We consider positive singular solutions (i.e. with a non-removable singularity) of a system of PDEs driven by p-Laplacian operators and with the additional presence of a nonlinear first order term. By a careful use of a rather new version of the moving plane method, we prove the symmetry of the solutions. The result is already new in the scalar case.

Biagi S., Esposito F., Montoro L., Vecchi E. (2023). Symmetry and monotonicity of singular solutions to p-Laplacian systems involving a first order term. ADVANCES IN CALCULUS OF VARIATIONS, 17(4), 1519-1541 [10.1515/acv-2023-0043].

Symmetry and monotonicity of singular solutions to p-Laplacian systems involving a first order term

Vecchi E.
2023

Abstract

We consider positive singular solutions (i.e. with a non-removable singularity) of a system of PDEs driven by p-Laplacian operators and with the additional presence of a nonlinear first order term. By a careful use of a rather new version of the moving plane method, we prove the symmetry of the solutions. The result is already new in the scalar case.
2023
Biagi S., Esposito F., Montoro L., Vecchi E. (2023). Symmetry and monotonicity of singular solutions to p-Laplacian systems involving a first order term. ADVANCES IN CALCULUS OF VARIATIONS, 17(4), 1519-1541 [10.1515/acv-2023-0043].
Biagi S.; Esposito F.; Montoro L.; Vecchi E.
File in questo prodotto:
File Dimensione Formato  
10.1515_acv-2023-0043.pdf

embargo fino al 29/11/2024

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso libero gratuito
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/950496
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact