Transdisciplinarity is characterising numerous research areas, in which natural sciences are integrated with technical and social sciences, requiring mixed methodologies for achieving full sustainability. However, there is a lack of engineering methods and design tools able to effectively integrate the analysis of human performance and social impacts with technical issues during product and process design. In this context, digital manufacturing tools and virtual simulation technologies can be validly used to create interactive digital mock-ups where human-system interaction during manufacturing operations can be simulated to support product and process design. The paper proposes a mixed reality (MR) set-up to support human-centred product and process design, where systems and humans interacting with them are monitored and digitalised to easily evaluate the human-machine interaction, with the scope to have feedback for design optimisation. Such an approach is defined as trans disciplinary since it merges technical design issues and human perspectives to design products on the basis of effective human performance, with the goal to early detect design criticalities and improve the overall system design. Industrial use cases have been developed to demonstrate the validity of the proposed approach to support human-centred design of a tractor. Results have demonstrated potential improvements, in terms of time saving for design review and workers’ training, reduction of physical prototypes for design validation, reduction of late design and engineering changes, reduction of ergonomic issues, and global positive impact on time-to-market.

Grandi F., Zanni L., Peruzzini M., Pellicciari M., Campanella C. E. (2020). A Transdisciplinary digital approach for tractor’s human-centred design. INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 33(4), 377-397 [10.1080/0951192X.2019.1599441].

A Transdisciplinary digital approach for tractor’s human-centred design

Peruzzini M.;
2020

Abstract

Transdisciplinarity is characterising numerous research areas, in which natural sciences are integrated with technical and social sciences, requiring mixed methodologies for achieving full sustainability. However, there is a lack of engineering methods and design tools able to effectively integrate the analysis of human performance and social impacts with technical issues during product and process design. In this context, digital manufacturing tools and virtual simulation technologies can be validly used to create interactive digital mock-ups where human-system interaction during manufacturing operations can be simulated to support product and process design. The paper proposes a mixed reality (MR) set-up to support human-centred product and process design, where systems and humans interacting with them are monitored and digitalised to easily evaluate the human-machine interaction, with the scope to have feedback for design optimisation. Such an approach is defined as trans disciplinary since it merges technical design issues and human perspectives to design products on the basis of effective human performance, with the goal to early detect design criticalities and improve the overall system design. Industrial use cases have been developed to demonstrate the validity of the proposed approach to support human-centred design of a tractor. Results have demonstrated potential improvements, in terms of time saving for design review and workers’ training, reduction of physical prototypes for design validation, reduction of late design and engineering changes, reduction of ergonomic issues, and global positive impact on time-to-market.
2020
Grandi F., Zanni L., Peruzzini M., Pellicciari M., Campanella C. E. (2020). A Transdisciplinary digital approach for tractor’s human-centred design. INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 33(4), 377-397 [10.1080/0951192X.2019.1599441].
Grandi F.; Zanni L.; Peruzzini M.; Pellicciari M.; Campanella C. E.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/951924
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 22
social impact