Nowadays, robots are heavily used in factories for different tasks, most of them including grasping and manipulation of generic objects in unstructured scenarios. In order to better mimic a human operator involved in a grasping action, where he/she needs to identify the object and detect an optimal grasp by means of visual information, a widely adopted sensing solution is Artificial Vision. Nonetheless, state-of-art applications need long training and fine-tuning for manually build the object's model that is used at run-time during the normal operations, which reduce the overall operational throughput of the robotic system. To overcome such limits, the paper presents a framework based on Deep Convolutional Neural Networks (DCNN) to predict both single and multiple grasp poses for multiple objects all at once, using a single RGB image as input. Thanks to a novel loss function, our framework is trained in an end-to-end fashion and matches state-of-art accuracy with a substantially smaller architecture, which gives unprecedented real-time performances during experimental tests, and makes the application reliable for working on real robots. The system has been implemented using the ROS framework and tested on a Baxter collaborative robot.

Bergamini, L., Sposato, M., Pellicciari, M., Peruzzini, M., Calderara, S., Schmidt, J. (2020). Deep learning-based method for vision-guided robotic grasping of unknown objects. ADVANCED ENGINEERING INFORMATICS, 44, 101052-101066 [10.1016/j.aei.2020.101052].

Deep learning-based method for vision-guided robotic grasping of unknown objects

Peruzzini M.;
2020

Abstract

Nowadays, robots are heavily used in factories for different tasks, most of them including grasping and manipulation of generic objects in unstructured scenarios. In order to better mimic a human operator involved in a grasping action, where he/she needs to identify the object and detect an optimal grasp by means of visual information, a widely adopted sensing solution is Artificial Vision. Nonetheless, state-of-art applications need long training and fine-tuning for manually build the object's model that is used at run-time during the normal operations, which reduce the overall operational throughput of the robotic system. To overcome such limits, the paper presents a framework based on Deep Convolutional Neural Networks (DCNN) to predict both single and multiple grasp poses for multiple objects all at once, using a single RGB image as input. Thanks to a novel loss function, our framework is trained in an end-to-end fashion and matches state-of-art accuracy with a substantially smaller architecture, which gives unprecedented real-time performances during experimental tests, and makes the application reliable for working on real robots. The system has been implemented using the ROS framework and tested on a Baxter collaborative robot.
2020
Bergamini, L., Sposato, M., Pellicciari, M., Peruzzini, M., Calderara, S., Schmidt, J. (2020). Deep learning-based method for vision-guided robotic grasping of unknown objects. ADVANCED ENGINEERING INFORMATICS, 44, 101052-101066 [10.1016/j.aei.2020.101052].
Bergamini, L.; Sposato, M.; Pellicciari, M.; Peruzzini, M.; Calderara, S.; Schmidt, J.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/951926
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 37
social impact