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We construct a Leray model for a discrete polymatroid with arbitrary building set and we prove a generalized
Goresky-MacPherson formula. The first row of the model is the Chow ring of the polymatroid; we prove Poincaré
duality, Hard Lefschetz, and Hodge-Riemann theorems for the Chow ring. Furthermore, we provide a relative Lefschetz
decomposition with respect to the deletion of an element.
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1 Introduction

Recently, long standing conjectures about log-concavity of graphs and matroids have been brilliantly solved by
studying the Chow ring of matroids [Huh12, HIK12, Lenl3, HWI17, AHKI18, BHM"20, ADH20, BEST21]. A
natural question is whether the corresponding results hold for polymatroids [BEST21, Question 1.5].

Discrete polymatroids generalize arrangements of subspaces in the same way as matroids generalize
hyperplane arrangements. Moreover polymatroids codify invariants of hypergraphs as matroids do with graphs.
Polymatroids have application in combinatorial optimization [Edm70, Sch03], in Coding theory [GJLR20], and
in commutative algebra [[1I102]. The class of polytopes known as integral generalized permutohedra [Pos09]
and the class of discrete polymatroids are essentially equivalent. The base polytope of a discrete polymatroid
[Edm70] is always a generalized permutohedron lying in the closed positive orthant and, conversely, every integral
generalized permutohedron with this property indeed comes from the base polytope of a discrete polymatroid.
In other words, these two families coincide up to a translation; see e.g. [Fer22, Section 3.2] for a brief account,
and [CL20, Theorem 3.17] for a proof of this equivalence.

The easiest definition of polymatroid is a pair P = (F, cd) where E is a finite ground set and cd: 2¥ — N
is a increasing submodular function. If P is realized by a subspace arrangement, then cd is the codimension of
the corresponding flat.

In the case of arrangements of subspaces, De Concini and Procesi [DCP95] have constructed a wonderful
model, i.e. a smooth projective variety that contains the complement of the arrangement as open subset. This
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wonderful model Yy is obtained from P” by a sequence of blowups along some linear subspaces; this collection
of subspaces is called building set G. The variety Yg is used for studying the complement of the subspace
arrangement, by considering the Leray spectral sequence for the inclusion of the complement in the wonderful
model Yg. The spectral sequence collapses at the third page yielding a Leray model (also known as Morgan
algebra [ ]) for the rational homotopy type.

Inspired by the realizable case, we provide a combinatorial definition of building set for polymatroids and
we introduce a Leray model B(P,G) for a polymatroid with building set. In the case of matroids the Leray model
was recently studied by Bibby, Denham, and Feichtner | ]. The last combinatorial object that we need is
the G-nested set complex n(P,G). In the realizable case this complex remembers whether the intersection of the
corresponding divisors in Yg is non-empty.

The problem of computing the cohomology of the complement of a subspace arrangement was solved by
Goresky and MacPherson | ] and by De Concini and Procesi | ] with different techniques. Goresky and
MacPherson have used the stratified Morse theory to describe the additive cohomology with integer coefficients
of the complement in terms of a poset. De Concini and Procesi have provided the aforementioned Morgan algebra
(alias the Leray model) that describes the ring structure of the cohomology with rational coefficients. These two
results were connected by Yuzvinsky | , ] constructing a smaller rational model CM, however this
connection was found only for the maximal building set.

We extend these results to the non-realizable setting and to arbitrary building sets, see Theorems 3.14 and
3.15, by using the critical monomial algebra CM(P,G).

Theorem. The inclusion CM(P,G) — B(P,G) is a quasi-isomorphism. Moreover

H*(B(P,G)) = H*(CM(P,G)) = P X) Hzca(q)—2 ( ((0, )7g))~ N

fEL geF

In the realizable case with maximal building set, the above decomposition specializes to the Goresky-
MacPherson formula.

The Leray model contains a subalgebra DP(P,G) as the first row of the spectral sequence, we call this
algebra the Chow ring of the polymatroid. For subspace arrangements, DP(P, G) is the cohomology (indeed the
Chow ring) of the wonderful model Yg. The combinatorial Chow ring for matroids was studied by Feichtner and
Yuzvinsky | ] and later by Huh, Katz, and Adiprasito | , | and others.

We prove that the Chow ring DP(P Q) of a polymatroid satisfies the Kéhler package (see Theorems 4.7
and 4.21).

Theorem. The algebra DP(P, G) satisfy the Poincaré duality property. Moreover, there exists a simplicial cone
Y pg contained in DP'(P,G) such that for each £ € X p ¢ the Hard-Lefschetz theorem and the Hodge-Riemann

relations hold. O

We prove the above theorem using methods similar to ones in | ]. A second and easier proof of
the Kéhler package for matroid was given in | ] using a semismall decomposition; the decomposition
is the first step through the singular Hodge theory [ ]. In the realizable setting the decomposition is

induced by a map between wonderful models that is semismall (for semismall maps in algebraic geometry see
[ , ]). In the case of polymatroids the corresponding map is not semismall, hence we cannot deduce
the Kahler package using this method. However, we obtain a relative Lefschetz decomposition of the Chow ring
(see Theorem 5.4).

Theorem. Let DP(,) be the Chow ring for the polymatroid P\ a where an element a € E is removed from the
ground set. The Chow ring DP(P,G) decomposes into irreducible DP ,)-modules as

nf
DP(P,G) = DP(,, & €P €P = DP,

fE€S8, k=1
Moreover, these irreducibles are explicitly described by:
25 DP,) = DP((P\ @)%, (G \ a)’\*) @ DP(Py, G, ) [k]. O
The reduced characteristic polynomial of a nonempty polymatroid is defined by

_ Z (_1)\A|)\cd(E)—cd(A)
Xp(N) = . (1)

As final step we relate the coefficients of the reduced characteristic polynomial to the Hodge-Riemann bilinear
form (see Theorem 6.4). In order to do that, we restrict to the case of the maximal building set and we fix an
isomorphism deg: DP"(P, Gpax) — Q.
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Theorem. There exist elements «, 3 € DP' (P, Gax) such that

r

Xp(\) =D (—1)" deg(a’B" ). 0

=0

The element « belongs to the closure of the o-cone (morally it is nef), but in general /3 is not in the closure
of the ample cone. Hence, the coefficients of the reduced characteristic polynomial do not form a log-concave
sequence (see Remark 6.6). Indeed every finite sequence of non-positive integers can appear as a substring of
the coefficients.

Techniques

The techniques used for our proof are various and inspired by [ , , ].

In Section 2 we make use of Grébner bases to give two explicit addltlve bases of the Leray model. In
Section 3, by using algebraic Morse theory, we compute the cohomology of the Leray model generalizing the
Goresky-MacPherson formula. In Section 4, we use an inductive procedure to prove the Kéhler package. The main
difference with the previous methods is that we do not have partial building sets as in | ] nor order filters
as in | ]. Our induction is based on the cardinality of the building set, and the inductive step involved
completely different polymatroids. Section 5 is devoted to the proof of the relative Lefschetz decomposition
using some lemmas from the previous sections. The reduced characteristic polynomial is studied in Section 6.
We prove the claimed equality by showing that both polynomials satisfy the same recursion. In this proof we
use the properties of the Mobius function for posets.

Finally, Section 7 contains an explicit and exhaustive example that illustrates our definitions and properties.

Acknowledgements
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2 The Leray model
For general references about polymatroids we suggest | ].

Definition 2.1. A polymatroid P = (E,cd) on the ground set E is a codimension function cd: 2¥ — N
satisfying:

(C1) cd(D) =0,
(C2) if A C B, then cd(A) < c¢d(B), and
(C3) it A,B C E, then ¢cd(AU B) + cd(AN B) < cd(A) + cd(B).
A polymatroid is a matroid if the codimension of singletons are either zero or one. O
The closure of a subset A C E' is the subset
{a € E| cd(AU{a}) =cd(A4)}.

A flat is a closed set and the collection of flats forms a lattice Lp, that we call the poset of flats. We use the
notation max(X) with X C Lp for the set of maximal elements of X.

Definition 2.2 (Geometric building set). Let P = (£, cd) be a polymatroid and let L be its lattice of flats. A
subset G in L\ {0} is called a geometric building set if for any = € L the morphism of lattices:
Pt H [(A),y] - [va]
yEmax(G<)
induced by the inclusions is an isomorphism and the equality
@) = Y edly)
yEmaX(ggm)

holds.
We define F(P,G,z) = max(G<,) the set of G-factors of z. O
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Definition 2.3 (G-nested set complex). A subset S of G is called G-nested if, for any set of incomparable
elements x1,...,2; in S of cardinality at least two, the join x; V ---V z; is not contained in G. The G-nested
sets form an abstract simplicial complex n(P,G). O

We suggest to visualize a (realizable) polymatroid (F,cd) as a collection of linear subspaces S, for e € E in a
fixed complex vector space V. For each A C E, the codimension cd(A) is the codimension of the corresponding
flat NgeaSq- The (geometric) building set G is a good choice of some flats to blow up, in order to obtain a
wonderful model Yy with some exceptional divisors Dy C Yg, g € G indexed by G. A subset S of G is G-nested
if and only if the corresponding divisors { Dw }wes have non empty intersection.

The following proposition summarizes the main properties of building and nested sets.

Proposition 2.4. Let P be a polymatroid with poset of flats L and G be a building set. Then:
1. For each g € G, x € L with x > g, there exists a unique G-factor p of = such that p > g.
2. If gheGand gAh>0,then gVheg.
3. If S is a G-nested set, then the G-factors of \/ S are the maximal elements in S (i.e. F(P,G,\/ S) = max(S)).

4. Let S be a G-nested set, the Hasse diagram of S (as subset of L) is a forest. O

Proof. For (1) see | , Proposition 2.5(1)], for (2) see | , Proposition 2.5.3(b)], and for (3) see | ,
Proposition 2.8]. In order to prove (4) we suppose that the Hasse diagram I'g of S is not a forest. Thus there
exist two incomparable elements g,h € S and ¢ € S such that g A h >t € S; in particular g A h > 0. By part (2)
we get that g V h € G but this contradicts the definition of nested set. Therefore I'g is a forest. u

Let P = (E, cd) be a polymatroid, L be its poset of flats, and G be a building set in L. Let R(G) = Qley, 24 |
g € G] be the bigraded commutative algebra with exterior generators ey in bidegree (0,1) and commutative
generators x4 in bidegree (2,0).

This algebra is equipped with a differential d of bidegree (2,—1) defined on generators by d(eq) = x4,
d(z4) = 0. Fix a linear extension > of the order on G, this gives a reverse order among the e-variables and
among the z-variables, i.e. z;, < x4 and ej, < eg4 if and only if h > g. We also set z, < e;, for each g, h. The
algebra R(G) has a monomial basis given by:

b . by bs
erTg i= €gy *tCq, Ty Ty

where T ={¢1,...,9:} with g; € G satisfying g1 <go <+ <gt, S={h1,...,hs} with h; €G and b=

(b1,...,bs) is a s-tuple of positive integers. We define the element:
Cqg = Z Tp.
heg
h>g

Definition 2.5 (The Leray model of a polymatroid). Let I(G) be the ideal of R(G) generated by
(i) erxs whenever SUT ¢ n(P,G),
(i) erazscl whenever S,T C G, g€ G and b > cd(g) —cd(\(SUT)<y).

The ideal I(G) is preserved by the differential d, so the quotient
B(P,G) = R(g)/](g)

is a bigraded differential algebra, called the Leray model of the polymatroid. O

In the realizable case, the Leray model B(P,G) is the second page of the Leray spectral sequence for the
natural inclusion

V\UecpSe =Yg \ UgegDy — Yg.

This spectral sequence collapses at the third page, hence it becomes a differential bigraded algebra also known
as the Morgan algebra | ].
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Remark 2.6. Let epzgcl) be a monomial of type (ii) and let
S'=8SNmax(SUT)<, and T'=max(SUT)<,\S.

The monomial eTfatsfcg divides erxgc?. Thus, when we consider a monomial of type (#4) we can always assume

that SNT =0, SUT is an antichain and \/(SUT) < g. O
Theorem 2.7. The generators of type (i) and (ii) of the ideal I(G) of Definition 2.5 form a Grébner basis with
respect to the deg-lex order. O
Proof. We adapt the method used in | , Theorem 2] and in | , Theorem 5.3.1]. We are fixing a linear

extension of the order on G with z, < e, for each g, h. We consider the deg-lex monomial order on R(G) and
we explicitly compute S-polynomials.

Case (i)-(i) Since relations type (i) are monomials the S-polynomials is zero.

Case (i)-(ii) Now we consider f; = epzg of type (i) and fo = eAchg of type (4i). We assume that \/(AU B) <
g (see Remark 2.6). Let U =T UA, V =BUS \ {g}, therefore the S-polynomial is

S(f1, f2) = eUJ;VaUZ - evacg = eva(xZ — CZ).
If g ¢ S, we have that S C V and therefore

S(fi, f2) = femrerzseys(ay — c))

is divisible by erzg.
Then, assume g € S, since SUT is not nested we have that U UV U {g} is not nested. If U UV is not
nested, then S(f1, f2) would be divisible by eyzy .

So assume U UV is nested, (thus we have g ¢ UU V) since U UV U {g} is not nested the S-polynomial
modulo eyxyxy became

S(fi, f2) = eva(Zfo)b-
f>g

The set U UV U{g} contains a non trivial antichain ¥ whose join \/Y =y is in G and Y must contain g¢
since U UV is nested; let ' = /(Y ~ {g}). We have

b= cd(g) —cd( \/ 1)

leAUB
I<g

>cd(gVy) —cd( \/ l\/y’)
lEAUB
I<g
> cd(y) —cd( \/ z) —y

levuv
<y

and so epxy ) is a relation of type (i7). We claim that modulo relations of type (i)

S(f1, f2) = evrvel,

To obtain this, we show that if f € G with f > g and f # y, then UUV U{f} is not nested. Suppose
that UUV U{f} is nested and consider the antichain Y’ = max(Y ~\{g}U{f}) CUUV U{f}. The
set Y’ is nested and by Proposition 2.4 the G-factors of \/(Y \ {g} U{f}) are exactly the elements of
Y'={y1,..., 9k f}. We have

VI~ {gu{fh=yVv>yvg=y
By definition of G-factor we have two cases:

e y < y; for a certain ¢. But this is impossible since y; < y;

o y < f contrary to the assumption f % y.
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Thus, U UV U{f} is not nested and S(f1, f2) reduces to zero.

Case (ii)-(ii) Let f1 = eT:vch and fo = eAa:Bc{L be two relations of type (i¢). We may assume \/(SUT) < g
and \/(AU B) < h (see Remark 2.6). We have the following cases:

First g = h and d < f, then the S-polynomial is
S(f1, f2) = GTUAISUBC;Z(l’f,L — ¢
which is divisible by eTxch.
Second g # h, g ¢ B, h ¢ S, we also assume that h = g. The S-polynomial is

S(fi. f2) = ervazsup (@)t — zlc]).

Let y = eruaZsu Bcg(c£ — xfl), which is divisible by fi = erzscd and has a leading term smaller or equal
to that of S(f1, f2). The remainder

S(f1, fo) +y = eruazsup(ct — ad)e],

is divisible by fo = eAch{L, and reduces to zero.

Finally, assume g # h and g € B, by Remark 2.6 we must have g < h and h ¢ S. Let U =T U A and
V = 5U B\ {g}, the S-polynomial is

S(fi. f2) = evay (zcd — zlc]).

Let y = eUchg(c{L — :c{b), which is divisible by f1 = eszcg and has a leading term smaller or equal to

that of S(f1, f2). It remains to verify that

S(f1, f2) +y = evav(cl — ad)ef

reduces to zero. First, through division by f, = eAaUBc{L7 since g € B we have

d
S(flaf2)+yE€U$V(ZfEk) C£~ (2)
k>g
We claim that for any k& > g, k ? h we have
e f = f =0
ULV IECy = €EUTVTECh ) =

modulo relations of type (i) and (i7). For the first claim, if p > h but p ? h V k then {p, k} is not nested by
Proposition 2.4 and we can divide by the relation zpz, of type (7). The last claim follows since hVk € G
by Proposition 2.4 and

f = cd(h) —cd(\/(AUB))
> cd(hV k) —cd(\/(UUV U{k})).

Therefore, the element in eq. (2) reduces to
S(fla f2) +y= GUCﬂchJrf.

Since d 4+ f > c¢d(h) — cd(\/(U UV U{k})) we may divide by evacZ+f and reduce to zero.
This completes the proof. n

Corollary 2.8. The algebra B(P,G) has an additive basis given by the monomials eTxf?; such that SUT €
n(P,G) and 0 < b(s) < cd(s) —cd(V(SUT)<s) for all s € S. O

Proof. An additive basis for the algebra B(P,G) is given by all the monomials which are not divisible by the
initial monomials of the Grébner basis provided by Theorem 2.7. The proof follows immediately. n
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We now provide a second presentation for the algebra B(P,G) using a different set of generators (7, and oy
for g € G). This second presentation is inspired by the work of Yuzvinsky [ , ] and in the matroidal
case coincides with the simplicial presentation of Backman, Eur, and Simpson | .

Theorem 2.9. The morphism
¢: Ay | g€ Gl®Qloy | g €G] — B(P,G)
defined by ¢(7y) = 3,5, en and by p(og) = >, 5, @, is surjective with kernel generated by:

(1) TLer(re = 19) Il eg(os — 0g) for SUT a non-trivial antichain and g = \/(SUT) € G,

(i) [Lier(me —79) [Lseg(os — O'g)O'Z for g € G and b = cd(g) — cd(\/(SUT)<y). O

We will identify the elements 74, oy with their images in B(P, G). In the realizable case the element oy is the
fundamental class of Dy, the total transform of the flat g. Analogously, 7, is the sum of irreducible components
of the total transform of the flat g. The elements o, can be also seen in the following way: consider the inclusion
Yg — Hheg Ped(h) =1 of [ |, o4 is the pullback of the hyperplane class of the factor Ped(9)-1,

Before the proof of Theorem 2.9 we need a couple of technical lemmas.

Lemma 2.10. Let g € G and S = {s1,...5,} C G such that \/ S < g, set b =cd(g) — cd(\/ S). Consider a set
A={a1,...,a,} C G such that a; > s, and a; 7 g for all i = 1,...,n. Then

yAcZ =0,

where y,, is equal to e,, or 24, and Y4 = Ya, * ** Ya,,- O

Proof. Define the element h = \/ AV g, we first prove the equality yAag = yAUZ and then yAUZ =0.

We show that h € G. Let b’ € G be the unique G-factor of h such that h’ > g. For each a; we have b’ A a; > s;
and so a; V I/ € G. By maximality of A’ we have a; < h’ for all . Therefore h = h' € G.

Firstly, let ¢’ € G be any element such that ¢’ > g and ¢’ # h. Suppose that AU {g'} is a G-nested set. Then
the G-factors of hV ¢’ are the maximal elements of AU {g'} by Proposition 2.4. So there exists an element in
AU {g'} bigger or equal to h, this is impossible since ¢’ 2 h and a; # g. It follows that A U {g’} is not G-nested
and yazy = 0.

Finally, we show that y40? = 0. Indeed, b > cd(g) — cd(g A \/ A) which is bigger than cd(h) — cd(\/ A) by
submodularity of c¢d. Applying the relations of type (i7) in Definition 2.5 we complete the proof. u

Lemma 2.11. The elements [],. (7 — 74) [1,c5(0s — 04)0) for g € G, and b = cd(g) — cd(\/ (S UT)<,) belong
to the kernel of ¢. O

Proof. From the argument of Remark 2.6 we may assume that SNT =, SUT is an antichain, and
V(SUT) <g.
We have

@(H(Tt —Tg) H(Us - 09)02) = ZeAl‘B (Z xl>b7

teT ses A,B I>g
where the sum is taken over the sets A = (a;); and B = (b;); such that a; > t;, b; > s;, a; # ¢, and b; 7 g. Each

b
term esxp (Zl>g xl) is zero by Lemma 2.10. [

Proof of Theorem 2.9. Let < be a reverse linear extension of the order on G with z, < ej, and o4 < 73, for each
g, h. Now we consider the basis formed respectively by the o4, 7, and by the x4,e; ordered with <; with respect
of these two basis the matrix associated to the morphism ¢ is upper unitriangular and therefore invertible. It
follows that the map ¢ is surjective.

We want to prove that ker ¢ is generated by relations of type (i) and (i) of Theorem 2.9. From Lemma
2.11 we know that elements of the form (ii) belong to ker . The relations (i) are a particular case of relations
(74) with b = 0. Let J be the ideal generated by relations of type (i) and (ii), we denote also by in(J) the initial
ideal of J. It suffices to prove that

dimc/in(J) < dim R(g)/in(f(g))
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where C = Alry | g € Gl @ Qoy | g € G]. Let K C in(I) be the ideal generated by the leading monomial of relation
of type (i) and (%), since

dim g > dim G4,y
it suffices to check that
dim C/K = dimR(g)/i (I1(G)) (3)

The leading monomials of relation type (¢) are of the form 7prog where SUT is not G-nested; the leading
monomials of relation type (ii) are of the form Tpogo) whenever S,T C G, g € G and b = cd(g) — cd(\/(SU
T)<4). The monomials in C, which are not divisible by the these two type of leading monomials, are of the form
o with SUT € n(P,G) and 0 < m(s) < cd(s) —cd(\/(SUT)<s) for all s € S. Hence eq. (3) follows. Since
the map ¢ is surjective it is also injective; and the initial ideal in(.J) is equal to K. Therefore, relations of type
(i) and (i7) form a Grobner basis for ker . [ |

From the proof of Theorem 2.9 we obtain also the following corollary:

Corollary 2.12. The set of monomials mpod® with SUT € n(P,G) and, for each s € S, 0 < m(s) < cd(s) —
cd(V(SUT)<s) is an additive basis of B(P,G). O

See Section 7 for an example of the application of Corollary 2.8 and Corollary 2.12.

3 Generalized Goresky-MacPherson formula

In this section we generalize the Goresky-MacPherson formula (see | ]) to the non-realizable case and
to arbitrary building set. The choice of the minimal building set yields a significantly smaller nested set
complex and it can be useful in practical computations. Other generalizations of this formula can be found

in [ , , ].

3.1 Critical monomials

Definition 3.1. A standard monomial erxzs (resp. Trog) is a monomial that appears in the basis given by
Corollary 2.8 (resp. by Corollary 2.12). O

For any standard monomial 0% we extend the function b by setting b(g) = 0 for g & S.

Definition 3.2. Let TTUg be a standard monomial. An element g € G is called critical with respect to the
monomial 770 if g € T and b(g) = cd(g) — cd(\V/(SUT)4) — 1. If every element of S U T is critical with respect
to TTO'g then the monomial TTO'g is called critical. O

Notice that if the monomial TTO'g is critical, then S C T and so the critical monomial is uniquely determined
by T.

Definition 3.3. The critical monomial associated with T € n(P,G) is
ep(T) = TTUg‘?
where S ={t € T | cd(t) — cd(\/(S<¢)) > 1} and b(s) = cd(s) —cd(\/(T<s)) — 1 for all s € S. O

In Theorem 3.14 we will prove that the linear span of critical monomials form a subcomplex (indeed a
subalgebra) of B(P,G). Moreover, we will show that this subalgebra is quasi-isomorphic to the Leray model.
This first lemma implies that the span of critical monomials is a sub-complex.

Lemma 3.4. For every critical monomial cu(T") we have

(™) = 3 (~)Teu(T\ {1}). =

teT\max(T)

Proof. Let cu(T) = t70%, we have

d(en(T)) = 3 (=) Tl 1y oo
teT
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= Z (_1)|T_<t|7—T\{t}O'g’0'ta
teT\min(T)
because if ¢ € min(T") then b(t) = c¢d(t) — 1 and so de(t) =0.
Fix t € T\ min(7T), the set R = max(T<;) is nonempty. By using relation (ii) of Theorem 2.9 and the fact
that 72 = 0, we have

ot = Z(_1)|R<T|TR\{T}TtU%U?(t)+1

TER
b b(r
= Z(—1)|R<T|TR\{r}TtU%\{r}Ut(tH M
r€ER

where in the last equality we used

0= 7o, — Jt)of(tH_I H(Tl —T¢) = TeTR\{r} (O — at)af(t)-’_l.
l#r
Notice that T' € n(P,G) implies cd(\/ R) = cd(V(R\ {r})) + cd(r) and cd(\/(R\ {r}) VV(T<,)) = cd(V(R\
{r})) +cd(\V(T<;)); s0 bp\ (7} (t) = br(t) + br(r) + 1. Therefore

Troto Ot =3 (1)1 F<lep((R\ {1} U {t})

reR
and finally:
dlep(T) = > D (DTl {r)
teT\min(T) remax(T<)
= > (YTlum{ry,

reT\max(T)

because T is a forest by Proposition 2.4. This conclude the proof. [ ]
We want to apply algebraic Morse theory to the complex B(P,G). We refer to | | for basic definitions

and properties of algebraic Morse theory.

We define the following matching M: for each non-critical monomial TTUg let g € SUT be the smallest
(with respect to <) non-critical element. If g belongs to T, then the pair (770%, Tr{430%04) is in M.

The algebraic Morse theory, together with Lemma 3.5 and Proposition 3.8, implies that the complex of
critical monomials is quasi-isomorphic to the Leray model.

Lemma 3.5. The set M is a matching. Moreover, a monomial is critical if and only if it is critical for the
matching M. O

Proof. We check that each non-critical monomial appears exactly once in M and that all monomials in M are
non-critical.

By definition if the monomial 770% appears in the first position in M, it is non-critical. Moreover 77 (53050
is non-critical because S U {g} € T \ {g}. So every monomial in the matching is non-critical.

Vice versa, if TTaf’g is a non-critical monomial, let g be the minimal non-critical element in SUT. If g € T

b
then TTUgv appears in the matching (in the first position). Otherwise, g € S\ T so the monomial TTTQZ—S is basic
9

b
and non-critical. Notice that an element f € G is critical for TTUg if and only if is critical for TTTQZ—S. Therefore
- g
b
the pair (TTTgZ—j, TTO'g) is in M. [
Definition 3.6. Given a standard monomial 770% we define m(T, S,b) as the multiset {g®(9) | g € G} where

a(g) is the sum of the exponents of 7, and o, in the monomial TTUg. Moreover, we order these multisets
lexicographically using the reverse order on G. O

As an example, if h < g then h < g and {h?} = {h,g}.

Definition 3.7. Let G be the directed graph whose vertices are the standard monomials with a directed edge
from TTO'g to TT/Jf.’;, if the monomial TT/O'g, appears with a nonzero coefficient in d(TTJg).
Let Gaq be the directed graph G with all directed edges in M reversed. O
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Proposition 3.8. The matching M is a Morse matching. O

Proof. We show that the graph G is acyclic.
Although m is not a term order (because m(7y) = m(o,)) it has the property that for any relation of

Theorem 2.9
H(Tt —Tg) H(Js - 09)03 (4)
teT sES

with \/(SUT) < g the monomial TTO'ScTZ has m(T, S, b) strictly bigger than any other monomial in the expansion
of eq. (4). Moreover m is multiplicative.
First notice that:

d(rrol) = 3 (=)l obo,

geT
— 1\ T<gl b 1\ T« b
= E (=) =slrp\ gogog + (=)ol god0y
geT geT
g non-critical g critical
T b b’
= E (-1) <9|7'T\gasag + E QT 8" b TT O g1,
geT some T',5" b’
g non-critical m(T",S" ") <m(T,S,b)

where o g/ are some coefficients. In the last equality we used the relations of Theorem 2.9 in order to write
the non-standard monomials TT\gO'gO'g as linear combination of standard ones. Notice also that if the pair
(tro?, TT\gag,Ug) is in M then m(T, S,b) = m(T \ g, S U {g},b'). Hence the function m is weakly decreasing on
every direct path in G, so it is constant on every directed cycle.

It is enough to prove that there are no alternating directed cycles, i.e. cycles such that for every pair of
consecutive edges exactly one is in M. Suppose that there exists a directed cycle and consider two consecutive

b
edges. We can assume that the first one is in M and the second one is not. The first edge is (rro%, 7774 22)
h g
for some non-critical monomial 770% with g the smaller non-critical element and g € S\ T. The second edge
b / ’
is (TTTgZ—S, 0%, for some standard monomial 77v0%,. Since the value of m is constant on the cycle we have

that 7.0, = TI\{f}Tg 03 oy for some f € T non-critical for the monomial 777, Z<. These two edges are shown
below.

9s
TTTQT

/N

TTUS TT\{f}Tg7Uf

The sets of critical elements for 770% and for TTTg com(:lde so both g and f are non-critical for TTTg—b. By
minimality of g we have g < fand T < (T'\ {f}) U {g} 7.

We have proved that in every alternating path after two steps the set indexing the variable 7 strictly
increases. Therefore there are no alternating cycles. u

3.2 Multiplicative structure

We want to describe the product of two critical monomials in B(P,G).
Let (g1,92,--.,9k) be alist of elements in G and recall that < is a linear extension of the order on G. Define

5\(91;927“-’91@) = (f17f27~-~7fk)

where f; is the unique G-factor of g1 V ga V---V g; bigger than g; guaranteed by Proposition 2.4(1). Define
Aag1,92, -, 91k) = Mg1,92, - -, gr) if (f1, fo,.. ., fx) form a G-nested set and f; < fiy1 fori=1,...,k— 1. Set
A9g1,92,---,95) =0 otherwise. We will use the convention that cu(0) =0 and cu(f) =1. Let m € & be a
permutation, we write 7(g1, g2, ..., gx) for the list (gr(1),gr(2),-- -+ 9dr(k)) and we denote the concatenation of
two lists T1 and Th by T1 U Th.
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Remark 3.9. If 5\(91,92, v gk) = (f1, fa,..., fx), then g1VgaV---Vgj=fiV foV---V f;. Moreover,
A(g1,92,---,98) =0 if there exist ¢ < j such that g; <g,;. Indeed, f; < fiV faV---V fj_1 and {f1,..., f;}
is G-nested, hence f; = f. for some ¢ < j contradicting f. < f;.

Let Ty and T3 be two lists of elements in G and © € &1, ur,| be a permutation. If A(7(Ty UTy)) # 0 then
the last element of 7(T) U Ty) belongs to max(Ty U Ty).

In the particular case when G is the maximal building set and T3, 7% are chains in G, A\(w(Ty U T3)) is zero
if 7 is not a (|71, |T2|)-shuffles. O

The following proposition describes the multiplication of critical monomials using shuffles.
Proposition 3.10. Let 73 and 7> be G-nested sets. If cd(\/(T1 UT»)) < cd(\/T1) + cd(\/ T2), then
cp(Th)ep(Tz) = 0. Otherwise

cp(T)ep(T) = > sgn(m)ep(Ar(Ty UTy)). O

TES |1y uTy|

Before the proof of Proposition 3.10 we need two technical lemmas.

Lemma 3.11. Let 77 and T5 be nested sets such that T3 UTy is G-nested and cd(\/T1) + cd(\/ T2) =
Cd(\/(T1 U Tg)) Then
ep(Th)ep(Te) = (—1)°cu(Ty U Th),

where s is the length of the permutation that reorder 77 and T,. Moreover:

cp(T)ep(T) = > sgn(m)ep(Ar(Ty UTy)). O

TES |1 UTy |

Proof. Notice that [0, \/(T} UTy)] = [0,\/ T3] x [0, \/ T3] with the same codimension, therefore
cu(Ty)ep(Te) = (=1)°cu(Ty UTy).

Since each subset of T3 UT, is G-nested, for each m € &p,ur, we have 5\7T(T1 UT,) =n(T1 UT) by (3) of
Proposition 2.4. Hence Aw(Ty UT5) is zero for all permutations 7 except for the unique permutation that
reorders 77 and T5. [ |

Lemma 3.12. Suppose that T is a G-nested set and g € G such that cd(gVVT)—cd(\/T)=cd(g) —
cd(\V T<g). Set b = cd(g) — cd(\/ T<y) — 1, then

w(T)ryrt = S sgn(men(Ae(TU {g})), (5)
TE€S 7|41
where the sum is taken over all permutations of T'U {g}. O

Proof. We prove the statement by induction on |T7|.

If g > \/ T, it follows directly from the definitions cu(T)7y0b = cu(T U {g}) = >
{9}

Let f =gV VT, h be the unique G-factor of f bigger than g and set 7" = T<j, U {g}, T" = Tx;. Notice
that T" = @ if and only if f € G. Define ¢’ and " the cardinality of 7" and T" respectively.

If T" # ), by using the inductive hypothesis and Lemma 3.11, we have

sgn(m)ep(Ar(T' U

€S| 11

cp(T)rgog = (=1)*cp(T")ep(T" \ {g}) g0,
= (=1)eu(T") Y sen(a)ep(Aa(T"))

OCEG“/

= 3 (1) sgn(a)ep(T" UAa(T))
aeG,

S sa(men(n(T U {g})),

7r€6t/+t“
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where s corresponds to the permutation that reorders 7" and T’ \ {g}, s to the permutation that reorders
T" and «o(T’). The set T"” U a(T’) is G-nested for all o € &y such that Aa(T") #0 and in this case
cd(VT") + cd(V Aa(T")) = cd(V(T" U Xa(T"))).

Otherwise 7" =0 and f € G. Let Y ={g1,92,...,9x} = max(T U {g}) numbered such that g = g5. We
assume g > t for all t € T, the general case differs only by a sign. We have Hle(rgi —77) =0 and so

k
v =Y (=D e gguisy-

=1

Set b(g;) = cd(g;) — cd(V T<y,) — 1, for all i < k we have (0g, — o) [];,,(7g; — 74) =0 and

b ° i b(g:
0= (02(91 — (9 )Ty H ;= TF) lg?(g ) _ Uf(g ))Tf Hng,
el i
SO Ty\{gi}u{f}azggi) = Ty\{gi}u{f}afc(gi). Therefore we have
k

cu(T)Tgcrz =(=1)°en(T\Y) HT agggi)

i=1

( 1) C‘LL(T\Y k ’LHTQ Jggg] b(gi)

i=1 JFi

Ma-

g

-1

(—1)"Flew(T\ {gi g0l rpot ) + ep(T U{f}),

.
Il

where s (and ¢;) is the length of the permutation that reorder T\ Y and Y \ {g} (respectively T \ {g;} and
{gi}). The last summand corresponds to the identity permutation. Apply the inductive hypothesis on the terms

ep(T \ {gi}) 7407 so that

(—D)5Hep(T\ {gi g0l mpo @) =3 sgn(m)eu(Ar(T U {g}))

s

where the sum is taken over all permutations 7 in &7|4; that sends the element g; in the last position. Since
every m such that Ar(T U {g}) # 0 has in the last position an element of max(7T' U {g}), the result follows. H

Proof of Proposition 3.10. For the first part notice that cu(7}) is in bidegree (2(cd(\/ T3) — |T3|), |T3]) fori = 1, 2.
Let f=\/(Ty UTy), the product cu(Ty)cu(T) can be rewritten as sum of standard monomials using only

relations of type
H(Ts — ) H(Gt - ‘79)03
ses teT

for \/(SUT) < g < f. The standard monomials g0 with \/(SUT) < f have bidegree at most (2(cd(f) —
|S]), |S]). Therefore, if cd(f) < cd(\V T1) + cd(\/ T2) then cu(T1)cp(T2) = 0 by degree argument.

We prove the second statement by induction on |T»|. The base case To = () is trivial. If \/ T2 ¢ G then there
exist T3 and Ty nonempty G-nested sets such that Ty = T3 U Ty and [0, V1] = [0, \ T5] x [0, \/ Ty]. Applying
Lemma 3.11 and the inductive step we have

CM(Tl)CM(T2) = (=1)%cp(Th)ep(Ts)ep(Ty)
Z sgn(a)ep(Aa(Ty U Ts))ep(Ty)

Z Sgn(a) Y sen(B)en(A8(a(Ty UTy), Tu))

€St g BES 41y

= Z sgn(m)ep(Ar(Ty U Ty)),

TES 11y

where t; = |T;|.
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Now we deal with the case \/T» € G. Let g = maxTy € G, Ty =T\ {g}, and m = cd(g) — cd(T%) — 1. We
have

cu(Th)eu(Tz) = cp(Th)ep(T3) 40y
= Z sgn(a)cp(Aa(Ty U Ty))m90"

Q€S fty—1

> sen(e) Y sen(B)ep(AB(a(Ty UT3) U{g}))

€St tty—1 BESH 1y

= Z sgn(m)ep(Ar(Ty U Ty)),

TES, +15

where we used the inductive hypothesis on 77 and T} and Lemma 3.12 on Aa(T} UTy) and {g}. n

We define the algebra of critical monomials abstractly, by generators and relations.

Definition 3.13. Let CM(P,G) be the Q-vector space generated by all the G-nested sets T € n(P,G) with
bidegree (2(cd(\/ T) — |T|),|T|). The differential is defined on the base by

A= Y (=DTlT\ ()

teT\max(T)

and the product by T- S =0 if cd(\/(TUS)) < cd(\V T) 4+ cd(V S) and

T-S= > sgu(mAx(TUS))

TES T4 s]

otherwise. This structure makes CM(P,G) a differential bigraded algebra. O
We summarize all the previous results of this section in the following theorem.

Theorem 3.14. The morphism {: CM(P,G) — B(P,G) defined by &(T") = ¢u(T') is an inclusion of differential
algebras and a quasi-isomorphism. O

Proof. The map ¢ is well defined as a morphism of Q-vector spaces. It is an inclusion since the monomials
cp(T) for T € n(P,G) are standard monomials and are linearly independent by Corollary 2.12. The equality
d¢& = £d follows from Lemma 3.4 and the equality £(S - T) = £(S5)€(T) from Proposition 3.10. This also proves
that CM(P, G) is a differential bigraded algebra.

Finally, the algebraic Morse theory applied to B(P,G) and the matching M ensures that there exists a
subcomplex N4 such that the projection

B(Pg) BP9

is a quasi-isomorphism and the quotient is freely generated by critical monomials. The composition of ¢ with
the projection gives an isomorphism of chain complexes. Therefore £ is a quasi-isomorphism. n

See Section 7 for an explicit example of the construction of the algebra of critical monomials.

Let n((0, g), G) be the full subcomplex of n(P,G) on the set of vertices {h € G | h < g}.

All the homology groups are taken with rational coefficients. We use the standard convention for the reduced
homology that H_, () = Q.

This final theorem provides an explicit description of the cohomology of the Leray model in term of
cohomology of very small simplicial complexes.

Theorem 3.15. Let P be a polymatroid and G be a building set. Then
H'(B(Pa g)a d) = H‘(CM(Pa g)7 d) = @ ® ﬁZ cd(g)—2—-e (n((()a g)a g))7
fEL geF

where F' = F(P, G, f) is the set of G-factors of f.
In particular the summand H;(n((0, g),G)) contributes in bidegree (2(cd(g) — 2 —7),2 + ). O
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Proof. Theorem 3.14 implies
H(B(P,G),d) = H(CM(P,G),d).

For each flat f let CM/ be the subcomplex of CM(P,G) generated by all nested sets T such that max(7T) =
F(P,G, f). Moreover for each g € G set CM(g) to be the subcomplex of CM(P, G) generated by all nested sets
T such that {g} = max(T"). We have

M(P,G) = P CM;
feL

and

CM;= @@ CM(g)
geF(P,G,f)

as complexes. It is enough to prove that
H*(CM(g),d) = Hy a2 (n((0.9),9))

Indeed CM(g) coincides with the reduced simplicial chain complex for n((0,g),G), under the correspondence
T — T\ {g}. Notice that the bidegree of '€ CM(g) is (2(cd(g) — |T),|T|) and the degree of T\ {g} in the
reduced chain complex is |T'\ {g}| — 1 = |T| — 2. u

Definition 3.13 has a straightforward generalization to integer coefficients; we left open the following
question.

Conjecture 3.16. Does Theorem 3.15 generalizes to integer coefficients? O

The analogous statement in the realizable case with maximal building set was proven in [ , ].

4 Kahler package

Let DP*(P,G) be the graded algebra B?*°(P,G). This algebra, in the realizable case, is the Chow ring of the
De Concini Procesi wonderful model for the subspace arrangement. A presentation of DP(P, G) is given by the

generators x, for g € G with relations
b
g

where S C G, g € G and b > cd(g) — cd(\/ S<4). The algebra DP(P,G) has an additive basis given by

Trsc
vl

where S € n(P,G) and for each s € S we have that 0 < b(s) < c¢d(s) — cd(\/(S)<s), see Corollary 2.8.
A second presentation is given by the generators o, for g € G with relations

02 H(as —0y)
seS

where \/ S < g and b = cd(g) — cd(\/ S), see Theorem 2.9. The algebra DP(P, G) has an additive basis given by

a5

where S € n(P,G) and for each s € S we have that 0 < b(s) < cd(s) — cd(\/ S<s), see Corollary 2.12.

Remark 4.1. If 1 ¢ G then the polymatroid P is direct sum of other polymatroids. Indeed, let ay,...,ax
be the G-factors of 1, the poset L is a product Hle[ﬁ,ak]. There exist polymatroids P (defined in the
following, see Lemma 4.12) such that P = @¥_, P% and building sets G* = G N[0, a;]. Moreover, DP(P,G) =
®@F_, DP(P%,G%) and the dimension of DP(P,G) is cd(1) — |F(P,G,1)| (where k = |F(P,G,1)|). O

For the clarity of exposition, we assume 1€G in this section. Consider the isomorphism
deg: DPM=1(P G) - Q defined by

ed(1)—1y _ / qyed(i)—1
deg(a5"V 1) = (1) :

Definition 4.2. Let A be a graded algebra with top degree n and deg: A™ — Q an isomorphism. We say that
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e the algebra A satisfies Poincaré duality if the bilinear pairing
AP x AV 5 Q
defined by (a,b) — deg(ab) is non-degenerate.
o the element ¢ € A' satisfies the Hard Lefschetz property if the multiplication map
gn—2k. gk _, gn—Fk
is an isomorphism for all k£ < 3.
e the element ¢ € Al satisfies the Hodge-Riemann relations if the bilinear form
Qi AP x AF - Q
defined by Q¥ (a,b) = (—1)* deg(al™~?*b) (for k < %) is positive definite on the subspace
Py = ker(£" 721 AR AnohAL)
We will abbreviate these properties with PD 4, HL 4(¢), and HR 4(¢) respectively. O

4.1 Poincaré duality
In this subsection we give a direct proof of the Poincaré duality property for DP(P,G).
Definition 4.3. Suppose that 1 € G and let 2% be a standard monomial. The element €(z%) is
e(aly) = (~1)IS\ g,
where ST = S U {1}, ¢(1) = cd(1) — cd(V S_;) — b(1) — 1, and ¢(g) = cd(g) — cd(\/ S<,4) — b(g) for g € S\ {1}.
We will write cg instead of ¢ when we want to stress the dependency on S and b. O

Recall the chosen monomial order with the property that if A > g then h > g and ), < x4,. We fix the basis
of DP* consisting in all standard monomials xf’g of degree k ordered with the aforementioned monomial order.

In complementary degree DPCd(i)fk, we consider the basis given by e(2%) ordered using the monomial order on
z%. In order to prove Poincaré duality we will show that the matrix with entries deg(z%e(25)) is non-degenerate.
Lemma 4.4 proves that the matrix has values +1 on the diagonal and Lemma 4.6 shows that the matrix is upper
triangular.

Lemma 4.4. If 1 € G then for all standard monomials we have

x%e(azf’g) = xgd(l)_l.

O
Proof. We prove the statement by induction on |5\ {1}|. The base case S = {1} is trivial. For the inductive
step we choose g € max(S_j) and set T'= S\ {g,1}. For the sake of notation, let n(h) = b(h) + cs(h) for all
h € ST (where cg(h) is introduced in Definition 4.3). Notice that wT:vfa:?(l) =0 for all f € (g,1) NG, because
fVv\T>gVv\VT.Since xTon(g) = 0 by relation (ii), we have
0=alor n(g) f(l)
=ap(xy + xA)”(g) 7}(1)
— 772( n(g) 4 xn(g)) ;L(l)
where in the last equality we used xTxg:c"(l)+1 0. Therefore,
2le(zhy) = (—1)IS\IHgn, g<g>m?(i)
IS\{1}|-1,n n(g) n(1)
Tty T

)
=(-1)
(— 1)|T\{1}\xn n(g)+n(1)
(x4

x ez ) Cd(i)fl7

by inductive hypotheses on T'. n
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Let ds be the function defined by ds(1) = cd(1) — cd(\/ S_;) — 1 and by ds(g) = cd(g) — cd(\/ S<,) for
g# 1.
Lemma 4.5. Let S be a nested set, g € S and 2% be a monomial such that for all h > g we have b(h) > dg(h)
and b(g) > dg(h). Then z% = 0. O

The proof of the lemma is the same of | , Lemma 5.4.1 (b)]. Recall the chosen monomial order with
the property that if & > g then h > g and zj, < 4. We need the following statement.

Lemma 4.6. Let xbs and z9. be two standard monomials in DPk(P,g) such that a:% <reviex . Then

2be(z%) = 0. O

Proof. Consider 7" and ¢ such that x5, = e(z5) and notice that 77\ {i} = 7'\ {i}. Define g = max_{h |
b(h) # c(h)} and, by hypothesis, b(g) > c(g). If SUT’ is not G-nested then we have z%e(xS%) = 0. Otherwise
set A= (SUT")>4, by (4) of Proposition 2.4 we have that A is a chain (a1 < a2 < --- < q;) with a; = g. For
a; # g,1 we have

b(a;) + c(a;) = b(a;) + cd(a;) — Cd(\/ T<a;) — c(ai)
= Cd<ai) - Cd(\/ Tl<ai)
> cd(a;) —ed(\/(S UT")<a,) = dsur ().

The same holds for 1 (the proof has a minus one in the mid steps). For a; we have b(g) + ¢(g) > dsur(g)
because b(g) > ¢(g). Therefore the monomial z%e(x5) = 2%/ %, satisfies the hypothesis of Lemma 4.5 and we

obtain the claimed result 2%e(z5.) = 0. [ |

Finally we can prove the Poincaré duality property:

Theorem 4.7 (Poincaré duality). If 1 € G then the algebra DP(P, G) is a Poincaré duality algebra of dimension
ed(1) — 1.
More generally, DP(P,G) is a Poincaré duality algebra of dimension cd(1) — |F(P,G,1)|. O

Proof. The function € has the property €2 = Id, and gives a bijection between standard monomials in degree
k and in degree r — k. This, together with Corollary 2.8, shows that dim DPk(P,g) = dim DPr_k(P7 G). We
consider on standard monomials the reverse lexicographical order. Lemma 4.6 ensures that the matrix of the
Poincaré pairing (in the chosen basis) is upper triangular. From Lemma 4.4 we obtain that the entries on the
diagonal are +1 and so the Poincaré pairing is non degenerate. The last statement follows from the first one
together with Remark 4.1. n

We remark that the bases of standard monomials {z%} and {(—1)"e(z%)} are not dual bases.

4.2 Tensor decomposition

This technical section is devoted to computing the annihilator Ann(c,) and Ann(z,) for g € G. We describe it
using the Chow ring of different polymatroids: try P, P9 and Py. In the case of matroids these operations are
known as truncation, restriction, and contraction.

The following proposition is needed for the proof of the main result of this section.

Proposition 4.8. Let A and B be Poincaré duality algebra of the same dimension n, then:
e for each x € A*, x # 0, the ring A/ Ann(z) is a Poincaré duality algebra of dimension n — k,
e cach surjective homomorphism f: A — B is an isomorphism. O

The proof of the above proposition can be found, for example, in [ , Proposition 7.2, Proposition
7.13].

Let P=(FE,cd) be a polymatroid with building set G. Consider g € G such that cd(g) > 1 and let
trycd: 22 — N be the function defined by:

ey cd(h) = cd(h) =1 if cd(h) =cd(hUyg),
¥ ) ed(n) otherwise.
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We denote by tr, L the poset of flats of try cd. Finally, define
try G = {EEtrgL | h € G},

where h is the closure with respect to trg cd of the flat h. Notice that tr, L is a subposet of L but with a different
codimension function.

Lemma 4.9. For all g € G with cd(g) > 1, the pair tr, P = (E, tr, cd) is a polymatroid and try G is a building
set for the poset of flats try L. O

Proof. It is easy to see that (E,trycd) is a polymatroid. Let x € tr, L and notice that, for all h € G, h < x in
L if and only if h < z in try L. Thus, we have max try G<, = max G<, and it follows that

O.2]~ J[ O~ [ [0

yemax(G<ya) y€emax(trg G< o)

For the second part of the definition of a building set we have two cases. Let {91, ..., yn} = max G<, and assume
g % x, which implies g £ y; for every i:

trgcd(z) = cd(x) = Z cd(y) = Z trg cd(y).

yEmax G<, yEmaxtry G< o

Finally, let ¢ < x then by Proposition 2.4 there exists only one h; such that g < h;. Thus, we have the following:

trgcd(x):cd(a:)—lz( 3 cd(y))—lz S trged(y)

yEmax G<, yEmaxtryg G<go

This concludes the proof. n

Define the map
Cq: DP(try P,tr,G) — DP(P,G)/ Ann(o,)

by (4(ox) = o where h is any element in G such that h=k.

Remark 4.10. In the realizable case, this construction can be viewed geometrically: consider a generic
hyperplane H containing the flat g. The intersection of the subspace arrangement with H describes a subspace
arrangement in ' whose poset of intersection is try L. Moreover, the natural closed inclusion between the two
wonderful compactification induces a surjective map DP(P, G) — DP(tr, P, tr, G) with kernel Ann(c,). The map
(g is its pseudo-inverse. O

Lemma 4.11. For g € G with cd(g) > 1, the map (, is well defined and an isomorphism. Moreover deg(c)
deg(—04(y()) for all & € DP(try P, try G).

|

Proof. We show that the map ¢, does not depend on the choice of h: suppose that exist h, f € G such that
h = f. By symmetry we may assume h 72 f. Since gVh=h = f =gV f, we have h € G, so replacing f with
gV f we assume f > h. Notice that cd(f) =cd(h)+1and f =gV h so

og(on —oy) = ag(on —a5) = 0.

We verify that the relations (i) and (ii) of Theorem 2.9 are send to zero. Consider an antichain A C tr, G
and k € try G such that k> \/ A, set n = trycd(k) — trygcd(\/ A). Let h € G such that h =k and B C G such
that b; = a; for all i. We have

046s (o1 TT(0a = on)) = ay0i TT (06— on).
acA beB

Notice that cd(h) —cd(\/ B) = n unless h > g and \/ B # g in which case cd(h) — cd(\/ B) = n + 1. The non
trivial case is the latter. Notice also that h = g V' \/ B. We use the relations to obtain:

76y (ot [T (= 00)) = o40i: [[ (0 = on)

a€A beB
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= UZ—H H(O’b - O’h)

beB
=0.

Hence ¢, is well defined.
The map is surjective because for each h € G we have (4(07) = 0j. Finally applying Proposition 4.8 we
obtain the sought isomorphism.

For the last statement it is enough to notice that o4, (J:g_l) = z. u

Let P = (FE,cd) be a polymatroid, G be a building set and g € G any element. The restriction of the
polymatroid to the flat g is P9 = (E9,cd?) where B9 = {h € E | h < g} and cd? = cd|ps. The contraction of
P = (E,cd) to the flat g is P, = (E,, cdy) where E, = E'\ E9 and cdg(h) = cd(h V g) — cd(g).

Define LY = [0,9], G =GN LY, L, = [9,1], and

gg:{h\/g|h€g\[679]}‘

The proof of the following lemma is analogous to the one of Lemma 4.9, so we omit it.

Lemma 4.12. The restriction and the contraction at g € G are polymatroids with poset of flats LY (respectively
L,) and building set G9 (resp. G,). O

Remark 4.13. In the case of matroids M, we have for every e € E that M, = tr. M is the contraction of the
matroid. O

Define the map

g

: DP(P?,G%) ® DP(P,,Gy) — DP(P’g)/Ann(zg)

by ¥g(on ® 1) = o1, and Yg(1 ® ogvn) = op.

Lemma 4.14. Forallg € G\ {1} the map 1 is well defined and it is an isomorphism. Moreover, deg(a) deg(3) =
deg(z4¢q(a ® B)) for all a € DP(P9,G9) and 5 € DP(Py, Gy). O

Proof. We verify that 14(1 ® ogys) does not depend on the choice of the element h. Suppose that there exist
h,f € G such that gV h =gV f and h, f £ g. By symmetry we may assume h ? f. Replacing f with g V f we
assume f > h, then

:L'g(CTh 7(Tf) = ngxl = 0,
I>h
129

because {g, 1} cannot be G-nested since g < f < gVland ! % g.

We verify that all relations in the domain are mapped to zero. The ones in DP(P?,G7) hold also in
DP(P,G) trivially. Consider h € G and S C G an antichain such that \/ S < h and s € g for all s € S. Set
n=cd(gVh)—-cd(gVVS). There are two cases:

e if gVh &G then n=cd(h) —cd(\ S) and

240 (1@ fon [T @avs = 7gun)) = w40t [[ (0 = 02) =0,

a€sS a€sS

o if gV h €@ then

Tgthyg (1 ® ogun H(ag\/s - O'g\/h)> =240, H(O‘S — Ogvh)

sES seS

— E n
- ‘TQ‘TAO—g\/ha
A

where the sum is taken over all sets A = {ay,...ax} such that a; > s; and a; 2 g V h. Applying Lemma
2.10 to gV h, SU{g} and AU {g} we obtain that each term z,x 407, is zero.
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The map 14 is surjective because either h € G9 or gV h € G, for all h € G. We apply Proposition 4.8,
DP(L,G)/ Ann(z,) is a Poincaré duality algebra of dimension cd(1) — 2. The algebra DP(P9,G9) @ DP(P,,G,)
is Poincaré duality of dimension (cd(g) — 1) + (cd(1) —cd(g) — 1) (here is the only point were we use g # 1).
Since 14 is surjective between Poincaré duality algebras of the same dimension, it is an isomorphism.

For the last statement we have

xg,(/)g(x;d(g)—l ® x}:d(l)*Cd(g)*l) _ xgo_;d(g)—lx;d(l)fcd(g)fl

= (xy— o_g)o_;d(g)71x;d(i)—cd(g)—1
= _xiU;d(g)—lx;d(i)fcd(g)fl
_ _x<i:d(1)—1,
o deg(x;d(g)—l) deg(xfd(i)—Cd(g)—l) = (~1)edD = deg(_xfd(i)—l). =

1 1

4.3 Hard Lefschetz and Hodge-Riemann

We define a simplicial cone ¥ ¢ DP'(P,G) and we will show that each element ¢ € ¥ satisfies Hard Lefschetz
and Hodge-Riemann relations.

Definition 4.15. The o-cone ¥pg C DP'(P,G) is the convex cone

zp,gz{—zclgagmpo}. O

geg

Let a € E be an atom in L, i.e. the interval (0, a) is empty. Consider the set

{g€G\{a} | g#S forall § C B\ {a}},

—~

6)

of all elements g € G that cannot be written as the closure of some subset S C F not containing a. Define F(a)
as the disjoint union of E'\ {a} and the minimal elements of the set in (6). Define the pair P(a) = (E(a),cd),
where with a slight abuse of notation

cd({e1,... e, 91,...,9k}) =cd({e1,...,eg} Ugr U---Ugr}).

We also define G(a) = G \ {a}. The polymatroid P(a) depends on G but we omit this dependency in our notation.

In the realizable case, this polymatroidal operation corresponds to remove only the subspace S, from the
building set G and from the arrangement A. Now, there are subspaces in the lattice of flats £ 4 that are not
flats of A\ S,. Among them we want to keep trace only of the ones blown up, i.e. belonging to G; so we add to
the deleted arrangement A\ S, all the flats corresponding to minimal elements in the set (6).

Lemma 4.16. The pair P(a) = (E(a),cd) is a polymatroid and G(a) is a building set for the poset of flats of
P(a). O

Proof. It is easy to see that (£(a), cd) is a polymatroid and that the lattice of flats Lp(,) of P(a) is a subposet
of the lattice of flats L of P. We verify that G(a) is a building set. We check the definition for all x € Lp(q): if
a is not a G-factor of x then max(G<,) = max(G(a)<,) and it follows from the properties of G. Otherwise, a is
a G-factor of x and x cannot lie in the lattice Lp(,) generated by G\ {a}. L

Lemma 4.17. For an atoma € E, a # 1, consider the element o = (xq — Ua)Cd(a). There exists an isomorphism:

Da: DP(nga) — DP(P(Q)vg(a))/Ann(MO).

Moreover, deg(a) = deg(popa(e)) for all & € DP(P,,G,). O

Proof. Notice that g = (24 — 04)°4® is a multiple of 2, because 088 = 0, hence Ann(z,) € Ann(pp). Define
the morphism p, as the composition

DP(P,,G,) — DP(P*,G*) ® DP(P,,G.) h DP(P,G)/ Ann(z,) — DP(P,G)/ Ann(uo),
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where the first map is the inclusion x — 1 ® z. Explicitly p, (Uavh) = [o’h] for all h # a. Since g(a) is a subset of
G, DP(P(a),G(a)) is a subalgebra of DP(P, G). The range of the map p, is equal to DP(P(a),G(a))/ Ann(ug), so
the morphism in the statement is well defined and surjective. Since a # 1 we have pg # 0 and by Proposition 4.8
the map p, is an isomorphism, because both algebras satisfy Poincaré duality of dimension cd(1) — cd(a) — 1.
For the last statement we have pop, (x;d(l)_Cd(a)_l) = (—1)Cd(“)m(£d(1)_1 and so deg(mgd(l)_Cd(a)_l) =

(_1)cd(i)7cd(a)fl _ deg((—l)Cd(a)(ﬂ;d(i)_l). n

Lemma 4.18. Let a € E, a#1, be an atom and pg = (2, — 0,)°/*). Consider the polynomial p(z) =
Zgi(oa) (cdl(_a))xi(xa _ Ua)cd(a)7i7 then

DP(P(G),Q(G))[I]/(x Ann(po), p(x)) = DP(P.9). O

Proof. Define the morphism
DP(P(a),G(a))lx] — DP(P,G)

by 04 — 04 and « — —z,. By Lemmas 4.17 and 4.14 the elements of the form x Ann(su) are in the kernel. Also
p(z) is in the kernel because its image is (—0,)°4(® = 0. Clearly, the map is surjective.

Notice that if A is a Poincaré duality algebra and p(x) € A[z] a monic polynomial with constant term po then
Alz]/(x Ann(po), p(x)) is a Poincaré duality algebra. Indeed, if a generic element Zzzo a;z’ (with a; & Ann(ug)
and j < deg(p)) of degree k is orthogonal to all elements of degree n — k, then (ZZZO a;x")a’ = 0foralla’ € A"k,
This implies aga’ = 0 and ag = 0. Moreover, (Zgzl a;z’)a'zd°8P) =7 = 0 implies a;a’ o =0 and a;po =0 by
Poincaré duality in A, contradicting the fact a; ¢ Ann(uo). In particular, DP(P(a), G(a))[z]/(z Ann(uo), p())
is a Poincaré duality algebra of dimension cd(1) — 1.

The map DP(P(a),G(a))[z] — DP(P,G) is injective by Proposition 4.8 because domain and codomain are
Poincaré duality algebras of the same dimension equal to cd(1) — 1. u

The following theorem provides an abstract procedure to prove the Hodge-Riemann relations inductively.

Theorem 4.19. Let C be a Poincaré duality algebra and p(z) = 2% + pg_129 1 + - + g =0 € Clx] be a
homogeneous polynomial with pg # 0. Let B = C/ Ann(juo) and A = C[x]/(x Ann(uo),p(z)). Let £ € C* be an
element satisfying HR¢(¢) and HRp(¢). Then HR 4 (£ + ex) holds for sufficiently small positive e. O

In the above theorem the degree function on B is induced by pyg, i.e. degg(a) = degq(aupip). Since the top
degrees coincide AP = C*P we also implicitly assume that deg, = deg..

The proof of Theorem 4.19 is the same of the proof of | , Proposition 8.2], so we omit it.

The following easy lemma shows that the maps introduced in Section 4.2 preserve the ¥-cone.

Lemma 4.20. The following holds:
1. For any g € G, g # 1 the natural map
DP'(P,G) — DP'(P?,G¥) & DP' (P, Gy)
induced by the quotient by Ann(z,) composed with ¢, !, maps ¥pg into Xps gs X Xp, g, -

2. For any ¢g € G the morphism
DP'(P,G) — DP!(tr, P, tr, G)

induced by the quotient by Ann(o,) composed with Cg_l, maps Ypg into X, pir, G-
3. For any atom a € F,a # 1 the natural map
DP'(P(a),G(a)) — DP(P,,Ga)

induced by the quotient by Ann(ug) composed with p, !, maps Y p(a),6(a) into Xp, g, O

Proof.
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1. Let [ = — Zheg dpop, be an element of the o-cone, we have
S ) ==Y dhon @1 -3 dh® opun.
h<g hig

It may occur that there are two different h,h’ € G such that g Vh =gV h' but, also in this case, the
coefficient of 1 ® agy, is still negative. It follows that ¢, ' ([l]) € ¥ps,go X Ep, g,

2. Let Il = — Zheg dpoyp, be an element of the o-cone, we have
G == duoy,
heg

It may occur that there are two different h,h’ € G such that h = h/ but, also in this case, the coefficient
of oy, is still negative. Thus, ¢, ' ([I]) € S, Pir, -

3. Letl=— Zheg dpoyp, be an element of the o-cone, we have
pa () = = dnoavn-
heg

It may occur that there are two different h,h’ € G such that aVh =aV h' but, also in this case, the
coefficient of o4y, is still negative. It follows that p, 1([l]) € £p, g, -

|
Now we are ready to prove the main theorem.

Theorem 4.21. For every element £ in the o-cone X p g the conditions HLpp(p,g)(¢) and HRpp(p,gy(¢) hold. O

Proof. We prove the statement by induction on |G| and cd(1). The base case is |G| =1, so DP(P,G) =

Qlz;]/ (x}:d(l)). In this case, it is known that —Az; satisfies Hard Lefschetz and Hodge-Riemann for all positive
For the inductive step consider a polymatroid P, a building set G, and an element ¢ € ¥pg. Under the
morphisms of Lemma 4.20 Item 2 £ is mapped in Y., pr, g for all g € G. Therefore by the inductive hypothesis
the image of ¢ in DP(P,G)/ Ann(o,) satisfies Hodge-Riemann relations for all g € G. Notice also that £ is a sum
of —o, with positive coefficients. By [ , Proposition 7.15], HLpp(p,g)(¢) holds.
We want to prove that the Hodge-Riemann relations hold for all £ € ¥pg. By | , Proposition 7.16]
it is enough to prove HRpp(p,g)(£) for some £ € ¥ pg. We apply Theorem 4.19: consider any atom a € E, since

|G| > 1 then a # 1. Set C' = DP(P(a),G(a)) and p(z) = Zfi(oa) (<Y 2i(24 — 04)°4 @~ Lemma 4.17 ensures
that B = DP(P,,G,) and Lemma 4.18 that A = DP(P,G). Let £ € X p(,) g(a), then under the morphism C' — B
(Lemma 4.20 Item 3) the class £ is mapped in Xp, g,. By the inductive hypothesis we have HRpp(p(a),6(a)) (£)
and HRpp(p, g,)(¢), hence by Theorem 4.19 HRpp(p,g) (¢ — €x,) holds for sufficiently small € > 0.

Moreover if € is small enough then ¢ — ex, belongs to ¥p . Indeed using the Mo6bius inversion formula we

have

Ta =Y ngla,9)o,

g=a
(where we consider G as a sub-poset of L). Let £ = —3" . dgo4, taking € smaller than
d

min { ‘ —7 ‘} ,

g2a | lpg(a,g)
then ¢ — ex, € ¥pg. This concludes the proof. |

Remark 4.22. The ample cone depends on the geometric realization, however our o-cone is contained in the
ample cone of every realization. Indeed, consider 3 distinct lines in C? and let P be the polymatroid realized by
this subspace arrangement. The projective wonderful model is the blowup of P? in 3 distinct points; there are
two cases. If the three points are collinear the ample cone coincides with the o-cone. Otherwise the three points
are in general position and the ample cone is

{—dil‘i —dgx, — dpry — dexe | di > d, + dp, di > d, +d., di > dy + dc}

which strictly contains the o-cone. O
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Remark 4.23. If we restrict to the case of matroids with arbitrary building sets, the generator x; can be
eliminated using the relation z; = —3%_ . ;x4 for any e € E. Thus the Hard Lefschetz theorem (and so
the Hodge-Riemann relations) can be proven for the entire ample cone using as generators {z4},,; instead of
{0g4}geg and Lemma 4.14 instead of Lemma 4.11.

5 The relative Lefschetz decomposition

In this section we provide a decomposition of DP(P,G) as DP(P \ a,G \ a)-module. This is analogous to the
semi-small decomposition of [ ], but in this more general setting the corresponding map is not always
semi-small.

Indeed, consider an arrangement of hyperplanes A and the deleted arrangement A’ = A\ {H} for some
hyperplane H € A. There is a projection map between the wonderful models Y4 — Y4/ (constructed using the
maximal building sets). This map is semi-small and induces the semi-small decomposition of the Chow ring.

In the case of subspace arrangements, the projection between the wonderful models exists but is not semi-
small, because the dimension of the fiber of the blow up is too big. Therefore, the proof of the Kéahler package
done in | | for matroids cannot be adapted to polymatroids.

Recall that for a polymatroid P = (E,cd) an atom a € E is an element such that the interval (0,a) C L is
empty (where @ is the closure of a).

Definition 5.1. For an atom a define the polymatroid P\ a on the ground set F \ {a} with the restricted
codimension function cd. The building set G \ a is the intersection of G with the poset of flats of P\ a. O

Define a map
6.: DP(P\ a,G\ a) — DP(P,G)
by 0q(0s) = o where h is the closure of h in P. Define the subalgebra DP ;) = Im(f,).

Lemma 5.2. The map 6, is injective. O

Proof. Consider a standard monomial 6% € DP(P\ a,G \ a) and let S = {h | h € S}. We have 0,(c%) = cr% and

it is enough to prove that a%

poset of flats is an inclusion. Therefore S is G-nested. Since cd(h) = cd(h), then O’% is a standard monomial. W

is a standard monomial. Notice that h Vg = h V g and the map between the two

Let S, ={9€G|acgand g\ {a} € L} be the set of all flats such that a is a coloop for that flat.

Remark 5.3. Notice that 0,(z,) = x4 + 74074}, Where we use the convention that x5 = 0 if & is not a flat of

P. Moreover DP ;) is generated as an algebra by o, with g ¢ S, and as vector space by the monomials ob with
SnS, =0. O

For f € S, define DP; as the DP(,)-submodule of DP(P, G) generated by zy, x?h .. .x;f, where
nyp=cd(f) —cd(f\{a}) =1+ |F(P,G, f\{a})]
For a graded module M = @&; M* we define M k] to be the graded module such that (Mk])* = M*+k.

Theorem 5.4. Let a be an atom, then:

2% DP(,[—k] 2 DP((P\ @)™\, (G \ a)"\*) ® DP(P},Gy), (7)
ng
DP; = a4 DP(y), (8)
k=1
DP(P,G) = DP(,) & P DP;. (9)
fesa

as DP(4)-modules. Moreover, the last decomposition is orthogonal with respect to the Poincaré pairing, with
the exception of the summand DP(,) and DP; (if a is a coloop). O

For an example of the application of Theorem 5.4 see Section 7. Before the proof of the above theorem we
need some lemmas.
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Lemma 5.5. For all f € S, and k < ny we have
20~ DP(y[~k] = DP((P\ )"\, (G \ a)"\*) @ DP(Py, Gy), (10)

and these modules are in direct sum in DP(P, G). O

Proof. Notice that for k < njy

DP((t 1 (P7)) \ a, (6 71(G”)) \ @) = DP((P\ @)\, (G \ )\*).
Using Lemmas 4.14 and 4.11 we obtain the isomorphism

zpoly ' DP(P,G)[—k] ~ DP(tr " (P), tr 1 (G7)) @ DP(Py, Gy).

It is easy to check that the above isomorphism restricts to the one in eq. (10). For the second claim suppose
that there exists a linear combination

in DP(tréc_1 P/, trlf_1 G7). Therefore p; belongs to the ideal generated by o; (where f is the top element in the
poset of flats of tlrl]f1 P7). The ideal (o) is linearly generated by all monomials o4 with f € 7. This yields a
contradiction since p; lies in DP((P\ )\, (G \ @)/\*), which does not contain the generator o. u

Lemma 5.6. For all elements f,g € S, such that f 2 g we have x 0, = 270, (4} Moreover, we have

nf

DP; = @J}fo‘?il DP(a) . O
k=1

Proof. Consider h € G such that h > g\ {a} and h # g, we need to prove that zx, = 0. Notice that {f,h} is
an antichain, fV g € G and so (f V ¢g) V h € G because g \ {a} # 0. Therefore

fvh=(fVva)v(g\{fa}) Vh)=fVvgVvhed,

{f, h} is not G-nested, and zz;, = 0.
For the second statement it is sufficient to prove that mfaljffl = x’; + z with some z € 25;11 J:ic DP,). Write
of =+, byoy for some coefficients by € Z, then

2
:EfJf:If+If E bgCTg+:L'f E ngg\{a},
g>f 9>f
9%Sa g€Sa

and all the summands (except x}) belong to x5 DP(,). An inductive argument on the exponent k concludes the
proof. n

Lemma 5.7. The submodules DP(,) and DP; for all f € S, generate DP(P,G). O

Proof. We prove that each monomial crg belongs to the submodule M := DP,) + Yor cs, DPp by complete
induction on f = min(SNS,) and on b(f).

The base case is SN S, = 0 and so af’g € DP(,). For the inductive step notice that S N .S, is G-nested, so it
is a chain. Call f = min(SNS,) and suppose that all monomials Jg with ¥'(f) < b(f) and all monomials O'g«//
with min(S’NS,) > f belong to M.
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Let {g1,...,91} = F(P,G, f \ {a}) be the set of G-factors of f\ {a}. The relation

—ed( f\{a})H o)

holds and in the case b(f) > ny we can rewrite Ufc(f)O'T\{f} as sum of monomials with '(f) < b(f) using the
above relation and the fact that g; € S,.
In the case b(f) < ny we have

b(f)—1 b(f)-1
of = sy ol gy + (0p — 2o} DT ok gy,

Using the first assertion of Lemma 5.6, it follows that the element xfaf() 1Ug\{ sy belongs to
o U?(f)fl

JhU;(f)_log\{f} with A > f and so belongs to M by the inductive hypothesis. n

DP(,) C M. The second summand (o —xf)af(f)flas\{f} is a linear combination of monomials

Proof of Theorem 5.4. As in Remark 4.1, we may assume that ie G. By Lemmas 5.6 and 5.5, DP; is a
free DP((P\ a)"\*,(G\ a)/\*) ® DP(Pf,gf)—module with basis xfaf “!for k=1,...,ns. The elements {m’}}k
written in the basis {z faljf_l}k form an upper triangular matrix with ones on the dlagonal (the inverse of the
one given in Lemma 5.6). Eq. (7) and eq. (8) follow.

In order to prove eq. (9) we first prove the orthogonality. Let f # 1; the elements DP; and DP(, are

orthogonal because the product is contained in DP; which is zero in degree cd(1) — 1. Indeed from eq. (7) and
eq. (8), it follows that the top degree of DPy is cd(1) —

Consider generic elements xl]’cy € DPy and zgz € DP, in complementary degrees (with y, 2z € DP(,)). The
product is zero if f and g are incomparable. Otherwise, by symmetry we may assume g > f, hence

zprg = 2f(Tg + To\({a})

Since w4 + 4\ 1o} € DP(4), we obtain that the product lie in DP;. Again the top degree is zero since f # 1.
We prove that if a is a coloop then DP () N DPi = 0. In that case DPj; is the ideal generated by ;. This ideal

is linearly generated by all standard monomials O'S with 1 € S. Since 1 € S, then DP 4 NDP; = 0. The direct
sum of eq. (9) follows from the orthogonality of all other summands together with Lemma 5.7 and Theorem
4.7. ]

6 Characteristic polynomial

In this section we study the coefficients of the (reduced) characteristic polynomial of a polymatroid.

We consider only maximal building sets, so we omit the building set from the notations. Moreover we
suppose that the polymatroid is without loops, i.e. cd({e}) > 0 for all e € E.

Leta=ap=—zjand f=fp =) 5 T4 betwoelementsin DP!(P). We denote by ji,(a, b) the Mobius
function of L.

Lemma 6.1. For any polymatroid P with c¢d(E) > 0 and r = cd(E) — 1 we have

deg(Bp) = (1) + > (~1)*M@~ deg(s}, ). O

geL\{0,1}

Proof. A flag with repetition is F = (F{"* C Fy? C --- C F/"") where a; > 0 are the multiplicity of the flats
F; € L. We also require that Ei 1 a; = 1. Define zx = H‘z}-l1 :CF, we will prove that zz =0 if cd(Fy) > a3.

More generally we have xx = 0 if cd(F;) > Z 1 a; for some i, but we prove and use the implication only for
i = 1. From the isomorphism %, of Lemma 4. 14 we obtain

TF = xpll/JFl((.’Epl RXITL—-—1® ﬂpg)alfl(l ® (E]:/)),

where F/ = (F3? C --- C F/"). Notice that the degree of xz is r — a1, which is greater than r — cd(F}), the top
degree of DP(Fy).
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Let (") be the multinomial coefficient where a = (a1, ...,a;) and Zé:l a; =r. Since zyxry =0 if f and g
are incomparable, we have
T
= S ()er
F flag of P
T
- Y (D)
01 F flag of P a
FeL\{0} ey
a ™\ & r—k
- > ¥ (k)xF > (")
FeL\{0} k=cd( F) F' flag of Pp
FeL\{0} k=cd(F) < )
The summand relative to F' = 1 is exactly 7 and contributes (—1)" to deg(Sp). It is enough to prove
. r
r— r—cd
deg( > (k) 2485, ") = deg(8p, )
k=cd(g)
for every g € L\ {0,1}. We use Lemma 4.14 to obtain:
- r r—k
BN WETSE
k=cd(g)
K r B B
S (k) des((y ® 1~ 19 )" (1@ 65 %))
k=cd(g)
- k— -
_ Z ( 1)k cd(g) deg(x;d(g)fl ® ﬁ; cd(g))
cd(g ) 9
k=cd(g)
- -1(T k—1 r—cd(g)
S <—1>’“()( )deg< o)
M k) \cd(g) —1 ¢
= (=)0 deg(87, 1),
where in the last equality we used the identity
. r k—1
> <1>k< ) ( ) = (—1)*1@
hedle) k) \cd(g)—1
which follows from | ,eq. 5.24] withl=r, m=0,n=-cd(g) — 1, and s = —1. u
Lemma 6.2. For every polymatroid P with poset of flats L and r = c¢d(E) — 1 with c¢d(E) > 0 we have
deg(Bp) = (=1)/®pr (0,1). O

Proof. It is known that ur(0,1) = X(A(0,1)), i.e. the Mdbius function coincides with the reduced Euler

characteristic of the order complex of the poset L\ {0,1} (e.g. see [ ). Let L°P be the opposite (dual)
lattice of L which is defined on the same set of L but with reversed order, i.e., z < y in L°P if and only if y < x

in L. Since the order complexes of L and L°P are the same simplicial complex, we have

ML(Oﬂ i) = HLer (67 i)

Define deg(8%) =1 for rank zero polymatroids P. Therefore, the functions (il)Cd(E) deg(B%) and pizer(0,1)
satisfy the same recurrence relation. One is given by the definition of prer(0,1) and the other by Lemma 6.1.

This concludes the proof.
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Notice that if L is a geometric lattice (i.e. the poset of flats of a matroid), then the Mobius function has
alternating sign, hence in this case deg(8") € Np.
Definition 6.3. The characteristic polynomial of a polymatroid P is

xp(\) =Y ur(0, g)Atm@),

g€eL

where dim(g) = cd(1) — cd(g). Since xp(1) =0 by the definition of M&bius function, we define the reduced
characteristic polynomial as

O

This definition of reduced characteristic polynomial coincides with the one in the introduction eq. (1), as
stated in | .

Theorem 6.4. For every polymatroid P, we have

T

Xp(A) =D (=1)"degp(apBy )N

=0

where r = cd(E) — 1. O

Proof. We show that X p(A) and the right hand side satisfy the same recurrence:
ap(N) = Ager, P(A) = —p, (0, 1)

where L is the poset of flats of P.

Let tr; L be the poset of flats of tr; P and notice that ur(0,g) = Hr; (0, g) for all g such that dim(g) > 1.
Therefore xp(A) — Axtr p(A) is a polynomial of degree one divisible by A — 1. Hence X p(A) — XXy, p(A) is constant
and equal to Xp(0) = —u(0,1). This proves that X p(\) satisfies the recurrence.

Now observe that for i > 0 degp(abBp ") = degy, p(ai pBl 1) by Lemma 4.11. This proves that

T r—1
D (1) degp(apBp )N =AY (—1)" degy, p(afy B N =

=0 =0
= (=1)"degp(8"),

and so Lemma 6.2 proves the recurrence.
The base case cd(F) =1 is trivial, so the proof follows. [ |

For an explicit example check Section 7.

Corollary 6.5. The coefficient of \? of the reduced characteristic polynomial Xp(A) is (up to the sign) the
reduced Euler characteristic of the order complex of the poset (tr’i L)\ {0,1}:

NIxp(A) = (1) R(A((1r] L)\ {0,1})). O

Proof. It follows from Theorem 6.4 and Lemma 6.2. |

Remark 6.6. The coefficients of the characteristic polynomial x p and of the reduced characteristic polynomial
X p do not form a log-concave sequence. Indeed if P, is the polymatroid associated to 4 subspaces of codimension
2,3,4,4 in C® in general position, then

xp (A) =A% = A3 — A% —2)\ 4 3,
which is not log-concave. Let P, be the polymatroid on E = {a,b,c,d,e} with rank defined by cd(a) = 2,
cd(b) = 3, cd(c) =4, cd(d) = 4, cd(e) =1, by cd(A) =6 if |4] > 3 and cd({z, y}) = min{5, cd(z) + cd(y)}. The

reduced characteristic polynomial is not log-concave because

Xp,(A) =A% =A% =A% —2) + 6. O
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1
1/ 1
ab
VAV
a b

el /f

Figure 1: The Hasse diagram of the poset of flats L of Section 7

0

a

b

Figure 2: The nested set complex n(P,G).

2
1

=N

(o]

ol WM
[CH RSN Je

3
4 1
3

4

Table 1: The dimensions of B?¢(P,G)/(e;) in position (p, q).

=

7 An example

Let E = {a,b,c} and cd: 2¥ — N the function defined by

cd(a) = cd(b) =2, cd(ab) = cd(c) = 4,
cd(ac) = ed(be) = cd(abe) = 5.

This function defines a polymatroid P with poset of flats L shown in Figure 1. Near every cover relation, the
relative codimension of the two flats is shown. This polymatroid is realizable: a realization is the collection in
CP of two subspace of dimension 3 and a line in general position.
Consider the (minimal) building set G = {a, b, ¢, 1}; the nested set complex n(P,G) is shown in Figure 2.
The algebra B(P,G) is generated by x4, Zs, Tc, T, €q, €b, €c, €7 With relations:

eqtc = epec =0 ToZe = TpTe =0
ZTae = Tpee =0 €ale = €pTe =0

(o +27)% = (zp+27) =0 (ze+27)* =0

xf =0 Tcry =ecxy =0
Taa] = eq1; =0 zyr? = epad = 0
ToTpT] = eqxpri =0 €qepTi = Tapxi =0

The homogeneous component B41(P,G) has dimension 12 and the additive basis provided by Corollary 2.8 is:
2 2
€{TqTh, E{TqL], E{]THL], €1 T, eixi,

2 2 2
€alalp, Eqlalq, eamia EpLaTp, EpLalq, 651’1, €.

Notice that B(P,G) = B(P,G)/(ej) ® (1, ;) and their dimensions are reported in Tables 1 and 2.
The other presentation of B(P,G) is given by generators o4, 0y, 0¢, 0, Ta, T, Te, Ty and relations:

(Ta = ) (Te — 1) = (o —m3)(7e —7131) =0

(0a —0p)(0c —07) = (op —oy)(0c —07) =0

Q
QN O

o, =0
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s |1 2 1

2|4 9 8 3

14 11 12 7 1

o| 1l 4 5 4 1
‘ 0o 1 2 3 a

Table 2: The dimensions of B?:4(P,G) in position (p, q).

3|0 0 1

2|0 0 1 3

10 2 0 1 1

o/1 0 O 0 O
‘ 0 1 2 3 4

Table 3: The dimensions of CM(P, G) in position (p, q).

o = N W

ol O OO

HlOoN OO

N O O~ O

w | O = =
(an)

Table 4: The dimensions of H?P4(B(P,G),d) in position (p, q).

(0a —01)(Te —74) =0 (0p —oq)(re —74) =0 ;=0
(ta = 73)(0c —07) =0 (o — 13)(0c —07) =0 U%:O
(0c—07)o;1 =0 (Te = 13)o; =0 (00 — O’i)O'% =0
(Ta — 7'1)0' =0 (op — 01)0:{’ = (1 — Ti)O'% =0
(00 = 01)(0p —07)0y =0 (ta = 71)(0p — 07)0y =0

(ta = 71) (76 — 13)07 =0 (00 —01)(mp — 1)o7 =0

The homogeneous component B*!(P,G) has dimension 12 and the additive basis provided by Corollary
2.12 is:

2 2
Tidaab, TiO'an, TiO'bUi, 71007 71017

2 2 2
Ta0a0b; Ta0a01; Ta03, To0a0b; Th0a0], Th0], TeOg -
The set of critical monomials is:

3 4 2 2 3
1, 7,04, ToOb, TcOL, Ti0%, TaTb0a0b; TaTiTa0] s ToT{Ob0T, TecTiO, TaTbTi0alb,

and the dimensions of CM?P4(P, G) are given in Table 3. The rank of the cohomology group of (B(P,G),d) are
given in Table 4
As an example we have
d(cu(abi)) = d(TaTpTj0a0b) = T TH0{040b
= Tij(TbO'% — TaTiO'QO'% = cu(bl) — cp(al),
that coincides with d((a,b,1)) = (b,1) — (a,1) in the differential algebra CM(P,G). Moreover, in CM(P,G) we

have
(a) - (b) = A(a,b) — A(b,a) = (a,b),

because a < b and it corresponds to the equality
cp(a)ep(b) = T40aTh0p = TaTo0q0p = cpi(ab).

The posets related to P and a are shown in Figure 3. The polymatroids P(a) and P\ a are equal by
coincidence; see below for the poset P(a) relative to the maximal building set.
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(a) The poset of flats of tr, P.

1
2
a

(¢) The poset of flats of P,. (d) The poset of flats of P(a). (e) The poset of flats of P\ a.

Figure 3: The Hasse diagram of some posets related to a. The circled nodes are in the corresponding building
sets.

The o-cone X pg is given by the linear combinations —d,o, — dyop — dco. — djo; with positive coefficients
dg > 0.

We have Ann(z,) = (:L’C,CL'bUi,O'%) and so in DP(P,G)/ Ann(z,) we have 0. = 0j, (0p —oj)oy =0, and
ai{’ = 0. The last two equations correspond to the defining relation for DP(P,,G,). Similarly, Ann(c,) =

(6c — 04,04, a‘il, (op — cri)a%) and these are exactly the equations defining DP(tr, P,tr, G) that do not appear
in DP(P,G).
The relative Lefschetz decomposition with respect to the atom a is

DP(P,G) = DP(y) ®za DP(q),

where
_ 2 2 2 3 3 4
DP(a) - <17 Op, Oc, 0'17 O'bO'i, Ucv Uia O-bo'i70-ca o-ia O.iv >

and
DP, = 24 DP4) = (24, zaob,xaai,xaa%> ~ DP(P,, G.)[1].

The relative Lefschetz decomposition with respect to the atom c is
DP(P,G) = DP(,, ® DP; ®DP,,

where DP (. = (1,04,04,0,05) and the other DP(y-modules are DP.= (z.,22,2}) and DP;=
X DP(C) @x% DP(C) Moreover we have xq DP(C)[—I] ~ .13% DP(C) [—2} ~ DP((P \ C)ab7 (g \ C)ab).

Maximal building set

Now consider the same polymatroid P with the maximal building set Gax = {a, b, ¢, ab, 1} The polymatroid
P(a) relative to the maximal building set is shown in Figure 4 and the groundset E(a) is {b,c,ab}. This
polymatroid P(a) associated with Gpax is different from the polymatroid P(a) defined from the minimal building
set G (shown in Figure 3d).

The characteristic polynomial is xp(A) = A®> — 2A3 + 1 and the reduced one is

Xp(A) = AP+ A3 A2 -\ -1

We have a = —xy, B = x4 + T + Tc + Tap + 77 and deg(a?) = 1, deg(a?B) = —1, deg(a?B?) = —1, deg(a?) =
1, and deg(p4) = —1.
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Figure 4: The Hasse diagram of the poset of flats of P(a) with maximal building set on the groundset {b, ¢, ab}.
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