
S) and

T · S =
∑

π∈S|T |+|S|

sgn(π)λ(π(T ∪ S))

otherwise. This structure makes CM(P,G) a differential bigraded algebra.

We summarize all the previous results of this section in the following theorem.

Theorem 3.14. The morphism ξ : CM(P,G)→ B(P,G) defined by ξ(T ) = cµ(T ) is an inclusion of differential
algebras and a quasi-isomorphism.

Proof . The map ξ is well defined as a morphism of Q-vector spaces. It is an inclusion since the monomials
cµ(T ) for T ∈ n(P,G) are standard monomials and are linearly independent by Corollary 2.12. The equality
d ξ = ξ d follows from Lemma 3.4 and the equality ξ(S · T ) = ξ(S)ξ(T ) from Proposition 3.10. This also proves
that CM(P,G) is a differential bigraded algebra.

Finally, the algebraic Morse theory applied to B(P,G) and the matching M ensures that there exists a
subcomplex NM such that the projection

B(P,G) � B(P,G)�NM

is a quasi-isomorphism and the quotient is freely generated by critical monomials. The composition of ξ with
the projection gives an isomorphism of chain complexes. Therefore ξ is a quasi-isomorphism.

See Section 7 for an explicit example of the construction of the algebra of critical monomials.
Let n((0̂, g),G) be the full subcomplex of n(P,G) on the set of vertices {h ∈ G | h < g}.
All the homology groups are taken with rational coefficients. We use the standard convention for the reduced

homology that H̃−1(∅) = Q.
This final theorem provides an explicit description of the cohomology of the Leray model in term of

cohomology of very small simplicial complexes.

Theorem 3.15. Let P be a polymatroid and G be a building set. Then

H •(B(P,G),d) ∼= H •(CM(P,G),d) ∼=
⊕
f∈L

⊗
g∈F

H̃2 cd(g)−2−•

(
n((0̂, g),G)

)
,

where F = F (P,G, f) is the set of G-factors of f .
In particular the summand H̃i(n((0̂, g),G)) contributes in bidegree (2(cd(g)− 2− i), 2 + i).



14 R. Pagaria and G. M. Pezzoli

Proof . Theorem 3.14 implies
H(B(P,G),d) ∼= H(CM(P,G),d).

For each flat f let CMf be the subcomplex of CM(P,G) generated by all nested sets T such that max(T ) =
F (P,G, f). Moreover for each g ∈ G set CM(g) to be the subcomplex of CM(P,G) generated by all nested sets
T such that {g} = max(T ). We have

CM(P,G) =
⊕
f∈L

CMf

and
CMf =

⊗
g∈F (P,G,f)

CM(g)

as complexes. It is enough to prove that

H •(CM(g),d) = H̃2 cd(g)−2−•

(
n((0̂, g),G)

)
.

Indeed CM(g) coincides with the reduced simplicial chain complex for n((0̂, g),G), under the correspondence
T 7→ T \ {g}. Notice that the bidegree of T ∈ CM(g) is (2(cd(g)− |T |), |T |) and the degree of T \ {g} in the
reduced chain complex is |T \ {g}| − 1 = |T | − 2.

Definition 3.13 has a straightforward generalization to integer coefficients; we left open the following
question.

Conjecture 3.16. Does Theorem 3.15 generalizes to integer coefficients?

The analogous statement in the realizable case with maximal building set was proven in [DGM00, dLS01].

4 Kähler package

Let DP•(P,G) be the graded algebra B2•,0(P,G). This algebra, in the realizable case, is the Chow ring of the
De Concini Procesi wonderful model for the subspace arrangement. A presentation of DP(P,G) is given by the
generators xg for g ∈ G with relations

xSc
b
g

where S ⊆ G, g ∈ G and b ≥ cd(g)− cd(
∨
S<g). The algebra DP(P,G) has an additive basis given by

xbS

where S ∈ n(P,G) and for each s ∈ S we have that 0 < b(s) < cd(s)− cd(
∨

(S)<s), see Corollary 2.8.
A second presentation is given by the generators σg for g ∈ G with relations

σbg
∏
s∈S

(σs − σg)

where
∨
S ≤ g and b = cd(g)− cd(

∨
S), see Theorem 2.9. The algebra DP(P,G) has an additive basis given by

σbS

where S ∈ n(P,G) and for each s ∈ S we have that 0 < b(s) < cd(s)− cd(
∨
S<s), see Corollary 2.12.

Remark 4.1. If 1̂ /∈ G then the polymatroid P is direct sum of other polymatroids. Indeed, let a1, . . . , ak
be the G-factors of 1̂, the poset L is a product

∏k
i=1[0̂, ak]. There exist polymatroids P ai (defined in the

following, see Lemma 4.12) such that P = ⊕ki=1P
ai and building sets Gai = G ∩ [0̂, ai]. Moreover, DP(P,G) =

⊗ki=1 DP(P ai ,Gai) and the dimension of DP(P,G) is cd(1̂)− |F (P,G, 1̂)| (where k = |F (P,G, 1̂)|).

For the clarity of exposition, we assume 1̂ ∈ G in this section. Consider the isomorphism

deg : DPcd(1̂)−1(P,G)→ Q defined by

deg(x
cd(1̂)−1

1̂
) = (−1)cd(1̂)−1.

Definition 4.2. Let A be a graded algebra with top degree n and deg : An → Q an isomorphism. We say that
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• the algebra A satisfies Poincaré duality if the bilinear pairing

Ak ×An−k → Q

defined by (a, b) 7→ deg(ab) is non-degenerate.

• the element ` ∈ A1 satisfies the Hard Lefschetz property if the multiplication map

·`n−2k : Ak → An−k

is an isomorphism for all k ≤ n
2 .

• the element ` ∈ A1 satisfies the Hodge-Riemann relations if the bilinear form

Qk` : Ak ×Ak → Q

defined by Qk` (a, b) = (−1)k deg(a`n−2kb) (for k ≤ n
2 ) is positive definite on the subspace

Pk = ker(·`n−2k+1 : Ak → An−k+1).

We will abbreviate these properties with PDA, HLA(`), and HRA(`) respectively.

4.1 Poincaré duality

In this subsection we give a direct proof of the Poincaré duality property for DP(P,G).

Definition 4.3. Suppose that 1̂ ∈ G and let xbS be a standard monomial. The element ε(xbS) is

ε(xbS) = (−1)|S\{1̂}|xcS+ ,

where S+ = S ∪ {1̂}, c(1̂) = cd(1̂)− cd(
∨
S<1̂)− b(1̂)− 1, and c(g) = cd(g)− cd(

∨
S<g)− b(g) for g ∈ S \ {1̂}.

We will write cS instead of c when we want to stress the dependency on S and b.

Recall the chosen monomial order with the property that if h > g then h � g and xh ≺ xg. We fix the basis

of DPk consisting in all standard monomials xbS of degree k ordered with the aforementioned monomial order.

In complementary degree DPcd(1̂)−k, we consider the basis given by ε(xbS) ordered using the monomial order on
xbS . In order to prove Poincaré duality we will show that the matrix with entries deg(xbSε(x

c
T )) is non-degenerate.

Lemma 4.4 proves that the matrix has values ±1 on the diagonal and Lemma 4.6 shows that the matrix is upper
triangular.

Lemma 4.4. If 1̂ ∈ G then for all standard monomials we have

xbSε(x
b
S) = x

cd(1̂)−1

1̂
.

Proof . We prove the statement by induction on |S \ {1̂}|. The base case S = {1̂} is trivial. For the inductive
step we choose g ∈ max(S<1̂) and set T = S \ {g, 1̂}. For the sake of notation, let n(h) = b(h) + cS(h) for all

h ∈ S+ (where cS(h) is introduced in Definition 4.3). Notice that xTxfx
n(1̂)

1̂
= 0 for all f ∈ (g, 1̂) ∩ G, because

f ∨
∨
T > g ∨

∨
T . Since xnTσ

n(g)
g = 0 by relation (ii), we have

0 = xnTσ
n(g)
g x

n(1̂)

1̂

= xnT (xg + x1̂)n(g)x
n(1̂)

1̂

= xnT (xn(g)
g + x

n(g)

1̂
)x
n(1̂)

1̂
,

where in the last equality we used xTxgx
n(1̂)+1

1̂
= 0. Therefore,

xbSε(x
b
S) = (−1)|S\{1̂}|xnTx

n(g)
g x

n(1̂)

1̂

= (−1)|S\{1̂}|−1xnTx
n(g)

1̂
x
n(1̂)

1̂

= (−1)|T\{1̂}|xnTx
n(g)+n(1̂)

1̂

= xbT ε(x
b
T ) = x

cd(1̂)−1

1̂
,

by inductive hypotheses on T .
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Let dS be the function defined by dS(1̂) = cd(1̂)− cd(
∨
S<1̂)− 1 and by dS(g) = cd(g)− cd(

∨
S<g) for

g 6= 1̂.

Lemma 4.5. Let S be a nested set, g ∈ S and xbS be a monomial such that for all h > g we have b(h) ≥ dS(h)
and b(g) > dS(h). Then xbS = 0.

The proof of the lemma is the same of [BDF21, Lemma 5.4.1 (b)]. Recall the chosen monomial order with
the property that if h > g then h � g and xh ≺ xg. We need the following statement.

Lemma 4.6. Let xbS and xcT be two standard monomials in DPk(P,G) such that xbS ≺revlex xcT . Then
xbSε(x

c
T ) = 0.

Proof . Consider T ′ and c′ such that xc
′

T ′ = ε(xcT ) and notice that T ′ \ {1̂} = T \ {1̂}. Define g = max≺{h |
b(h) 6= c(h)} and, by hypothesis, b(g) > c(g). If S ∪ T ′ is not G-nested then we have xbSε(x

c
T ) = 0. Otherwise

set A = (S ∪ T ′)≥g, by (4) of Proposition 2.4 we have that A is a chain (a1 < a2 < · · · < al) with a1 = g. For
ai 6= g, 1̂ we have

b(ai) + c′(ai) = b(ai) + cd(ai)− cd(
∨

T<ai)− c(ai)

= cd(ai)− cd(
∨

T ′<ai)

≥ cd(ai)− cd(
∨

(S ∪ T ′)<ai) = dS∪T ′(ai).

The same holds for 1̂ (the proof has a minus one in the mid steps). For a1 we have b(g) + c′(g) > dS∪T ′(g)

because b(g) > c(g). Therefore the monomial xbSε(x
c
T ) = xb+c

′

S∪T ′ satisfies the hypothesis of Lemma 4.5 and we
obtain the claimed result xbSε(x

c
T ) = 0.

Finally we can prove the Poincaré duality property:

Theorem 4.7 (Poincaré duality). If 1̂ ∈ G then the algebra DP(P,G) is a Poincaré duality algebra of dimension
cd(1̂)− 1.

More generally, DP(P,G) is a Poincaré duality algebra of dimension cd(1̂)− |F (P,G, 1̂)|.

Proof . The function ε has the property ε2 = Id, and gives a bijection between standard monomials in degree
k and in degree r − k. This, together with Corollary 2.8, shows that dim DPk(P,G) = dim DPr−k(P,G). We
consider on standard monomials the reverse lexicographical order. Lemma 4.6 ensures that the matrix of the
Poincaré pairing (in the chosen basis) is upper triangular. From Lemma 4.4 we obtain that the entries on the
diagonal are ±1 and so the Poincaré pairing is non degenerate. The last statement follows from the first one
together with Remark 4.1.

We remark that the bases of standard monomials {xbS} and {(−1)rε(xbS)} are not dual bases.

4.2 Tensor decomposition

This technical section is devoted to computing the annihilator Ann(σg) and Ann(xg) for g ∈ G. We describe it
using the Chow ring of different polymatroids: trg P , P g and Pg. In the case of matroids these operations are
known as truncation, restriction, and contraction.

The following proposition is needed for the proof of the main result of this section.

Proposition 4.8. Let A and B be Poincaré duality algebra of the same dimension n, then:

• for each x ∈ Ak, x 6= 0, the ring A/Ann(x) is a Poincaré duality algebra of dimension n− k,

• each surjective homomorphism f : A→ B is an isomorphism.

The proof of the above proposition can be found, for example, in [AHK18, Proposition 7.2, Proposition
7.13].

Let P = (E, cd) be a polymatroid with building set G. Consider g ∈ G such that cd(g) > 1 and let
trg cd: 2E → N be the function defined by:

trg cd(h) =

{
cd(h)− 1 if cd(h) = cd(h ∪ g),

cd(h) otherwise.
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We denote by trg L the poset of flats of trg cd. Finally, define

trg G = {h ∈ trg L | h ∈ G},

where h is the closure with respect to trg cd of the flat h. Notice that trg L is a subposet of L but with a different
codimension function.

Lemma 4.9. For all g ∈ G with cd(g) > 1, the pair trg P = (E, trg cd) is a polymatroid and trg G is a building
set for the poset of flats trg L.

Proof . It is easy to see that (E, trg cd) is a polymatroid. Let x ∈ trg L and notice that, for all h ∈ G, h ≤ x in
L if and only if h ≤ x in trg L. Thus, we have max trg G≤x = maxG≤x and it follows that

[0̂, x] '
∏

y∈max(G≤x)

[0̂, y] '
∏

y∈max(trg G≤x)

[0̂, y].

For the second part of the definition of a building set we have two cases. Let {y1, . . . , yn} = maxG≤x and assume
g � x, which implies g � yi for every i:

trg cd(x) = cd(x) =
∑

y∈maxG≤x

cd(y) =
∑

y∈max trg G≤x

trg cd(y).

Finally, let g ≤ x then by Proposition 2.4 there exists only one hi such that g ≤ hi. Thus, we have the following:

trg cd(x) = cd(x)− 1 =
( ∑
y∈maxG≤x

cd(y)
)
− 1 =

∑
y∈max trg G≤x

trg cd(y).

This concludes the proof.

Define the map
ζg : DP(trg P, trg G)→ DP(P,G)/Ann(σg)

by ζg(σk) = σh where h is any element in G such that h = k.

Remark 4.10. In the realizable case, this construction can be viewed geometrically: consider a generic
hyperplane H containing the flat g. The intersection of the subspace arrangement with H describes a subspace
arrangement in H whose poset of intersection is trg L. Moreover, the natural closed inclusion between the two
wonderful compactification induces a surjective map DP(P,G)→ DP(trg P, trg G) with kernel Ann(σg). The map
ζg is its pseudo-inverse.

Lemma 4.11. For g ∈ G with cd(g) > 1, the map ζg is well defined and an isomorphism. Moreover deg(α) =
deg(−σgζg(α)) for all α ∈ DP(trg P, trg G).

Proof . We show that the map ζg does not depend on the choice of h: suppose that exist h, f ∈ G such that
h = f . By symmetry we may assume h 6≥ f . Since g ∨ h = h = f = g ∨ f , we have h ∈ G, so replacing f with
g ∨ f we assume f > h. Notice that cd(f) = cd(h) + 1 and f = g ∨ h so

σg(σh − σf ) = σf (σh − σf ) = 0.

We verify that the relations (i) and (ii) of Theorem 2.9 are send to zero. Consider an antichain A ⊂ trg G
and k ∈ trg G such that k ≥

∨
A, set n = trg cd(k)− trg cd(

∨
A). Let h ∈ G such that h = k and B ⊂ G such

that bi = ai for all i. We have

σgζg

(
σnk
∏
a∈A

(σa − σk)
)

= σgσ
n
h

∏
b∈B

(σb − σh).

Notice that cd(h)− cd(
∨
B) = n unless h ≥ g and

∨
B 6≥ g in which case cd(h)− cd(

∨
B) = n+ 1. The non

trivial case is the latter. Notice also that h = g ∨
∨
B. We use the relations to obtain:

σgζg

(
σnk
∏
a∈A

(σa − σk)
)

= σgσ
n
h

∏
b∈B

(σb − σh)
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= σn+1
h

∏
b∈B

(σb − σh)

= 0.

Hence ζg is well defined.

The map is surjective because for each h ∈ G we have ζg(σh) = σh. Finally applying Proposition 4.8 we
obtain the sought isomorphism.

For the last statement it is enough to notice that σgζg(x
r−1

1̂
) = xr

1̂
.

Let P = (E, cd) be a polymatroid, G be a building set and g ∈ G any element. The restriction of the
polymatroid to the flat g is P g = (Eg, cdg) where Eg = {h ∈ E | h ≤ g} and cdg = cd|Eg . The contraction of
P = (E, cd) to the flat g is Pg = (Eg, cdg) where Eg = E \ Eg and cdg(h) = cd(h ∨ g)− cd(g).

Define Lg = [0̂, g], Gg = G ∩ Lg, Lg = [g, 1̂], and

Gg = {h ∨ g | h ∈ G \ [0̂, g]}.

The proof of the following lemma is analogous to the one of Lemma 4.9, so we omit it.

Lemma 4.12. The restriction and the contraction at g ∈ G are polymatroids with poset of flats Lg (respectively
Lg) and building set Gg (resp. Gg).

Remark 4.13. In the case of matroids M , we have for every e ∈ E that Me = treM is the contraction of the
matroid.

Define the map

ψg : DP(P g,Gg)⊗DP(Pg,Gg)→ DP(P,G)�Ann(xg)

by ψg(σh ⊗ 1) = σh and ψg(1⊗ σg∨h) = σh.

Lemma 4.14. For all g ∈ G \ {1̂} the map ψg is well defined and it is an isomorphism. Moreover, deg(α) deg(β) =
deg(xgψg(α⊗ β)) for all α ∈ DP(P g,Gg) and β ∈ DP(Pg,Gg).

Proof . We verify that ψg(1⊗ σg∨h) does not depend on the choice of the element h. Suppose that there exist
h, f ∈ G such that g ∨ h = g ∨ f and h, f 6≤ g. By symmetry we may assume h 6≥ f . Replacing f with g ∨ f we
assume f > h, then

xg(σh − σf ) = xg
∑
l≥h
l 6≥g

xl = 0,

because {g, l} cannot be G-nested since g < f ≤ g ∨ l and l 6≥ g.

We verify that all relations in the domain are mapped to zero. The ones in DP(P g,Gg) hold also in
DP(P,G) trivially. Consider h ∈ G and S ⊂ G an antichain such that

∨
S ≤ h and s 6≤ g for all s ∈ S. Set

n = cd(g ∨ h)− cd(g ∨
∨
S). There are two cases:

• if g ∨ h 6∈ G then n = cd(h)− cd(
∨
S) and

xgψg

(
1⊗ σng∨h

∏
a∈S

(σg∨s − σg∨h)
)

= xgσ
n
h

∏
a∈S

(σs − σh) = 0,

• if g ∨ h ∈ G then

xgψg

(
1⊗ σng∨h

∏
s∈S

(σg∨s − σg∨h)
)

= xgσ
n
g∨h

∏
s∈S

(σs − σg∨h)

=
∑
A

xgxAσ
n
g∨h,

where the sum is taken over all sets A = {a1, . . . ak} such that ai ≥ si and ai 6≥ g ∨ h. Applying Lemma
2.10 to g ∨ h, S ∪ {g} and A ∪ {g} we obtain that each term xgxAσ

n
g∨h is zero.
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The map ψg is surjective because either h ∈ Gg or g ∨ h ∈ Gg for all h ∈ G. We apply Proposition 4.8,
DP(L,G)/Ann(xg) is a Poincaré duality algebra of dimension cd(1̂)− 2. The algebra DP(P g,Gg)⊗DP(Pg,Gg)
is Poincaré duality of dimension (cd(g)− 1) + (cd(1̂)− cd(g)− 1) (here is the only point were we use g 6= 1̂).
Since ψg is surjective between Poincaré duality algebras of the same dimension, it is an isomorphism.

For the last statement we have

xgψg(x
cd(g)−1
g ⊗ xcd(1̂)−cd(g)−1

1̂
) = xgσ

cd(g)−1
g x

cd(1̂)−cd(g)−1

1̂

= (xg − σg)σcd(g)−1
g x

cd(1̂)−cd(g)−1

1̂

= −x1̂σ
cd(g)−1
g x

cd(1̂)−cd(g)−1

1̂

= −xcd(1̂)−1

1̂
,

so deg(x
cd(g)−1
g ) deg(x

cd(1̂)−cd(g)−1

1̂
) = (−1)cd(1̂) = deg(−xcd(1̂)−1

1̂
).

4.3 Hard Lefschetz and Hodge-Riemann

We define a simplicial cone Σ ⊂ DP1(P,G) and we will show that each element ` ∈ Σ satisfies Hard Lefschetz
and Hodge-Riemann relations.

Definition 4.15. The σ-cone ΣP,G ⊂ DP1(P,G) is the convex cone

ΣP,G =
{
−
∑
g∈G

dgσg | dg > 0
}
.

Let a ∈ E be an atom in L, i.e. the interval (0̂, a) is empty. Consider the set

{g ∈ G \ {a} | g 6= S for all S ⊆ E \ {a}}, (6)

of all elements g ∈ G that cannot be written as the closure of some subset S ⊂ E not containing a. Define E(a)
as the disjoint union of E \ {a} and the minimal elements of the set in (6). Define the pair P (a) = (E(a), cd),
where with a slight abuse of notation

cd({e1, . . . , el, g1, . . . , gk}) = cd({e1, . . . , el} ∪ g1 ∪ · · · ∪ gk}).

We also define G(a) = G \ {a}. The polymatroid P (a) depends on G but we omit this dependency in our notation.
In the realizable case, this polymatroidal operation corresponds to remove only the subspace Sa from the

building set G and from the arrangement A. Now, there are subspaces in the lattice of flats LA that are not
flats of A \ Sa. Among them we want to keep trace only of the ones blown up, i.e. belonging to G; so we add to
the deleted arrangement A \ Sa all the flats corresponding to minimal elements in the set (6).

Lemma 4.16. The pair P (a) = (E(a), cd) is a polymatroid and G(a) is a building set for the poset of flats of
P (a).

Proof . It is easy to see that (E(a), cd) is a polymatroid and that the lattice of flats LP (a) of P (a) is a subposet
of the lattice of flats L of P . We verify that G(a) is a building set. We check the definition for all x ∈ LP (a): if
a is not a G-factor of x then max(G≤x) = max(G(a)≤x) and it follows from the properties of G. Otherwise, a is
a G-factor of x and x cannot lie in the lattice LP (a) generated by G \ {a}.

Lemma 4.17. For an atom a ∈ E, a 6= 1̂, consider the element µ0 = (xa − σa)cd(a). There exists an isomorphism:

pa : DP(Pa,Ga)→ DP(P (a),G(a))�Ann(µ0).

Moreover, deg(α) = deg(µ0pa(α)) for all α ∈ DP(Pa,Ga).

Proof . Notice that µ0 = (xa − σa)cd(a) is a multiple of xa because σ
cd(a)
a = 0, hence Ann(xa) ⊆ Ann(µ0). Define

the morphism pa as the composition

DP(Pa,Ga) ↪→ DP(P a,Ga)⊗DP(Pa,Ga)
ψa−−→ DP(P,G)/Ann(xa) � DP(P,G)/Ann(µ0),
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where the first map is the inclusion x 7→ 1⊗ x. Explicitly pa(σa∨h) = [σh] for all h 6= a. Since G(a) is a subset of
G, DP(P (a),G(a)) is a subalgebra of DP(P,G). The range of the map pa is equal to DP(P (a),G(a))/Ann(µ0), so
the morphism in the statement is well defined and surjective. Since a 6= 1̂ we have µ0 6= 0 and by Proposition 4.8
the map pa is an isomorphism, because both algebras satisfy Poincaré duality of dimension cd(1̂)− cd(a)− 1.

For the last statement we have µ0pa(x
cd(1̂)−cd(a)−1

1̂
) = (−1)cd(a)x

cd(1̂)−1

1̂
and so deg(x

cd(1̂)−cd(a)−1

1̂
) =

(−1)cd(1̂)−cd(a)−1 = deg((−1)cd(a)x
cd(1̂)−1

1̂
).

Lemma 4.18. Let a ∈ E, a 6= 1̂, be an atom and µ0 = (xa − σa)cd(a). Consider the polynomial p(x) =∑cd(a)
i=0

(
cd(a)
i

)
xi(xa − σa)cd(a)−i, then

DP(P (a),G(a))[x]�(xAnn(µ0), p(x))
∼= DP(P,G).

Proof . Define the morphism

DP(P (a),G(a))[x]→ DP(P,G)

by σg 7→ σg and x 7→ −xa. By Lemmas 4.17 and 4.14 the elements of the form xAnn(µ0) are in the kernel. Also
p(x) is in the kernel because its image is (−σa)cd(a) = 0. Clearly, the map is surjective.

Notice that if A is a Poincaré duality algebra and p(x) ∈ A[x] a monic polynomial with constant term µ0 then

A[x]/(xAnn(µ0), p(x)) is a Poincaré duality algebra. Indeed, if a generic element
∑j

i=0 aix
i (with aj 6∈ Ann(µ0)

and j < deg(p)) of degree k is orthogonal to all elements of degree n− k, then (
∑j

i=0 aix
i)a′ = 0 for all a′ ∈ An−k.

This implies a0a
′ = 0 and a0 = 0. Moreover, (

∑j
i=1 aix

i)a′xdeg(p)−j = 0 implies aja
′µ0 = 0 and ajµ0 = 0 by

Poincaré duality in A, contradicting the fact aj 6∈ Ann(µ0). In particular, DP(P (a),G(a))[x]/(xAnn(µ0), p(x))
is a Poincaré duality algebra of dimension cd(1̂)− 1.

The map DP(P (a),G(a))[x]→ DP(P,G) is injective by Proposition 4.8 because domain and codomain are
Poincaré duality algebras of the same dimension equal to cd(1̂)− 1.

The following theorem provides an abstract procedure to prove the Hodge-Riemann relations inductively.

Theorem 4.19. Let C be a Poincaré duality algebra and p(x) = xd + µd−1x
d−1 + · · ·+ µ0 = 0 ∈ C[x] be a

homogeneous polynomial with µ0 6= 0. Let B = C/Ann(µ0) and A = C[x]/(xAnn(µ0), p(x)). Let ` ∈ C1 be an
element satisfying HRC(`) and HRB(`). Then HRA(`+ εx) holds for sufficiently small positive ε.

In the above theorem the degree function on B is induced by µ0, i.e. degB(α) = degC(αµ0). Since the top
degrees coincide Atop = Ctop, we also implicitly assume that degA = degC .

The proof of Theorem 4.19 is the same of the proof of [AHK18, Proposition 8.2], so we omit it.

The following easy lemma shows that the maps introduced in Section 4.2 preserve the Σ-cone.

Lemma 4.20. The following holds:

1. For any g ∈ G, g 6= 1̂ the natural map

DP1(P,G)→ DP1(P g,Gg)⊕DP1(Pg,Gg)

induced by the quotient by Ann(xg) composed with ψ−1
g , maps ΣP,G into ΣP g,Gg × ΣPg,Gg .

2. For any g ∈ G the morphism

DP1(P,G)→ DP1(trg P, trg G)

induced by the quotient by Ann(σg) composed with ζ−1
g , maps ΣP,G into Σtrg P,trg G .

3. For any atom a ∈ E, a 6= 1̂ the natural map

DP1(P (a),G(a))→ DP1(Pa,Ga)

induced by the quotient by Ann(µ0) composed with p−1
a , maps ΣP (a),G(a) into ΣPa,Ga .

Proof .
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1. Let l = −
∑

h∈G dhσh be an element of the σ-cone, we have

ψ−1
g ([l]) = −

∑
h≤g

dhσh ⊗ 1−
∑
h�g

dh ⊗ σg∨h.

It may occur that there are two different h, h′ ∈ G such that g ∨ h = g ∨ h′ but, also in this case, the
coefficient of 1⊗ σg∨h is still negative. It follows that ψ−1

g ([l]) ∈ ΣP g,Gg × ΣPg,Gg .

2. Let l = −
∑

h∈G dhσh be an element of the σ-cone, we have

ζ−1
g ([l]) = −

∑
h∈G

dhσh̄.

It may occur that there are two different h, h′ ∈ G such that h̄ = h̄′ but, also in this case, the coefficient
of σh̄ is still negative. Thus, ζ−1

g ([l]) ∈ Σtrg P,trg G .

3. Let l = −
∑

h∈G dhσh be an element of the σ-cone, we have

p−1
a ([l]) = −

∑
h∈G

dhσa∨h.

It may occur that there are two different h, h′ ∈ G such that a ∨ h = a ∨ h′ but, also in this case, the
coefficient of σa∨h is still negative. It follows that p−1

a ([l]) ∈ ΣPa,Ga .

Now we are ready to prove the main theorem.

Theorem 4.21. For every element ` in the σ-cone ΣP,G the conditions HLDP(P,G)(`) and HRDP(P,G)(`) hold.

Proof . We prove the statement by induction on |G| and cd(1̂). The base case is |G| = 1, so DP(P,G) =

Q[x1̂]/(x
cd(1̂)

1̂
). In this case, it is known that −λx1̂ satisfies Hard Lefschetz and Hodge-Riemann for all positive

λ.
For the inductive step consider a polymatroid P , a building set G, and an element ` ∈ ΣP,G . Under the

morphisms of Lemma 4.20 Item 2 ` is mapped in Σtrg P,trg G for all g ∈ G. Therefore by the inductive hypothesis
the image of ` in DP(P,G)/Ann(σg) satisfies Hodge-Riemann relations for all g ∈ G. Notice also that ` is a sum
of −σg with positive coefficients. By [AHK18, Proposition 7.15], HLDP(P,G)(`) holds.

We want to prove that the Hodge-Riemann relations hold for all ` ∈ ΣP,G . By [AHK18, Proposition 7.16]
it is enough to prove HRDP(P,G)(`) for some ` ∈ ΣP,G . We apply Theorem 4.19: consider any atom a ∈ E, since

|G| > 1 then a 6= 1̂. Set C = DP(P (a),G(a)) and p(x) =
∑cd(a)

i=0

(
cd(a)
i

)
xi(xa − σa)cd(a)−i; Lemma 4.17 ensures

that B = DP(Pa,Ga) and Lemma 4.18 that A = DP(P,G). Let ` ∈ ΣP (a),G(a), then under the morphism C → B
(Lemma 4.20 Item 3) the class ` is mapped in ΣPa,Ga . By the inductive hypothesis we have HRDP(P (a),G(a))(`)
and HRDP(Pa,Ga)(`), hence by Theorem 4.19 HRDP(P,G)(`− εxa) holds for sufficiently small ε > 0.

Moreover if ε is small enough then `− εxa belongs to ΣP,G . Indeed using the Möbius inversion formula we
have

xa =
∑
g≥a

µG(a, g)σg

(where we consider G as a sub-poset of L). Let ` = −
∑

g∈G dgσg, taking ε smaller than

min
g≥a

{∣∣∣ dg
µG(a, g)

∣∣∣} ,
then `− εxa ∈ ΣP,G . This concludes the proof.

Remark 4.22. The ample cone depends on the geometric realization, however our σ-cone is contained in the
ample cone of every realization. Indeed, consider 3 distinct lines in C3 and let P be the polymatroid realized by
this subspace arrangement. The projective wonderful model is the blowup of P2 in 3 distinct points; there are
two cases. If the three points are collinear the ample cone coincides with the σ-cone. Otherwise the three points
are in general position and the ample cone is

{−d1̂x1̂ − daxa − dbxb − dcxc | d1̂ > da + db, d1̂ > da + dc, d1̂ > db + dc}

which strictly contains the σ-cone.
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Remark 4.23. If we restrict to the case of matroids with arbitrary building sets, the generator x1̂ can be
eliminated using the relation x1̂ = −

∑
g≥e, g 6=1̂ xg for any e ∈ E. Thus the Hard Lefschetz theorem (and so

the Hodge-Riemann relations) can be proven for the entire ample cone using as generators {xg}g 6=1̂ instead of
{σg}g∈G and Lemma 4.14 instead of Lemma 4.11.

5 The relative Lefschetz decomposition

In this section we provide a decomposition of DP(P,G) as DP(P \ a,G \ a)-module. This is analogous to the
semi-small decomposition of [BHM+22], but in this more general setting the corresponding map is not always
semi-small.

Indeed, consider an arrangement of hyperplanes A and the deleted arrangement A′ = A \ {H} for some
hyperplane H ∈ A. There is a projection map between the wonderful models YA → YA′ (constructed using the
maximal building sets). This map is semi-small and induces the semi-small decomposition of the Chow ring.

In the case of subspace arrangements, the projection between the wonderful models exists but is not semi-
small, because the dimension of the fiber of the blow up is too big. Therefore, the proof of the Kähler package
done in [BHM+22] for matroids cannot be adapted to polymatroids.

Recall that for a polymatroid P = (E, cd) an atom a ∈ E is an element such that the interval (0̂, a) ⊂ L is
empty (where a is the closure of a).

Definition 5.1. For an atom a define the polymatroid P \ a on the ground set E \ {a} with the restricted
codimension function cd. The building set G \ a is the intersection of G with the poset of flats of P \ a.

Define a map

θa : DP(P \ a,G \ a)→ DP(P,G)

by θa(σh) = σh where h is the closure of h in P . Define the subalgebra DP(a) = Im(θa).

Lemma 5.2. The map θa is injective.

Proof . Consider a standard monomial σbS ∈ DP(P \ a,G \ a) and let S = {h | h ∈ S}. We have θa(σbS) = σb
S

and

it is enough to prove that σb
S

is a standard monomial. Notice that h ∨ g = h ∨ g and the map between the two

poset of flats is an inclusion. Therefore S is G-nested. Since cd(h) = cd(h), then σb
S

is a standard monomial.

Let Sa = {g ∈ G | a ∈ g and g \ {a} ∈ L} be the set of all flats such that a is a coloop for that flat.

Remark 5.3. Notice that θa(xg) = xg + xg∪{a}, where we use the convention that xh = 0 if h is not a flat of

P . Moreover DP(a) is generated as an algebra by σg with g /∈ Sa and as vector space by the monomials σbS with
S ∩ Sa = ∅.

For f ∈ Sa define DPf as the DP(a)-submodule of DP(P,G) generated by xf , x
2
f , . . . x

nf
f , where

nf = cd(f)− cd(f \ {a})− 1 + |F (P,G, f \ {a})|.

For a graded module M = ⊕iM i we define M [k] to be the graded module such that (M [k])i = M i+k.

Theorem 5.4. Let a be an atom, then:

xkf DP(a)[−k] ∼= DP((P \ a)f\a, (G \ a)f\a)⊗DP(Pf ,Gf ), (7)

DPf =

nf⊕
k=1

xkf DP(a), (8)

DP(P,G) = DP(a)⊕
⊕
f∈Sa

DPf . (9)

as DP(a)-modules. Moreover, the last decomposition is orthogonal with respect to the Poincaré pairing, with
the exception of the summand DP(a) and DP1̂ (if a is a coloop).

For an example of the application of Theorem 5.4 see Section 7. Before the proof of the above theorem we
need some lemmas.
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Lemma 5.5. For all f ∈ Sa and k ≤ nf we have

xfσ
k−1
f DP(a)[−k] ∼= DP((P \ a)f\a, (G \ a)f\a)⊗DP(Pf ,Gf ), (10)

and these modules are in direct sum in DP(P,G).

Proof . Notice that for k ≤ nf

DP((trk−1
f (P f )) \ a, (trk−1

f (Gf )) \ a) = DP((P \ a)f\a, (G \ a)f\a).

Using Lemmas 4.14 and 4.11 we obtain the isomorphism

xfσ
k−1
f DP(P,G)[−k] ' DP(trk−1

f (P f ), trk−1
f (Gf ))⊗DP(Pf ,Gf ).

It is easy to check that the above isomorphism restricts to the one in eq. (10). For the second claim suppose
that there exists a linear combination

nf∑
k=l

σk−1
f pk = 0,

for some pk ∈ DP((P \ a)f\a, (G \ a)f\a) with pl 6= 0. The above equality implies

nf∑
k=l

σk−lf pk = 0

in DP(trl−1
f P f , trl−1

f Gf ). Therefore pl belongs to the ideal generated by σf (where f is the top element in the

poset of flats of trl−1
f P f ). The ideal (σf ) is linearly generated by all monomials σbT with f ∈ T . This yields a

contradiction since pl lies in DP((P \ a)f\a, (G \ a)f\a), which does not contain the generator σf .

Lemma 5.6. For all elements f, g ∈ Sa such that f 6≥ g we have xfσg = xfσg\{a}. Moreover, we have

DPf =

nf⊕
k=1

xfσ
k−1
f DP(a) .

Proof . Consider h ∈ G such that h ≥ g \ {a} and h 6≥ g, we need to prove that xfxh = 0. Notice that {f, h} is
an antichain, f ∨ g ∈ G and so (f ∨ g) ∨ h ∈ G because g \ {a} 6= 0̂. Therefore

f ∨ h = (f ∨ a) ∨ ((g \ {a}) ∨ h) = f ∨ g ∨ h ∈ G,

{f, h} is not G-nested, and xfxh = 0.

For the second statement it is sufficient to prove that xfσ
k−1
f = xkf + z with some z ∈

∑k−1
j=1 x

j
f DP(a). Write

σf = xf +
∑

g>f bgσg for some coefficients bg ∈ Z, then

xfσf = x2
f + xf

∑
g>f
g/∈Sa

bgσg + xf
∑
g>f
g∈Sa

bgσg\{a},

and all the summands (except x2
f ) belong to xf DP(a). An inductive argument on the exponent k concludes the

proof.

Lemma 5.7. The submodules DP(a) and DPf for all f ∈ Sa generate DP(P,G).

Proof . We prove that each monomial σbS belongs to the submodule M := DP(a) +
∑

F∈Sa DPF by complete
induction on f = min(S ∩ Sa) and on b(f).

The base case is S ∩ Sa = ∅ and so σbS ∈ DP(a). For the inductive step notice that S ∩ Sa is G-nested, so it

is a chain. Call f = min(S ∩ Sa) and suppose that all monomials σb
′

S with b′(f) < b(f) and all monomials σb
′

S′

with min(S′ ∩ Sa) > f belong to M .
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Let {g1, . . . , gl} = F (P,G, f \ {a}) be the set of G-factors of f \ {a}. The relation

σ
cd(f)−cd(f\{a})
f

k∏
i=1

(σgi − σf ) = 0,

holds and in the case b(f) > nf we can rewrite σ
b(f)
f σT\{f} as sum of monomials with b′(f) < b(f) using the

above relation and the fact that gi 6∈ Sa.
In the case b(f) ≤ nf we have

σbS = xfσ
b(f)−1
f σbS\{f} + (σf − xf )σ

b(f)−1
f σbS\{f}.

Using the first assertion of Lemma 5.6, it follows that the element xfσ
b(f)−1
f σbS\{f} belongs to

xfσ
b(f)−1
f DP(a) ⊂M . The second summand (σf − xf )σ

b(f)−1
f σbS\{f} is a linear combination of monomials

σhσ
b(f)−1
f σbS\{f} with h > f and so belongs to M by the inductive hypothesis.

Proof of Theorem 5.4. As in Remark 4.1, we may assume that 1̂ ∈ G. By Lemmas 5.6 and 5.5, DPf is a
free DP((P \ a)f\a, (G \ a)f\a)⊗DP(Pf ,Gf )-module with basis xfσ

k−1
f for k = 1, . . . , nf . The elements {xkf}k

written in the basis {xfσk−1
f }k form an upper triangular matrix with ones on the diagonal (the inverse of the

one given in Lemma 5.6). Eq. (7) and eq. (8) follow.
In order to prove eq. (9) we first prove the orthogonality. Let f 6= 1̂; the elements DPf and DP(a) are

orthogonal because the product is contained in DPf which is zero in degree cd(1̂)− 1. Indeed from eq. (7) and
eq. (8), it follows that the top degree of DPf is cd(1̂)− 2.

Consider generic elements xbfy ∈ DPf and xcgz ∈ DPg in complementary degrees (with y, z ∈ DP(a)). The
product is zero if f and g are incomparable. Otherwise, by symmetry we may assume g > f , hence

xfx
c
g = xf (xg + xg\{a})

c.

Since xg + xg\{a} ∈ DP(a), we obtain that the product lie in DPf . Again the top degree is zero since f 6= 1̂.
We prove that if a is a coloop then DP(a) ∩DP1̂ = 0. In that case DP1̂ is the ideal generated by σ1̂. This ideal

is linearly generated by all standard monomials σbS with 1̂ ∈ S. Since 1̂ ∈ Sa then DP(a) ∩DP1̂ = 0. The direct
sum of eq. (9) follows from the orthogonality of all other summands together with Lemma 5.7 and Theorem
4.7.

6 Characteristic polynomial

In this section we study the coefficients of the (reduced) characteristic polynomial of a polymatroid.
We consider only maximal building sets, so we omit the building set from the notations. Moreover we

suppose that the polymatroid is without loops, i.e. cd({e}) > 0 for all e ∈ E.
Let α = αP = −x1̂ and β = βP =

∑
g∈Gmax

xg be two elements in DP1(P ). We denote by µL(a, b) the Möbius
function of L.

Lemma 6.1. For any polymatroid P with cd(E) > 0 and r = cd(E)− 1 we have

deg(βrP ) = (−1)r +
∑

g∈L\{0̂,1̂}

(−1)cd(g)−1 deg(β
r−cd(g)
Pg

).

Proof . A flag with repetition is F = (F a11 ( F a22 ( · · · ( F all ) where ai > 0 are the multiplicity of the flats

Fi ∈ L. We also require that
∑l

i=1 ai = r. Define xF =
∏|F|
i=1 x

ai
Fi

, we will prove that xF = 0 if cd(F1) > a1.

More generally we have xF = 0 if cd(Fi) >
∑i

j=1 aj for some i, but we prove and use the implication only for
i = 1. From the isomorphism ψg of Lemma 4.14 we obtain

xF = xF1ψF1((xF1 ⊗ 1− 1⊗ βPg )a1−1(1⊗ xF ′)),

where F ′ = (F a22 ( · · · ( F all ). Notice that the degree of xF ′ is r − a1, which is greater than r − cd(F1), the top
degree of DP(Pg).
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Let
(
r
a

)
be the multinomial coefficient where a = (a1, . . . , al) and

∑l
i=1 ai = r. Since xfxg = 0 if f and g

are incomparable, we have

βrP =
∑

F flag of P

(
r

a

)
xF

=
∑

F∈L\{0̂}

∑
F flag of P
F1=F

(
r

a

)
xF

=
∑

F∈L\{0̂}

r∑
k=cd(F )

(
r

k

)
xkF

∑
F ′ flag of PF

(
r − k
a′

)
xF ′

=
∑

F∈L\{0̂}

r∑
k=cd(F )

(
r

k

)
xkFβ

r−k
PF

.

The summand relative to F = 1̂ is exactly xr
1̂

and contributes (−1)r to deg(βrP ). It is enough to prove

deg
( r∑
k=cd(g)

(
r

k

)
xkgβ

r−k
Pg

)
= deg(β

r−cd(g)
Pg

)

for every g ∈ L \ {0̂, 1̂}. We use Lemma 4.14 to obtain:

deg
( r∑
k=cd(g)

(
r

k

)
xkgβ

r−k
Pg

)
=

=

r∑
k=cd(g)

(
r

k

)
deg((xg ⊗ 1− 1⊗ βPg )k−1(1⊗ βr−kPg

))

=

r∑
k=cd(g)

(−1)k−cd(g)

(
r

k

)(
k − 1

cd(g)− 1

)
deg(xcd(g)−1

g ⊗ βr−cd(g)
Pg

)

=

r∑
k=cd(g)

(−1)k−1

(
r

k

)(
k − 1

cd(g)− 1

)
deg(β

r−cd(g)
Pg

)

= (−1)cd(g)−1 deg(β
r−cd(g)
Pg

),

where in the last equality we used the identity

r∑
k=cd(g)

(−1)k
(
r

k

)(
k − 1

cd(g)− 1

)
= (−1)cd(g)

which follows from [GKP94, eq. 5.24] with l = r, m = 0, n = cd(g)− 1, and s = −1.

Lemma 6.2. For every polymatroid P with poset of flats L and r = cd(E)− 1 with cd(E) > 0 we have

deg(βrP ) = (−1)cd(E)µL(0̂, 1̂).

Proof . It is known that µL(0̂, 1̂) = χ̃(∆(0̂, 1̂)), i.e. the Möbius function coincides with the reduced Euler
characteristic of the order complex of the poset L \ {0̂, 1̂} (e.g. see [Rot64]). Let Lop be the opposite (dual)
lattice of L which is defined on the same set of L but with reversed order, i.e., x ≤ y in Lop if and only if y ≤ x
in L. Since the order complexes of L and Lop are the same simplicial complex, we have

µL(0̂, 1̂) = µLop(0̂, 1̂).

Define deg(β0
P ) = 1 for rank zero polymatroids P . Therefore, the functions (−1)cd(E) deg(βrP ) and µLop(0̂, 1̂)

satisfy the same recurrence relation. One is given by the definition of µLop(0̂, 1̂) and the other by Lemma 6.1.
This concludes the proof.
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Notice that if L is a geometric lattice (i.e. the poset of flats of a matroid), then the Möbius function has
alternating sign, hence in this case deg(βr) ∈ N0.

Definition 6.3. The characteristic polynomial of a polymatroid P is

χP (λ) =
∑
g∈L

µL(0̂, g)λdim(g),

where dim(g) = cd(1̂)− cd(g). Since χP (1) = 0 by the definition of Möbius function, we define the reduced
characteristic polynomial as

χP (λ) =
χP (λ)

λ− 1
.

This definition of reduced characteristic polynomial coincides with the one in the introduction eq. (1), as
stated in [Whi93].

Theorem 6.4. For every polymatroid P , we have

χP (λ) =

r∑
i=0

(−1)i degP (αiPβ
r−i
P )λi

where r = cd(E)− 1.

Proof . We show that χP (λ) and the right hand side satisfy the same recurrence:

qP (λ)− λqtr1̂ P
(λ) = −µL(0̂, 1̂)

where L is the poset of flats of P .
Let tr1̂ L be the poset of flats of tr1̂ P and notice that µL(0̂, g) = µtr1̂ L

(0̂, g) for all g such that dim(g) > 1.
Therefore χP (λ)− λχtrP (λ) is a polynomial of degree one divisible by λ− 1. Hence χP (λ)− λχtrP (λ) is constant
and equal to χP (0) = −µL(0̂, 1̂). This proves that χP (λ) satisfies the recurrence.

Now observe that for i > 0 degP (αiPβ
r−i
P ) = degtrP (αi−1

trPβ
r−i
trP ) by Lemma 4.11. This proves that

r∑
i=0

(−1)i degP (αiPβ
r−i
P )λi − λ

r−1∑
i=0

(−1)i degtrP (αi−1
trPβ

r−i
trP )λi =

= (−1)r degP (βr),

and so Lemma 6.2 proves the recurrence.
The base case cd(E) = 1 is trivial, so the proof follows.

For an explicit example check Section 7.

Corollary 6.5. The coefficient of λi of the reduced characteristic polynomial χP (λ) is (up to the sign) the
reduced Euler characteristic of the order complex of the poset (tri

1̂
L) \ {0̂, 1̂}:

[λi]χP (λ) = (−1)cd(E)χ̃(∆((tri
1̂
L) \ {0̂, 1̂})).

Proof . It follows from Theorem 6.4 and Lemma 6.2.

Remark 6.6. The coefficients of the characteristic polynomial χP and of the reduced characteristic polynomial
χP do not form a log-concave sequence. Indeed if P1 is the polymatroid associated to 4 subspaces of codimension
2, 3, 4, 4 in C5 in general position, then

χP1
(λ) = λ5 − λ3 − λ2 − 2λ+ 3,

which is not log-concave. Let P2 be the polymatroid on E = {a, b, c, d, e} with rank defined by cd(a) = 2,
cd(b) = 3, cd(c) = 4, cd(d) = 4, cd(e) = 1, by cd(A) = 6 if |A| ≥ 3 and cd({x, y}) = min{5, cd(x) + cd(y)}. The
reduced characteristic polynomial is not log-concave because

χP2
(λ) = λ5 − λ3 − λ2 − 2λ+ 6.
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1̂

0̂

a b

c

ab

2

2 2

2

1

4

1

Figure 1: The Hasse diagram of the poset of flats L of Section 7

1̂

a

b

c

Figure 2: The nested set complex n(P,G).

2 1 2 1
1 3 7 7 3
0 1 4 5 4 1

0 1 2 3 4

Table 1: The dimensions of B2p,q(P,G)/(e1) in position (p, q).

7 An example

Let E = {a, b, c} and cd: 2E → N the function defined by

cd(a) = cd(b) = 2, cd(ab) = cd(c) = 4,

cd(ac) = cd(bc) = cd(abc) = 5.

This function defines a polymatroid P with poset of flats L shown in Figure 1. Near every cover relation, the
relative codimension of the two flats is shown. This polymatroid is realizable: a realization is the collection in
C5 of two subspace of dimension 3 and a line in general position.

Consider the (minimal) building set G = {a, b, c, 1̂}; the nested set complex n(P,G) is shown in Figure 2.
The algebra B(P,G) is generated by xa, xb, xc, x1̂, ea, eb, ec, e1̂ with relations:

eaec = ebec = 0 xaxc = xbxc = 0

xaec = xbec = 0 eaxc = ebxc = 0

(xa + x1̂)2 = (xb + x1̂)2 = 0 (xc + x1̂)4 = 0

x5
1̂

= 0 xcx1̂ = ecx1̂ = 0

xax
3
1̂

= eax
3
1̂

= 0 xbx
3
1̂

= ebx
3
1̂

= 0

xaxbx1̂ = eaxbx1̂ = 0 eaebx1̂ = xaebx1̂ = 0

The homogeneous component B4,1(P,G) has dimension 12 and the additive basis provided by Corollary 2.8 is:

e1̂xaxb, e1̂xax1̂, e1̂xbx1̂, e1̂x
2
c , e1̂x

2
1̂
,

eaxaxb, eaxax1̂, eax
2
1̂
, ebxaxb, ebxax1̂, ebx

2
1̂
, ecx

2
c .

Notice that B(P,G) = B(P,G)/(e1̂)⊗ 〈1, e1̂〉 and their dimensions are reported in Tables 1 and 2.
The other presentation of B(P,G) is given by generators σa, σb, σc, σ1̂, τa, τb, τc, τ1̂ and relations:

(τa − τ1̂)(τc − τ1̂) = 0 (τb − τ1̂)(τc − τ1̂) = 0 σ4
c = 0

(σa − σ1̂)(σc − σ1̂) = 0 (σb − σ1̂)(σc − σ1̂) = 0 σ2
a = 0
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3 1 2 1
2 4 9 8 3
1 4 11 12 7 1
0 1 4 5 4 1

0 1 2 3 4

Table 2: The dimensions of B2p,q(P,G) in position (p, q).

3 0 0 1
2 0 0 1 3
1 0 2 0 1 1
0 1 0 0 0 0

0 1 2 3 4

Table 3: The dimensions of CM(P,G) in position (p, q).

3 0 0 0
2 0 0 1 1
1 0 2 0 1 0
0 1 0 0 0 0

0 1 2 3 4

Table 4: The dimensions of H2p,q(B(P,G),d) in position (p, q).

(σa − σ1̂)(τc − τ1̂) = 0 (σb − σ1̂)(τc − τ1̂) = 0 σ2
b = 0

(τa − τ1̂)(σc − σ1̂) = 0 (τb − τ1̂)(σc − σ1̂) = 0 σ5
1̂

= 0

(σc − σ1̂)σ1̂ = 0 (τc − τ1̂)σ1̂ = 0 (σa − σ1̂)σ3
1̂

= 0

(τa − τ1̂)σ3
1̂

= 0 (σb − σ1̂)σ3
1̂

= 0 (τb − τ1̂)σ3
1̂

= 0

(σa − σ1̂)(σb − σ1̂)σ1̂ = 0 (τa − τ1̂)(σb − σ1̂)σ1̂ = 0

(τa − τ1̂)(τb − τ1̂)σ1̂ = 0 (σa − σ1̂)(τb − τ1̂)σ1̂ = 0

The homogeneous component B4,1(P,G) has dimension 12 and the additive basis provided by Corollary
2.12 is:

τ1̂σaσb, τ1̂σaσ1̂, τ1̂σbσ1̂, τ1̂σ
2
c , τ1̂σ

2
1̂
,

τaσaσb, τaσaσ1̂, τaσ
2
1̂
, τbσaσb, τbσaσ1̂, τbσ

2
1̂
, τcσ

2
c .

The set of critical monomials is:

1, τaσa, τbσb, τcσ
3
c , τ1̂σ

4
1̂
, τaτbσaσb, τaτ1̂σaσ

2
1̂
, τbτ1̂σbσ

2
1̂
, τcτ1̂σ

3
c , τaτbτ1̂σaσb,

and the dimensions of CM2p,q(P,G) are given in Table 3. The rank of the cohomology group of (B(P,G),d) are
given in Table 4

As an example we have

d(cµ(ab1̂)) = d(τaτbτ1̂σaσb) = τaτbσ1̂σaσb

= τbτ1̂σbσ
2
1̂
− τaτ1̂σaσ

2
1̂

= cµ(b1̂)− cµ(a1̂),

that coincides with d((a, b, 1̂)) = (b, 1̂)− (a, 1̂) in the differential algebra CM(P,G). Moreover, in CM(P,G) we
have

(a) · (b) = λ(a, b)− λ(b, a) = (a, b),

because a ≺ b and it corresponds to the equality

cµ(a)cµ(b) = τaσaτbσb = τaτbσaσb = cµ(ab).

The posets related to P and a are shown in Figure 3. The polymatroids P (a) and P \ a are equal by
coincidence; see below for the poset P (a) relative to the maximal building set.
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1̂

ab

0̂

a b

2

1 2

1

1

(a) The poset of flats of tra P .

a

0̂

2

(b) The poset of flats of P a.

1̂

a

ab

1

2

(c) The poset of flats of Pa.

1̂

0̂

b c

4

13

2

(d) The poset of flats of P (a).

1̂

0̂

b c

4

13

2

(e) The poset of flats of P \ a.

Figure 3: The Hasse diagram of some posets related to a. The circled nodes are in the corresponding building
sets.

The σ-cone ΣP,G is given by the linear combinations −daσa − dbσb − dcσc − d1̂σ1̂ with positive coefficients
dg > 0.

We have Ann(xa) = (xc, xbσ1̂, σ
3
1̂
) and so in DP(P,G)/Ann(xa) we have σc = σ1̂, (σb − σ1̂)σ1̂ = 0, and

σ3
1̂

= 0. The last two equations correspond to the defining relation for DP(Pa,Ga). Similarly, Ann(σa) =

(σc − σ1̂, σa, σ
4
1̂
, (σb − σ1̂)σ2

1̂
) and these are exactly the equations defining DP(tra P, tra G) that do not appear

in DP(P,G).

The relative Lefschetz decomposition with respect to the atom a is

DP(P,G) = DP(a)⊕xa DP(a),

where

DP(a) = 〈1, σb, σc, σ1̂, σbσ1̂, σ
2
c , σ

2
1̂
, σbσ

2
1̂
, σ3
c , σ

3
1̂
, σ4

1̂
, 〉

and

DPa = xa DP(a) = 〈xa, xaσb, xaσ1̂, xaσ
2
1̂
〉 ' DP(Pa,Ga)[1].

The relative Lefschetz decomposition with respect to the atom c is

DP(P,G) = DP(c)⊕DP1̂⊕DPc,

where DP(c) = 〈1, σa, σb, σaσb〉 and the other DP(c)-modules are DPc = 〈xc, x2
c , x

3
c〉 and DP1̂ =

x1̂ DP(c)⊕x2
1̂

DP(c). Moreover we have x1̂ DP(c)[−1] ' x2
1̂

DP(c)[−2] ' DP((P \ c)ab, (G \ c)ab).

Maximal building set

Now consider the same polymatroid P with the maximal building set Gmax = {a, b, c, ab, 1̂}. The polymatroid
P (a) relative to the maximal building set is shown in Figure 4 and the groundset E(a) is {b, c, ab}. This
polymatroid P (a) associated with Gmax is different from the polymatroid P (a) defined from the minimal building
set G (shown in Figure 3d).

The characteristic polynomial is χP (λ) = λ5 − 2λ3 + 1 and the reduced one is

χP (λ) = λ4 + λ3 − λ2 − λ− 1.

We have α = −x1̂, β = xa + xb + xc + xab + x1̂ and deg(α4) = 1, deg(α3β) = −1, deg(α2β2) = −1, deg(αβ3) =
1, and deg(β4) = −1.
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1̂

0̂

b

c

{b, ab}

2

2

1

4

1

Figure 4: The Hasse diagram of the poset of flats of P (a) with maximal building set on the groundset {b, c, ab}.
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