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Abstract: We consider positive singular solutions (i.e. with a non-removable singularity) of a system of PDEs
driven by p-Laplacian operators and with the additional presence of a nonlinear first order term. By a careful
use of a rather new version of the moving plane method, we prove the symmetry of the solutions. The result is
already new in the scalar case.
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1 Introduction

The study of symmetry properties of solutions of PDEs is a long–standing topic which dates back to the foun-
dational works of Alexandrov [1], Serrin [24], Gidas, Ni and Nirenberg [18], and Berestycki and Nirenberg [2].
The common point among such papers is the use of the celebratedmoving plane method in the case of semilin-
ear elliptic equations. This powerful technique relies heavily on the validity of (weak and strong) maximum or
comparison principles. The relevance of the ideas which are at the core of the aforementioned papers is clearly
witnessed by the huge number of contributions which are now available in the literature, whose aim has been
to extend the results mentioned above to several different cases in the local framework: quasilinear equations
(see, e.g., [8–11]) and cooperative elliptic systems (see, e.g., [5, 7, 12–14, 28]).

A slightly different line of research concerns the study of symmetry properties of singular solutions. In this
case, we refer, e.g., to [6, 26] for the case of point-singularity. More recently, Sciunzi [23] developed a newmethod
which allows to study symmetry properties of solutions which are singular on sets of small capacity.

The aim of this paper is to focus on systems of PDEs driven by the p-Laplacian with the additional presence
of a nonlinear gradient term. To be more precise, we will consider solutions

ui ∈ C1,α(Ω \ Γ), i = 1, . . . ,m,
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to the following system of PDEs:

{{{
{{{
{

−Δpiui + ai(ui)|∇ui|qi = fi(u1 , . . . , um) in Ω \ Γ,
ui > 0 in Ω \ Γ,
ui = 0 on ∂Ω.

(S)

Here, Ω ⊆ ℝN is a smooth and bounded domain and, for suitable smooth functions,

−Δpv := div(|∇v|p−2∇v)

denotes the p-Laplacian. Generally, solutions to equations involving the p-Laplace operator are of class C1,α . This
assumption is natural according to classical regularity results [15, 20, 27]. We point out that, in this paper, we
deal with singular solutions that are C1,α far from the critical set Γ. We consider solutions with a non-removable
singularity: we mean that solutions possibly do not admit a smooth extension in Ω, i.e. it is not possible to find
ũi ∈ W

1,p
0 (Ω) such that ui ≡ ũi in Ω \ Γ. Indeed, without any a priori assumption, the gradient of the solutions

possibly blows up near the critical set, and hence each equations of (S) may exhibit both a degenerate and
a singular nature at the same time.

Before stating our main result, we first introduce the main structural assumptions we require on prob-
lem (S); these assumptions will be tacitly understood in the sequel.

Assumptions. Throughout what follows, we suppose the following:
(hΩ) Ω is a bounded domain inℝN (withN ≥ 2), which is convex in the x1-direction and symmetricwith respect

to the hyperplane
Π0 := {x ∈ ℝN : x1 = 0}.

(hΓ) Γ ⊆ Ω ∩ Π0 is a compact set satisfying Capp(Γ) = 0, where

p := max
1≤k≤m

pk .

(hp,q) For every i = 1, . . . ,m, we have

{{{{
{{{{
{

2N + 2
N + 2 < pi ≤ N and max{pi − 1, 1} ≤ qi < pi ,

or
2 ≤ pi ≤ N and qi = pi .

(1.1)

(ha) The functions ai( ⋅ ) are locally Lipschitz-continuous on I := [0, +∞), that is, for every M > 0 there exists
a constant L = LM > 0 such that

|ai(t) − ai(s)| ≤ L|t − s| for every t, s ∈ [0,M].

(hf ) The functions fi( ⋅ ) are of class C1 on Im . Moreover, we assume that
(a) fi(t1 , . . . , tm) > 0 for every t1 , . . . , tm > 0;
(b) ∂tk fi( ⋅ ) ≥ 0 for every 1 ≤ i, k ≤ m with i ̸= k.

Remark 1.1. We note that assumption (hf ) (a) is kind of natural, indeed for i = m = 1 and p > 2 there are coun-
terexamples to symmetry results in the literature (see, e.g., [25, Section 6] and [4]), while assumption (hf ) (b) is
the usual cooperativity condition, a natural hypothesis in the study of qualitative properties of solutions already
in the case of systems driven by the standard Laplacian; see [28].

Now, we properly define what we mean by a weak solution to problem (S).

Definition 1.2. We say that a vector-valued function

u = (u1 , . . . , um) ∈ C1,α(Ω \ Γ;ℝm)
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is a weak solution to (S) if it satisfies the properties listed below:
(i) For every i = 1, . . . ,m and every φ ∈ C1c(Ω \ Γ), one has

∫
Ω

|∇ui|pi−2⟨∇ui , ∇φ⟩ dx + ∫
Ω

ai(ui)|∇ui|qiφ dx = ∫
Ω

fi(u1 , . . . , um)φ dx. (1.2)

(ii) ui > 0 pointwise in Ω \ Γ (for every i = 1, . . . ,m).
(iii) ui = 0 on ∂Ω (for every i = 1, . . . ,m).

Our main result is the following theorem.

Theorem 1.3. Let assumptions (hΩ)–(hf ) be in force, and letu ∈ C1,α(Ω \ Γ;ℝm) be aweak solution to problem (S).
Then the following facts hold:
(i) u is symmetric with respect to the hyperplane Π0, namely

u(x1 , x2 , . . . , xN) = u(−x1 , x2 , . . . , xN) in Ω.

(ii) u is non-decreasing in the x1-direction in the set Ω0 = {x1 < 0}, and moreover

∂x1ui > 0 in Ω0 , (1.3)

for every i ∈ {1, . . . ,m}.

We remark that, although the technique that we will develop to prove Theorem 1.3 works for any pi > N , the
result is stated in the range (1.1) since there are no sets (different from the empty-set) of zero pi-capacity when
pi > N .

We now want to give a few comments about Theorem 1.3. Firstly, we notice that Theorem 1.3 extends the
results in [16] to the case of singular solutions. The main novelty of our result concerns the singular case pi < 2
(for some i = 1, . . . ,m). In order to explain this, let us consider the case of a scalar equation with a(u) ≡ 0: our
problem then boils down to the case considered in [17] (which is therefore our benchmark case), that is,

{{{
{{{
{

− Δpu = f(u) in Ω \ Γ,
u > 0 in Ω \ Γ,
u = 0 on ∂Ω.

In [17], Esposito, Montoro and Sciunzi, already in the scalar case, require some a priori assumptions on the
nonlinearity f involved in the problem, while here we are able to remove the a priori growth assumption made
in [17] on the nonlinearities fi . This aspect is strictly relatedwith a technical issue that has to be facedwhen using
the integral version of themoving planemethod. In particular, one needs to apply aweighted Sobolev inequality
due to Trudinger [29], whose validity depends on proper summability conditions of the weight, which happens
to be of the form |∇u|p−2. In [17], this condition is proved to be satisfied after a nice study of the behavior of
the gradient of the solution near the singular set Γ, which is based on a subtle growth estimate proved in [22],
thanks to a priori assumption on the nonlinearity f involved in the problem. Since we are lacking an analogous
estimate for our solutions (even in the simpler case ai ≡ 0 for every i = 1, . . . ,m), we are not even entitled to
profit of the weighted Sobolev inequality of Trudinger. Nevertheless, we can avoid such a priori assumptions by
exploiting some a priori regularity results that we prove in this paper; see Lemma 2.3 and Lemma 2.4 below.We
stress that this is a considerable simplification of the proof in [17] and it is crucially based on the newLemma 2.4.

Now, by scrutinizing the proof of Theorem 1.3, one can easily recognize that a key ingredient for our argu-
ment is the fact that, under assumption (hp,q), we have

p∗i =
Npi
N − pi
≥ 2 for all i = 1, . . . ,m.

However, since the above inequality is equivalent to require that pi ≥ 2N/(N + 2), it is natural to wonder why
we require pi to satisfy the worse lower bound

pi >
2N + 2
N + 2 =: βN .
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The main reason behind this choice is that, when p ≤ βN , we do not have at our disposal a strong comparison
principle for the operator −Δpu + a(u)|∇u|q which allows us to do not take care of the critical set Z = {∇u = 0},
which is, in general, a crucial point when one deals with the p-Laplace operator.

In view of this fact, in order to establish Theorem 1.3 when
2N
N + 2 ≤ pi ≤

2N + 2
N + 2 ,

wewouldneed to recover a technical lemmaanalogous to [17, Lemma3.2],which also requires suitable estimates
for the second-order derivatives of the solution of (S). Even if these estimates are available in our setting (see
[16, Theorem 2.1]), we prefer to avoid this technicality here: indeed, we believe that the main novelties of our
work are both to consider systems involving general first order terms and the possibility of considering the case
pi < 2 without the need of prescribing precise (a priori) growth estimates for the solution of (S). To the best of
our knowledge, our result is new also in the case of a single scalar equation.

This paper is organized as follows: we prove some technical results in Section 2 that we will exploit in
Section 3 to prove Theorem 1.3.

2 Notation and preliminary results

In this section, we collect all relevant notation which shall be used throughout the paper. Moreover, we review
some results already known in the literature which shall be fundamental for the proof of our Theorem 1.3. We
will adopt the symbol |A| to denote the N-dimensional Lebesgue measure of a measurable set A ⊆ ℝN .

2.1 Capacity

Due to the important role played by assumption (hΓ) in our arguments, we briefly recall a few notions and
results concerning the Sobolev capacity.

Let K ⊆ ℝN be a compact set, and let O ⊆ ℝN be an open set such that K ⊆ O. Given any 1 < r ≤ N , the
r-capacity of the condenser C := (K,O) is defined by

Capr(K,O) := inf { ∫
ℝN

|∇ϕ|r dx : ϕ ∈ C∞c (O) and ϕ ≥ 1 on K}.

We then say that K has vanishing r-capacity, and we write Capr(K) = 0, if

Capr(K,O) = 0 for every open set O ⊃ K.

As is reasonable to expect, compact sets with vanishing r-capacity have to be very small; the next theorem shows
that this is actually true in the sense of Hausdorff measure.

Theorem 2.1. Let K ⊆ ℝN be a compact set. Then the following assertions hold:
(i) If Capr(K) = 0, thenHs(K) = 0 for every s > N − r.
(ii) If r < N andHN−r(K) < ∞, then Capr(K) = 0.

For a proof of Theorem 2.1, we refer the reader to [19, Section 2.24].

Corollary 2.2. Let 1 < r1 < r2 ≤ N and let K ⊆ ℝN be compact. Then

Capr2 (K) = 0 󳨐⇒ Capr1 (K) = 0.

Proof. Since, by assumption, Capr2 (K) = 0, by Theorem 2.1 (i) we haveHs(K) = 0 for every s > N − r2. In partic-
ular, since r1 < r2, we derive that

r1 < N and HN−r1 (K) = 0.

Using this fact and Theorem 2.1 (ii), we then conclude that Capr1 (K) = 0.
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On account of Corollary 2.2, if Γ ⊆ Ω ∩ Π0 is as in Theorem 1.3, we have

Cappi (Γ) = 0 for every i = 1, . . . ,m. (2.1)

Let now K ⊆ ℝN be a fixed compact set with vanishing r-capacity, and let O ⊆ ℝN be an open set containing K.
We aim to show that it is possible to construct a family of functions inℝN , say {ψε}ε , which satisfies the following
properties:
(i) ψε ∈ Lip(ℝN) and 0 ≤ ψε ≤ 1 pointwise in ℝN .
(ii) There exists an open neighborhood Vε ⊆ O of K such that

ψε ≡ 0 on Vε .

(iii) ψε(x) → 1 as ε → 0+ for a.e. x ∈ ℝN .
(iv) There exists a constant C0 > 0, only depending on r, such that

∫
ℝN

|∇ψε|r dx ≤ C0ε.

In fact, let ε0 = ε0(K,O) > 0 be such that

Bε := {x ∈ ℝN : dist(x, K) < ε} ⋐ O for every 0 < ε < ε0 .

Since Capr(K) = 0 andBε ⊆ ℝN is an openneighborhood ofK, for every ε ∈ (0, ε0) there exists a smooth function
ϕε ∈ C∞c (Bε) such that

ϕε ≥ 1 on K, and ∫
ℝN

|∇ϕε|r dx < ε. (2.2)

We then consider the following Lipschitz functions:
(a) T(s) := max{0;min{s; 1}} (for s ∈ ℝ).
(b) g(t) := max{0; 1 − 2t} (for t ≥ 0).
Furthermore, we define, for every ε ∈ (0, ε0),

ψε : ℝN → ℝ, ψε(x) := g(T(φε(x))). (2.3)

Clearly, ψε ∈ Lip(ℝN) and 0 ≤ ψε ≤ 1 in ℝN . Moreover, by (2.2) we have

∫
ℝN

|∇ψε|r dx ≤ 2r ∫
ℝN

|∇ϕε|r dx ≤ 2rε.

Hence, the family {ψε}ε satisfies properties (i) and (iv) (with C0 = 2r). As for the validity of property (ii), we
observe that, by the explicit definitions of T and g, we have

ψε ≡ 0 on Vε := {ϕε >
1
2}.

As a consequence, since Vε is an open neighborhood of K and since Vε ⊆ Bε ⊆ O (remember that ϕε ≥ 1 on K,
and supp(ϕε) ⊆ Bε), we immediately conclude that also property (ii) is satisfied. Finally, the validity of prop-
erty (iii) follows from the fact that

ψε ≡ g(0) = 1 on ℝN \Bε . (2.4)

Indeed, since the family {Bε}ε shrinks to K as ε → 0+, by (2.4) we get

ψε(x) → 1 as ε → 0+ , for every x ∈ ℝN \ K.

From this, since |K| = HN(K) = 0 (remember that Capp(K) = 0 and see Theorem 2.1), we immediately conclude
that the family {ψε}ε satisfies also property (iii), as claimed.

Throughout what follows, we will repeatedly use the family {ψε}ε with different choices of K andO; hence,
to simplify the notation, we shall refer to this family as a cut-off family for the compact set K, related with the
open set O.
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2.2 Notations for the moving plane method

Let u ∈ C1,α(Ω \ Γ;ℝm) be a weak solution to problem (S). For every fixed λ ∈ ℝ, we denote by Rλ the reflection
trough the hyperplane

Πλ := {x ∈ ℝN : x1 = λ},

that is,
Rλ(x) = xλ := (2λ − x1 , x2 , . . . , xN). (2.5)

Accordingly, we introduce the vector-valued function

uλ(x) = (u1,λ(x), . . . , um,λ(x)) := u(xλ) for x ∈ Rλ(Ω \ Γ). (2.6)

We point out that, since u solves (S), it is easy to see that
(i) uλ ∈ C1,α(Rλ(Ω \ Γ);ℝm).
(ii) For every i = 1, . . . ,m and every φ ∈ C1c(Rλ(Ω \ Γ)), one has

∫
Rλ(Ω)

|∇ui,λ|pi−2⟨∇ui,λ , ∇φ⟩ dx + ∫
Rλ(Ω)

ai(ui,λ)|∇ui,λ|qiφ dx = ∫
Rλ(Ω)

fi(uλ)φ dx. (2.7)

(iii) ui,λ > 0 pointwise in Rλ(Ω \ Γ) (for every i = 1, . . . ,m).
(iv) ui,λ ≡ 0 on Rλ(∂Ω) (for every i = 1, . . . ,m).
To proceed further, we let

ϱ = ϱΩ := inf
x∈Ω

x1 (2.8)

and we observe that, since Ω is bounded and symmetric with respect to Π0, we certainly have −∞ < ϱ < 0. As
a consequence, for every λ ∈ (ϱ, 0) we can set

Ωλ := {x ∈ Ω : x1 < λ}. (2.9)

We explicitly point out that, since Ω is convex in the x1-direction, we have

Ωλ ⊆ Rλ(Ω) ∩ Ω. (2.10)

Finally, for every λ ∈ (ϱ, 0) we define the function

wλ(x) = (w1,λ(x), . . . , wm,λ(x)) := (u − uλ)(x) for x ∈ (Ω \ Γ) ∩ Rλ(Ω \ Γ).

On account of (2.10), wλ is surely well-posed on Ωλ \ Rλ(Γ).

2.3 Preliminary results

After these preliminaries, we devote the remaining part of this section to collect some auxiliary results which
shall be useful for the proof of Theorem 1.3. In what follows, we tacitly inherit all notation introduced so far.

To begin with, we recall some identities between vectors inℝN which are useful in dealing with quasilinear
operators: for every s > 1 there exist constants C1 , . . . , C4 > 0, only depending on s, such that, for every η, η󸀠 ∈ ℝN ,
one has

{{{{{{
{{{{{{
{

⟨|η|s−2η − |η󸀠|s−2η󸀠 , η − η󸀠⟩ ≥ C1(|η| + |η󸀠|)s−2|η − η󸀠|2 ,
󵄨󵄨󵄨󵄨|η|

s−2η − |η󸀠|s−2η󸀠󵄨󵄨󵄨󵄨 ≤ C2(|η| + |η
󸀠|)s−2|η − η󸀠|,

⟨|η|s−2η − |η󸀠|s−2η󸀠 , η − η󸀠⟩ ≥ C3|η − η󸀠|s if s ≥ 2,
󵄨󵄨󵄨󵄨|η|

s−2η − |η󸀠|s−2η󸀠󵄨󵄨󵄨󵄨 ≤ C4|η − η
󸀠|s−1 if 1 < s < 2.

(2.11)

We refer, e.g., to [8] for a proof of (2.11).
We then establish the following fundamental lemma.
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Lemma 2.3. Let assumptions (hΩ)–(hf ) be in force. Let i ∈ {1, . . . ,m} be fixed, and let λ ∈ (ϱ, 0) be such that

Rλ(Γ) ∩ Ωλ ̸= 0.

Then there exists a constant c = ci > 0 such that

∫
Ωλ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2 dx ≤ ci . (2.12)

Proof. We first notice that, since λ < 0, by assumption (hΓ), we have Ωλ ∩ Γ = 0. Therefore, the function
u = (u1 , . . . , um) is of class C1,α on Ωλ , and we can set

M = Mu := max
1≤j≤m
(‖uj‖L∞(Ωλ) + ‖∇uj‖L∞(Ωλ)) < +∞.

Moreover, since ui and ui,λ are non-negative, we have

0 ≤ w+i,λ = (ui − ui,λ)
+ ≤ ui ≤ M pointwise in Ωλ \ Rλ(Γ). (2.13)

Now, to prove (2.12) we distinguish two cases:
(i) max{1, pi − 1} ≤ qi < pi .
(ii) qi = pi .

Case (i). First of all, we observe that, since Rλ is a bijective linear map and since Γ has vanishing pi-capacity
(see (2.1)), the compact set Γλ := Rλ(Γ) satisfies

Cappi (Γλ) = 0.

As a consequence, if Oλ ⊆ ℝN is a fixed open neighborhood of Γλ , we can choose a cut-off family {ψε}ε<ε0 for Γλ ,
related with the open set Oλ . This means, precisely, that the following assertions hold:
(i) ψε ∈ Lip(ℝN) and 0 ≤ ψε ≤ 1 pointwise in ℝN .
(ii) There exists an open neighborhood Vλε ⊆ Oλ of Γλ such that

ψε ≡ 0 on Vλε .

(iii) ψε(x) → 1 as ε → 0+ for a.e. x ∈ ℝN .
(iv) There exists a constant C0 > 0, independent of ε, such that

∫
ℝN

|∇ψε|pi dx ≤ C0ε.

We now define, for every ε ∈ (0, ε0), the map

φi,ε(x) :=
{
{
{

w+i,λ(x)ψ
pi
ε (x) = (ui − ui,λ)+(x)ψ

pi
ε (x) if x ∈ Ωλ ,

0 otherwise.

We then claim that the following assertions hold:
(i) φi,ε ∈ Lip(ℝN).
(ii) supp(φi,ε) ⊆ Ωλ and φi,ε ≡ 0 near Γλ .
In fact, since

ui ∈ C1,α(Ωλ) and ui,λ ∈ C1,α(Ωλ \ Γλ),

we readily see that
w+i,λ ∈ Lip(Ωλ \ V) for every open set V ⊇ Γλ .

From this, since ψε ∈ Lip(ℝN) and ψε ≡ 0 on Vλε ⊇ Γλ , we get φi,ε ∈ Lip(Ωλ). On the other hand, since φi,ε ≡ 0
on ∂Ωλ , we easily conclude that φi,ε ∈ Lip(ℝN), as claimed. As for assertion (ii), it follows from the definition
of φi,ε , jointly with the fact that

ψε ≡ 0 on Vλε ⊇ Γλ .



1526  S. Biagi et al., Symmetry of singular solutions

On account of properties (i) and (ii) of φi,ε , a standard density argument allows us to use φi,ε as a test function
both in (1.2) and (2.7), obtaining

∫
Ωλ

⟨|∇ui|pi−2∇ui − |∇ui,λ|pi−2∇ui,λ , ∇φi,ε⟩ dx + ∫
Ωλ

(ai(ui)|∇ui|qi − ai(ui,λ)|∇ui,λ|qi )φi,ε dx

= ∫
Ωλ

(fi(u) − fi(uλ))φi,ε dx.
(2.14)

By unraveling the very definition of φi,ε , we then obtain

∫
Ωλ

⟨|∇ui|pi−2∇ui − |∇ui,λ|pi−2∇ui,λ , ∇w+i,λ⟩ψ
pi
ε dx

+ pi ∫
Ωλ

⟨|∇ui|pi−2∇ui − |∇ui,λ|pi−2∇ui,λ , ∇ψε⟩w+i,λψ
pi−1
ε dx

+ ∫
Ωλ

(ai(ui)|∇ui|qi − ai(ui,λ)|∇ui,λ|qi )w+i,λψ
pi
ε dx

= ∫
Ωλ

(fi(u) − fi(uλ))w+i,λψ
pi
ε dx.

(2.15)

We now observe that the integral on the right-hand side of (2.15) is actually performed on the set

Ai,λ := {x ∈ Ωλ : ui ≥ ui,λ} \ Γλ .

Moreover, we have
0 ≤ ui,λ(x) ≤ ui(x) ≤ M for every x ∈ Ai,λ . (2.16)

The right-hand side of (2.15) can be arranged as follows:

∫
Ωλ

(fi(u) − fi(uλ))w+i,λ ψ
pi
ε dx

= ∫
Ωλ

[fi(u1 , . . . , um) − fi(u1,λ , . . . , um,λ)]w+i,λψ
pi
ε dx

= ∫
Ωλ

[fi(u1 , . . . , um) − fi(u1,λ , u2 , . . . , um)

+ fi(u1,λ , u2 , . . . , um) − fi(u1,λ , u2,λ , . . . , um,λ)]w+i,λψ
pi
ε dx

= ∫
Ωλ

[fi(u1 , . . . , um) − fi(u1,λ , u2 , . . . , um)

+ fi(u1,λ , u2 , . . . , um) − fi(u1,λ , u2,λ , . . . , um)
+ ⋅ ⋅ ⋅ + fi(u1,λ , u2,λ , . . . , ui , . . . , um) − fi(u1,λ , u2,λ . . . , ui,λ , . . . , um)
+ ⋅ ⋅ ⋅ + fi(u1,λ , u2,λ , u3,λ . . . , um) − fi(u1,λ , u2,λ , u3,λ . . . , um,λ)]w+i,λψ

pi
ε dx.

(2.17)

By (2.17), we have

∫
Ωλ

(fi(u) − fi(uλ))w+i,λψ
pi
ε dx

= ∫
Ωλ

[fi(u1 , . . . , um) − fi(u1,λ , . . . , um,λ)]w+i,λψ
pi
ε dx

= ∫
Ωλ

fi(u1 , . . . , um) − fi(u1,λ , u2 , . . . , um)
u1 − u1,λ

(u1 − u1,λ)w+i,λψ
pi
ε dx

+ ∫
Ωλ

fi(u1,λ , u2 , . . . , um) − fi(u1,λ , u2,λ , . . . , um)
u2 − u2,λ

(u2 − u2,λ)w+i,λψ
pi
ε dx
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+ ⋅ ⋅ ⋅ + ∫
Ωλ

fi(u1,λ , u2 , . . . , ui , . . . , um) − fi(u1,λ , u2,λ , . . . , ui,λ , . . . , um)
ui − ui,λ

(ui − ui,λ)w+i,λψ
pi
ε dx

+ ⋅ ⋅ ⋅ + ∫
Ωλ

fi(u1,λ , u2,λ , . . . , um) − fi(u1,λ , u2,λ , . . . , um,λ)
um − um,λ

(um − um,λ)w+i,λψ
pi
ε dx

≤ ∫
Ωλ

fi(u1 , . . . , um) − fi(u1,λ , u2 , . . . , um)
u1 − u1,λ

(u1 − u1,λ)+w+i,λψ
pi
ε dx

+ ∫
Ωλ

fi(u1,λ , u2 , . . . , um) − fi(u1,λ , u2,λ , . . . , um)
u2 − u2,λ

(u2 − u2,λ)+w+i,λψ
pi
ε dx

+ ⋅ ⋅ ⋅ + ∫
Ωλ

fi(u1,λ , u2 , . . . , ui , . . . , um) − fi(u1,λ , u2,λ , . . . , ui,λ , . . . , um)
ui − ui,λ

(ui − ui,λ)+w+i,λψ
pi
ε dx

+ ⋅ ⋅ ⋅ + ∫
Ωλ

fi(u1,λ , u2,λ , . . . , um) − fi(u1,λ , u2,λ , . . . , um,λ)
um − um,λ

(um − um,λ)+w+i,λψ
pi
ε dx

≤
m
∑
j=1
Lj ∫

Ωλ

w+i,λw
+
j,λψ

pi
ε dx, (2.18)

where in the last inequality we define

uj − uj,λ := wj,λ = w+j,λ − w
−
j,λ

and we used the cooperativity assumption of each fj for j ̸= i, together with the fact that fj is of class C1 (see
assumption (hf )). Here, Lj > 0 is the Lipschitz constant of fj on [0,M] × ⋅ ⋅ ⋅ × [0,M]. Hence, resuming the com-
putations above, we have

∫
Ωλ

(fi(u) − fi(uλ))w+i,λψ
pi
ε dx ≤

m
∑
j=1
Lj ∫

Ωλ

w+j,λw
+
i,λψ

pi
ε dx. (2.19)

On the other hand, by using the estimates in (2.11), we get

∫
Ωλ

⟨|∇ui|pi−2∇ui − |∇ui,λ|pi−2∇ui,λ , ∇w+i,λ⟩ψ
pi
ε dx ≥ C1 ∫

Ωλ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx. (2.20)

Gathering together (2.19) and (2.20), from (2.15) we then obtain

C1 ∫
Ωλ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx

≤ ∫
Ωλ

⟨|∇ui|pi−2∇ui − |∇ui,λ|pi−2∇ui,λ , ∇w+i,λ⟩ψ
pi
ε dx

≤ pi ∫
Ωλ

󵄨󵄨󵄨󵄨|∇ui|
pi−2∇ui − |∇ui,λ|pi−2∇ui,λ󵄨󵄨󵄨󵄨|∇ψε|w

+
i,λψ

pi−1
ε dx

+ ∫
Ωλ

󵄨󵄨󵄨󵄨ai(ui)|∇ui|
qi − ai(ui,λ)|∇ui,λ|qi 󵄨󵄨󵄨󵄨w

+
i,λψ

pi
ε dx +

m
∑
j=1
Lj ∫

Ωλ

w+j,λw
+
i,λψ

pi
ε dx

≤ pi ∫
Ωλ

󵄨󵄨󵄨󵄨|∇ui|
pi−2∇ui − |∇ui,λ|pi−2∇ui,λ󵄨󵄨󵄨󵄨|∇ψε|w

+
i,λψ

pi−1
ε dx

+ ∫
Ωλ

|ai(ui) − ai(ui,λ)| |∇ui,λ|qiw+i,λψ
pi
ε dx

+ ∫
Ωλ

|ai(ui)|󵄨󵄨󵄨󵄨|∇ui|
qi − |∇ui,λ|qi 󵄨󵄨󵄨󵄨w

+
i,λψ

pi
ε dx +

m
∑
j=1
Lj ∫

Ωλ

w+j,λw
+
i,λψ

pi
ε dx.

(2.21)
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To proceed further, we now turn to provide ad-hoc estimates for the integrals on the right-hand side of (2.21).
To this end, we first introduce the notation

Fi :=
m
∑
j=1
Lj ∫

Ωλ

w+j,λw
+
i,λψ

pi
ε dx.

Moreover, we split the set Ωλ as Ωλ = Ω(1)λ ∪ Ω
(2)
λ , where

Ω(1)λ = {x ∈ Ωλ \ Γλ : |∇ui,λ(x)| < 2|∇ui|},

Ω(2)λ = {x ∈ Ωλ \ Γλ : |∇ui,λ(x)| ≥ 2|∇ui|}.

Then the following assertions ensue:
∙ By the definition of Ω(1)λ , one has

|∇ui| + |∇ui,λ| < 3|∇ui|. (2.22)

∙ By the definition of the set Ω(2)λ and standard triangular inequalities, one has

1
2 |∇ui,λ| ≤ |∇ui,λ| − |∇ui| ≤ |∇wi,λ| ≤ |∇ui,λ| + |∇ui| ≤

3
2 |∇ui,λ|. (2.23)

Accordingly, we define

Pi,1 := ∫
Ω(1)
λ

󵄨󵄨󵄨󵄨|∇ui|
pi−2∇ui − |∇ui,λ|pi−2∇ui,λ󵄨󵄨󵄨󵄨|∇ψε|w

+
i,λψ

pi−1
ε dx

Pi,2 := ∫
Ω(2)
λ

󵄨󵄨󵄨󵄨|∇ui|
pi−2∇ui − |∇ui,λ|pi−2∇ui,λ󵄨󵄨󵄨󵄨|∇ψε|w

+
i,λψ

pi−1
ε dx

Ii,1 := ∫
Ω(1)
λ

|ai(ui) − ai(ui,λ)||∇ui,λ|qiw+i,λψ
pi
ε dx

Ii,2 := ∫
Ω(2)
λ

|ai(ui) − ai(ui,λ)||∇ui,λ|qiw+i,λψ
pi
ε dx

Ji,1 := ∫
Ω(1)
λ

|ai(ui)|󵄨󵄨󵄨󵄨|∇ui|
qi − |∇ui,λ|qi 󵄨󵄨󵄨󵄨w

+
i,λψ

pi
ε dx

Ji,2 := ∫
Ω(2)
λ

|ai(ui)|󵄨󵄨󵄨󵄨|∇ui|
qi − |∇ui,λ|qi 󵄨󵄨󵄨󵄨w

+
i,λψ

pi
ε dx.

(2.24)

We then turn to estimate all integrals above. In what follows, we denote by the same C any positive constant
which is independent of ε (but possibly depending on i).

Estimate of Pi,1. If 1 < pi < 2, from (2.11), (2.22) and by Hölder’s inequality, we obtain

Pi,1 ≤ C4 ∫
Ω(1)
λ

|∇w+i,λ|
pi−1|∇ψε|ψ

pi−1
ε w+i,λ dx

≤ C4( ∫
Ω(1)
λ

|∇w+i,λ|
piψpiε dx)

pi−1
pi ( ∫

Ω(1)
λ

|∇ψε|pi (w+i,λ)
pi dx)

1
pi

≤ C4( ∫
Ω(1)
λ

(|∇ui| + |∇ui,λ|)piψ
pi
ε dx)

pi−1
pi ( ∫

Ω(1)
λ

|∇ψε|pi (w+i,λ)
pi dx)

1
pi
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≤ C4(3pi ∫
Ω(1)
λ

|∇ui|piψ
pi
ε dx)

pi−1
pi ( ∫

Ω(1)
λ

|∇ψε|pi (w+i,λ)
pi dx)

1
pi

≤ C( ∫
Ωλ

|∇ui|pi dx)
pi−1
pi ( ∫

Ωλ

|∇ψε|pi dx)
1
pi . (2.25)

If pi ≥ 2, from (2.11) and the weighted Young’s inequality, we have

Pi,1 ≤ C2 ∫
Ω(1)
λ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ| |∇ψε|ψ
pi−1
ε w+i,λ dx

≤ Cδ ∫
Ω(1)
λ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx +

C
δ ∫
Ω(1)
λ

(|∇ui| + |∇ui,λ|)pi−2|∇ψε|2ψ
pi−2
ε (w+i,λ)

2 dx.

Using (2.22) and Hölder’s inequality, we obtain

Pi,1 ≤ Cδ ∫
Ω(1)
λ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx +

C
δ ∫
Ω(1)
λ

|∇ui|pi−2|∇ψε|2ψ
pi−2
ε (w+i,λ)

2 dx

≤ Cδ ∫
Ω(1)
λ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx +

C
δ ( ∫

Ω(1)
λ

|∇ui|piψ
pi
ε dx)

pi−2
pi ( ∫

Ω(1)
λ

|∇ψε|pi (w+i,λ)
pi dx)

2
pi

≤ Cδ ∫
Ωλ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx +

C
δ ( ∫

Ωλ

|∇ui|pi dx)
pi−2
pi ( ∫

Ωλ

|∇ψε|pi dx)
2
pi .

(2.26)

Estimate of Pi,2. If 1 < pi < 2, using the weighted Young’s inequality and (2.23), we get

Pi,2 ≤ C4 ∫
Ω(2)
λ

|∇w+i,λ|
pi−1|∇ψε|ψ

pi−1
ε w+i,λ dx

≤ Cδ ∫
Ω(2)
λ

|∇w+i,λ|
piψpiε dx +

C
δ ∫
Ω(2)
λ

|∇ψε|pi (w+i,λ)
pi dx

≤ Cδ ∫
Ω(2)
λ

(|∇ui| + |∇ui,λ|)pi−2(|∇ui| + |∇ui,λ|)2ψ
pi
ε dx +

C
δ ∫
Ω(2)
λ

|∇ψε|pi (w+i,λ)
pi dx

≤ Cδ ∫
Ω(2)
λ

(|∇ui| + |∇ui,λ|)pi−2|∇ui,λ|2ψ
pi
ε dx +

C
δ ∫
Ω(2)
λ

|∇ψε|pi (w+i,λ)
pi dx

≤ Cδ ∫
Ω(2)
λ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx +

C
δ ∫
Ω(2)
λ

|∇ψε|pi (w+i,λ)
pi dx

≤ Cδ ∫
Ωλ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx +

C
δ ∫
Ωλ

|∇ψε|pi dx.

(2.27)

If pi ≥ 2, by the weighted Young’s inequality and (2.11), we deduce that

Pi,2 ≤ Ci ∫
Ω(2)
λ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ||∇ψε|ψ
pi−1
ε w+i,λ dx

≤ Cδ ∫
Ω(2)
λ

(|∇ui| + |∇ui,λ|)
pi (pi−2)
pi−1 |∇w+i,λ| pipi−1 ψpiε dx + Cδ ∫

Ω(2)
λ

|∇ψε|pi (w+i,λ)
pi dx

= Cδ ∫
Ω(2)
λ

(|∇ui| + |∇ui,λ|)
pi (pi−2)
pi−1 |∇w+i,λ|2|∇w+i,λ| pipi−1−2ψpiε dx + Cδ ∫

Ω(2)
λ

|∇ψε|pi (w+i,λ)
pi dx.
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Using (2.23) and noticing that
pi
(pi − 1)

− 2 ≤ 0,

we obtain the following estimate:

Pi,2 ≤ Cδ ∫
Ω(2)
λ

|∇ui,λ|pi−2|∇w+i,λ|
2ψpiε dx +

C
δ ∫
Ω(2)
λ

|∇ψε|pi (w+i,λ)
pi dx

≤ Cδ ∫
Ω(2)
λ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx +

C
δ ∫
Ω(2)
λ

|∇ψε|pi dx

≤ Cδ ∫
Ωλ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx +

C
δ ∫
Ωλ

|∇ψε|pi dx.

(2.28)

In the second line of (2.28), we exploited the fact that, since pi ≥ 2,

|∇ui,λ|pi−2 ≤ (|∇ui| + |∇ui,λ|)pi−2 .

Collecting (2.25)–(2.28), we deduce that for pi ≥ 2 it holds

Pi,1 + Pi,2 ≤ Cδ ∫
Ωλ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx +

C
δ ( ∫

Ωλ

|∇ui|piψ
pi
ε dx)

pi−2
pi ( ∫

Ωλ

|∇ψε|pi |w+i,λ|
pi dx)

2
pi

+
C
δ ∫
Ωλ

|∇ψε|pi dx for every δ > 0,

where C > 0 is a suitable constant depending on pi , λ, Ω, and M.
In the same way, if 1 < pi < 2, we deduce that

Pi,1 + Pi,2 ≤ Cδ ∫
Ωλ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx + C( ∫

Ωλ

|∇ui|pi dx)
pi−1
pi ( ∫

Ωλ

|∇ψε|pi dx)
1
pi

+
C
δ ∫
Ωλ

|∇ψε|pi dx for every δ > 0,

where C > 0 is a suitable constant depending on pi , λ, Ω, and M.
In both cases, taking into account (2.13) and the properties of ψε , we derive the estimate

Pi,1 + Pi,2 ≤ Cδ ∫
Ωλ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx + Cδε

1
pi , (2.29)

holding true for every choice of δ > 0.

Estimate of Ii,1. Since the integral Ii,1 is actually performed on the set

Ai,λ = {ui ≥ ui,λ} \ Γλ ,

from (2.16), assumption (ha) and the definition of Ω(1)λ , we immediately obtain

Ii,1 ≤ L ∫
Ω(1)
λ

|∇ui,λ|qi |w+i,λ|
2ψpiε dx

≤ 2qiL ∫
Ω(1)
λ

|∇ui|qi |w+i,λ|
2ψpiε dx (since ui ∈ C1,α(Ωλ) and 0 ≤ ψε ≤ 1)

≤ C ∫
Ωλ

|w+i,λ|
2 dx.

(2.30)
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Estimate of Ii,2. First of all, since also the integral Ii,2 is actually performed on Ai,λ , we can use again esti-
mate (2.16) and assumption (ha), obtaining

Ii,2 ≤ L ∫
Ω(2)
λ

|∇ui,λ|qi |w+i,λ|
2ψpiε dx ≤ L ∫

Ω(2)
λ

(|∇ui| + |∇ui,λ|)qi |w+i,λ|
2ψpiε dx =: (⋆).

From this, since qi < pi , using (2.23) and by Young’s inequality, we obtain

(⋆) = L ∫
Ω(2)
λ

[(|∇ui| + |∇ui,λ|)qiψ
qi
ε ] ⋅ [|w+i,λ|

2ψpi−qiε ] dx

≤ Cδ ∫
Ω(2)
λ

(|∇ui| + |∇ui,λ|)piψ
pi
ε dx +

C
δ ∫
Ω(2)
λ

|w+i,λ|
2pi
pi−qi ψpiε dx (since 0 ≤ ψε ≤ 1 and pi/(pi − qi) > 1)

≤ Cδ ∫
Ωλ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx +

C
δ ∫
Ωλ

|w+i,λ|
2 dx for every δ > 0.

(2.31)

Estimate of Ji,1. We first observe that, since 0 ≤ ui ≤ M pointwise in Ωλ , by exploiting assumption (ha) and the
mean value theorem, we obtain the following estimate:

Ji,1 ≤ C ∫
Ω(1)
λ

󵄨󵄨󵄨󵄨|∇ui|
qi − |∇ui,λ|qi 󵄨󵄨󵄨󵄨w

+
i,λψ

pi
ε dx

≤ C ∫
Ω(1)
λ

(|∇ui| + |∇ui,λ|)qi−1|∇w+i,λ|w
+
i,λψ

pi
ε dx

≤ C ∫
Ω(1)
λ

(|∇ui| + |∇ui,λ|)
2qi−pi

2 (|∇ui| + |∇ui,λ|)
pi−2
2 |∇w+i,λ|w

+
i,λψ

pi
ε dx

≤ Cδ ∫
Ω(1)
λ

(|∇ui| + |∇ui,λ|)2qi−pi (|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx +

C
δ ∫
Ωλ

|w+i,λ|
2 dx.

Finally, using (2.22), since qi ≥ max{pi − 1, 1} and therefore qi ≥ pi/2, we conclude that

Ji,1 ≤ Cδ ∫
Ωλ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx +

C
δ ∫
Ωλ

|w+i,λ|
2 dx, (2.32)

and this estimate holds for every choice of δ > 0.

Estimate of Ji,2. Using once again the fact that 0 ≤ ui ≤ M in Ωλ , and taking into account assumption (ha), we get

Ji,2 ≤ C ∫
Ω(2)
λ

(|∇ui| + |∇ui,λ|)qiw+i,λψ
pi
ε dx =: (∙).

By Young’s inequality and estimate (2.23), we obtain

(∙) = C ∫
Ω(2)
λ

[(|∇ui| + |∇ui,λ|)qiψ
qi
ε ] ⋅ [w+i,λψ

pi−qi
ε ] dx

≤ Cδ ∫
Ω(2)
λ

(|∇ui| + |∇ui,λ|)piψ
pi
ε dx +

C
δ ∫
Ω(2)
λ

|w+i,λ|
pi

pi−qi ψpiε dx
≤ Cδ ∫

Ω(2)
λ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx +

C
δ ∫
Ωλ

|w+i,λ|
2 dx

≤ Cδ ∫
Ωλ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx +

C
δ ∫
Ωλ

|w+i,λ|
2 dx,

(2.33)
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where we used the facts that pi/(pi − qi) ≥ 2 (because qi ≥ pi/2) and 0 ≤ ui ≤ M in Ωλ; this estimate holds for
every δ > 0.

Estimate of Fi . Since 0 ≤ ψε ≤ 1, by Young’s inequality, we immediately get

Fi ≤
m
∑
j=1
Lj( ∫

Ωλ

|w+i,λ|
2 dx + ∫

Ωλ

|w+j,λ|
2 dx) ≤ C

m
∑
j=1
∫
Ωλ

|w+j,λ|
2 dx. (2.34)

Thanks to all estimates above, we can finally complete the proof of (2.12): in fact, by combining (2.29)–(2.34),
from (2.21) we infer that

C1 ∫
Ωλ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx

≤ Cδ ∫
Ωλ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx + Cδε

1
pi +

C
δ ∫
Ωλ

|w+i,λ|
2 dx + C

m
∑
j=1
∫
Ωλ

|w+j,λ|
2 dx,

(2.35)

and this estimate holds for every δ > 0. As a consequence, if we choose δ sufficiently small and if we let ε → 0+
with the aid of Fatou’s lemma, we obtain

∫
Ωλ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2 dx ≤ C

m
∑
j=1
∫
Ωλ

|w+j,λ|
2 dx, (2.36)

where C > 0 is a suitable constant depending on pi , qi , ai , fi , λ, Ω,M. This, together with the estimate in (2.13),
immediately implies the desired (2.12).

Case (ii). Let us define the function

Ai(t) =
t

∫
0

ai(s) ds.

Using the family of cut-off functions {ψε}ε<ε0 defined in the previous case, we now define in a very similar way,
for every ε ∈ (0, ε0), the maps

φ(1)i,ε (x) :=
{
{
{

e−Ai(ui(x))w+i,λ(x)ψ
pi
ε (x) if x ∈ Ωλ ,

0 otherwise,

and

φ(2)i,ε (x) :=
{
{
{

e−Ai(ui,λ(x))w+i,λ(x)ψ
pi
ε (x) if x ∈ Ωλ ,

0 otherwise.

It is possible to prove the following assertions (see, e.g., [16]):
(i) φ(1)i,ε , φ

(2)
i,ε ∈ Lip(ℝ

N).
(ii) supp(φ(1)i,ε ) ⊆ Ωλ , supp(φ

(2)
i,ε ) ⊆ Ωλ and φ

(1)
i,ε ≡ φ

(2)
i,ε ≡ 0 near Γλ .

Hence, taking into account properties (i) and (ii) of φ(1)i,ε and φ
(2)
i,ε , a standard density argument allows us to

use φ(1)i,ε and φ
(2)
i,ε as test functions respectively in (1.2) and (2.7). We then subtract the latter from the former,

getting
∫
Ωλ

⟨|∇ui|pi−2∇ui , ∇φ(1)i,ε ⟩ dx − ∫
Ωλ

⟨|∇ui,λ|pi−2∇ui,λ , ∇φ(2)i,ε ⟩ dx

+ ∫
Ωλ

ai(ui)|∇ui|piφ(1)i,ε dx − ∫
Ωλ

ai(ui,λ)|∇ui,λ|piφ(2)i,ε dx

= ∫
Ωλ

fi(u)φ(1)i,ε dx − ∫
Ωλ

fi(uλ)φ(2)i,ε dx.
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Now, we use the explicit expressions of both φ(1)i,ε and φ
(2)
i,ε to get

− ∫
Ωλ

ai(ui)e−Ai(ui)|∇ui|piw+i,λψ
pi
ε dx + ∫

Ωλ

e−Ai(ui)|∇ui|pi−2⟨∇ui , ∇w+i,λ⟩ψ
pi
ε dx

+ pi ∫
Ωλ

e−Ai(ui)|∇ui|pi−2⟨∇ui , ∇ψε⟩w+i,λψ
pi−1
ε dx

+ ∫
Ωλ

ai(ui,λ)e−Ai(ui,λ)|∇ui,λ|piw+i,λψ
pi
ε dx − ∫

Ωλ

e−Ai(ui,λ)|∇ui,λ|pi−2⟨∇ui,λ , ∇w+i,λ⟩ψ
pi
ε dx

− pi ∫
Ωλ

e−Ai(ui,λ)|∇ui,λ|pi−2⟨∇ui,λ , ∇ψε⟩w+i,λψ
pi−1
ε dx

+ ∫
Ωλ

ai(ui)|∇ui|pi e−Ai(ui)w+i,λψ
pi
ε dx − ∫

Ωλ

ai(ui,λ)|∇ui,λ|pi e−Ai(ui,λ)w+i,λψ
pi
ε dx

= ∫
Ωλ

fi(u)e−Ai(ui)w+i,λψ
pi
ε dx − ∫

Ωλ

fi(uλ)e−Ai(ui,λ)w+i,λψ
pi
ε dx.

After a simplification, we add on both sides the term

∫
Ωλ

e−Ai(ui,λ)|∇ui|pi−2⟨∇ui , ∇w+i,λ⟩ψ
pi
ε dx,

and, on the left-hand side, we add and subtract the term

pi ∫
Ωλ

e−Ai(ui,λ)|∇ui|pi−2⟨∇ui , ∇ψε⟩w+i,λψ
pi−1
ε dx.

Rearranging the terms, we find

∫
Ωλ

e−Ai(ui,λ)⟨|∇ui|pi−2∇ui − |∇ui,λ|pi−2∇ui , ∇w+i,λ⟩ψ
pi
ε dx

= ∫
Ωλ

(e−Ai(ui,λ) − e−Ai(ui))|∇ui|pi−2⟨∇ui , ∇w+i,λ⟩ψ
pi
ε dx

+ pi ∫
Ωλ

(e−Ai(ui,λ) − e−Ai(ui))|∇ui|pi−2⟨∇ui , ∇ψε⟩w+i,λψ
pi−1
ε dx

+ pi ∫
Ωλ

e−Ai(ui,λ)⟨|∇ui,λ|pi−2∇ui,λ − |∇ui|pi−2∇ui , ∇ψε⟩w+i,λψ
pi−1
ε dx

+ ∫
Ωλ

(e−Ai(ui)fi(u) − e−Ai(ui,λ)fi(uλ))w+i,λψ
pi
ε dx.

(2.37)

Arguing similarly to case (i), see (2.20), the left-hand side can be estimated from below by

C ∫
Ωλ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx. (2.38)

Indeed, in the set Ωλ ∩ supp(w+i,λ), one has

e−Ai(ui,λ) ≥ C > 0.
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We now focus on the right-hand side, which we firstly bound from above passing to the absolute values,
getting

∫
Ωλ

|e−Ai(ui,λ) − e−Ai(ui)||∇ui|pi−1|∇w+i,λ|ψ
pi
ε dx

+ pi ∫
Ωλ

|e−Ai(ui,λ) − e−Ai(ui)||∇ui|pi−1|∇ψε|w+i,λψ
pi−1
ε dx

+ pi ∫
Ωλ

e−Ai(ui,λ)󵄨󵄨󵄨󵄨|∇ui,λ|
pi−2∇ui,λ − |∇ui|pi−2∇ui󵄨󵄨󵄨󵄨|∇ψε|w

+
i,λψ

pi−1
ε dx

+ ∫
Ωλ

(e−Ai(ui)fi(u) − e−Ai(ui,λ)fi(uλ))w+i,λψ
pi
ε dx

=: Ji,1 + Ji,2 + Ji,3 + Ji,4 .

For the reader’s convenience, we recall that, in this case, we are assuming 2 ≤ pi ≤ N . We have the following
estimate.

Estimate of Ji,1. Using the Lipschitzianity of t 󳨃→ e−Ai(t), we get that there exists a positive constant C > 0 such
that

Ji,1 ≤ C ∫
Ωλ

|∇ui|pi−1|∇w+i,λ|ψ
pi
2
ε w+i,λψ

pi
2
ε dx.

Now, by exploiting the weighted Young’s inequality, we obtain that for every δ > 0 it holds

Ji,1 ≤ Cδ ∫
Ωλ

|∇ui|2pi−2|∇w+i,λ|
2ψpiε dx +

C
δ ∫
Ωλ

(w+i,λ)
2ψpiε dx

≤ Cδ ∫
Ωλ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx +

C
δ ∫
Ωλ

(w+i,λ)
2ψpiε dx,

(2.39)

where in the last step C > 0 depends also on ‖∇u‖L∞(Ωλ).

Estimate of Ji,2. Using once again the Lipschitzianity of t 󳨃→ e−Ai(t) together with the boundedness of ∇u in Ωλ ,
and then exploiting Hölder’s inequality with exponents (pi , pi/(pi − 1)), we get

Ji,2 ≤ C( ∫
Ωλ

|∇ψε|pi (w+i,λ)
pi dx)

1
pi ( ∫

Ωλ

ψpiε dx)
pi
pi−1 . (2.40)

Estimate of Ji,3. We notice first that e−Ai(ui,λ) ≤ 1. Arguing similarly to the computations that led to (2.25) and
subsequently to (2.29), we deduce

Ji,3 ≤ Cδ ∫
Ωλ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx + Cδε

1
pi for every δ > 0.

Estimate of Ji,4. We first consider the function

gi(t) := e−Ai(ti)fi(t), t ∈ Im ,

which is still a C1 function satisfying the cooperativity condition ∂tk gi ≥ 0 on Im for every k ̸= i. Hence, we can
repeat the computations made in (2.17)–(2.19) to get

Ji,4 ≤
m
∑
j=1
Lgj ∫

Ωλ

w+j,λw
+
i,λψ

pi
ε dx ≤ C

m
∑
j=1
∫
Ωλ

|w+j,λ|
2 dx. (2.41)

Putting everything together, we can conclude as in the previous case (i). Hence, we obtain the desired (2.12) for
every i = 1, . . . ,m.
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We conclude this section by proving the following useful lemma.

Lemma 2.4. Let assumptions (hΩ)–(hf ) be in force. Let i ∈ {1, . . . ,m} be fixed, let 1 < pi < 2 and let λ ∈ (ϱ, 0).
Then there exists a constant c = ci > 0 such that

∫
Ωλ

|∇w+i,λ|
pi dx ≤ c( ∫

Ωλ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2 dx)

pi
2
. (2.42)

Proof. Let us define the set Ω+λ := Ωλ ∩ supp(w
+
i,λ) and let ψε be the cut-off function defined in (2.3). Using

Hölder’s inequality with conjugate exponents (2/(2 − pi), 2/pi), we obtain

∫
Ω+
λ

|∇w+i,λ|
piψpiε dx = ∫

Ω+
λ

(|∇ui| + |∇ui,λ|)
pi (2−pi )

2 (|∇ui| + |∇ui,λ|)
pi (pi−2)

2 |∇w+i,λ|
piψpiε dx

≤ ( ∫
Ω+
λ

(|∇ui| + |∇ui,λ|)piψ
pi
ε dx)

2−pi
pi ( ∫

Ω+
λ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx)

pi
2
.

(2.43)

Now we are going to give an estimate to the first term on the right-hand side of (2.43), i.e. the term

I := ∫
Ω+
λ

(|∇ui| + |∇ui,λ|)piψ
pi
ε dx.

In the same spirit of the previous lemma, we split the set Ωλ as Ωλ = Ω(1)λ ∪ Ω
(2)
λ , where

Ω(1)λ = {x ∈ Ω
+
λ \ Γλ : |∇ui,λ(x)| < 2|∇ui|},

Ω(2)λ = {x ∈ Ω
+
λ \ Γλ : |∇ui,λ(x)| ≥ 2|∇ui|}.

Hence,
I = ∫

Ω(1)
λ

(|∇ui| + |∇ui,λ|)piψ
pi
ε dx + ∫

Ω(2)
λ

(|∇ui| + |∇ui,λ|)piψ
pi
ε dx =: I1 + I2 .

Estimate of I1. Since ψ
pi
ε ≤ 1, using (2.22), we immediately get

I1 ≤ C ∫
Ω(1)
λ

|∇ui|pi dx, (2.44)

Estimate of I2. Using (2.23), we obtain

I2 = ∫

Ω(2)
λ

(|∇ui| + |∇ui,λ|)pi−2(|∇ui| + |∇ui,λ|)2ψ
pi
ε dx

≤ C ∫
Ω(2)
λ

(|∇ui| + |∇ui,λ|)pi−2|∇ui,λ|2ψ
pi
ε dx

≤ C ∫
Ω(2)
λ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx.

(2.45)

Collecting (2.44) and (2.45) in order to estimate I, we have

I ≤ C( ∫
Ω(1)
λ

|∇ui|pi dx + ∫
Ω(2)
λ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2ψpiε dx).

Now, since each ∇ui ∈ L∞(Ωλ) for every λ < 0 and the second term is bounded by Lemma 2.3, we deduce that

I ≤ C,
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where C is a positive constant that does not depends on ε. Since ψpiε ≤ 1, inequality (2.43) becomes

∫
Ω+
λ

|∇w+i,λ|
piψpiε dx ≤ C( ∫

Ω+
λ

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2 dx)

pi
2
, (2.46)

Finally, by Fatou’s lemma, from (2.46) we get (2.42).

3 Proof of Theorem 1.3

Thanks to all results established so far, we are ready to give the proof of Theorem 1.3.

Proof of Theorem 1.3. Our approach relies on a suitable adaptation of the integral version of the moving plane
method. We consider the set

Λ := {η ∈ (ϱ, 0) : ui ≤ ui,λ on Ωλ \ Rλ(Γ) for all λ ∈ (ϱ, η] and for all i = 1, . . . ,m},

and we claim that the following facts hold:
(a) Λ ̸= 0.
(b) Setting λ0 := sup(Λ), one has λ0 = 0.

Proof of (a). First of all, we observe that, since Γ is compact and contained in Ω ∩ Π0, it is possible to find a small
τ0 > 0 such that ϱ + τ0 < 0 and

Rλ(Γ) ∩ Ωλ = 0 for every λ ∈ I0 := (ϱ, ϱ + τ0].

In particular, for every λ ∈ I0 we have u, uλ ∈ C1,α(Ωλ). On the other hand, since both ui and ui,λ are non-
negative (for every i = 1, . . . ,m), it is immediate to recognize that

ui ≤ ui,λ on ∂Ωλ , for every i = 1, . . . ,m.

Now, it is possible to start the moving plane procedure using [16, Proposition 2.5]. For the reader’s convenience
we state such a result adapted to our context. The proof is exactly the same, and therefore we skip it.

Proposition 3.1. Let assumptions (ha) and (hf ) be in force, and suppose that

pi > 1 and qi ≥ max{pi − 1, 1} for every i = 1, . . . ,m.

In addition, suppose that u, uλ ∈ C1,α(Ωϱ+τ0 ). Then there exists a number δ > 0, depending on m, pi , qi , ai , fi ,
‖ui‖L∞(Ωϱ+τ0 ), ‖∇ui‖L∞(Ωϱ+τ0 ), and ‖∇ũi‖L∞(Ωϱ+τ0 ), with the following property: if Ωλ ⊆ Ωϱ+τ0 is such that |Ωλ| ≤ δ,
and if

ui ≤ ui,λ on ∂Ωλ , for every i = 1, . . . ,m,

then ui ≤ ui,λ in Ωλ for every i = 1, . . . ,m.

Therefore, by possibly shrinking τ0 in such a way that |Ωλ| ≤ δ for every λ ∈ I0, we derive that ui ≤ ui,λ in Ωλ
for every i = 1, . . . ,m. Hence, η := ϱ + τ0 ∈ Λ, and thus

Λ ̸= 0.

Proof of (b). On account of (a), λ0 is well-defined and λ0 ≤ 0. Arguing by contradiction, we then suppose that
λ0 < 0, and we prove that there exists some τ0 > 0 such that

ui ≤ ui,λ on Ωλ \ Rλ(Γ) for all i = 1, . . . ,m and λ ∈ (λ0 , λ0 + τ0]. (3.1)

Since (3.1) is clearly in contrast with the very definition of λ0, we can conclude that

λ0 = 0.
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In order to establish the needed (3.1), we proceed as follows: first of all, since both u and uλ are continuous on
Ωλ \ Rλ(Γ), we observe that

ui ≤ ui,λ0 on Ωλ0 \ Rλ0 (Γ) for every i = 1, . . . ,m. (3.2)

We then claim that, as a consequence of (3.2), one actually has

ui < ui,λ0 on Ωλ0 \ Rλ0 (Γ) for every i = 1, . . . ,m. (3.3)

To prove (3.3), we arbitrarily fix i ∈ {1, . . . ,m}.
We first point out that, since Ωλ0 = Ω ∩ {x1 < λ0} is connected and the compact set Γλ0 := Rλ0 (Γ) has vanish-

ing pi-capacity (as the same is true of Γ, see assumption (hΓ)), it is not difficult to check that Ωλ0 \ Γλ0 is connected
(see, e.g., [3, Lemma 2.4]). Thus, owing to assumption (hf ), we deduce that holds the following distributional
inequality holds:

−Δpiui + ai(ui)|∇ui|qi + Λiui ≤ −Δpiui,λ0 + ai(ui,λ0 )|∇ui,λ0 |qi + Λiui,λ0 in Ωλ0 \ Γλ0 ,

where Λi is a positive constant. As a consequence, since ui ≤ ui,λ0 in Ωλ0 \ Γλ0 , we can apply the strong compar-
ison principle (see, e.g., [21, Theorem 1.2]), ensuring that

either ui ≡ ui,λ0 or ui < ui,λ0 in Ωλ0 \ Γλ0 . (3.4)

On the other hand, since u solves (S), we have ui − ui,λ0 = −ui,λ0 < 0 on ∂Ωλ0 ∩ ∂Ω. This immediately gives (3.3),
since the alternative ui ≡ ui,λ0 in Ωλ0 \ Γλ0 obviously cannot be achieved because of the Dirichlet boundary
condition and the fact that ui > 0 in Ω \ Γ.

Nowwehave fully established (3.3), andwe can continuewith the proof of (3.1). To beginwith,we arbitrarily
fix a compact set K ⊆ Ωλ0 \ Rλ0 (Γ) and we observe that, since Rλ0 (Γ) is compact, we can find τ0 = τ0(K) > 0 so
small that

K ⊆ Ωλ \ Rλ(Γ) for every λ0 ≤ λ ≤ λ0 + τ0 .

Moreover, since u is continuous on K, a simple uniform-continuity argument based on (3.3) shows that, by
possibly shrinking τ0, we also have (for all i = 1, . . . ,m)

ui < ui,λ onK for every λ0 ≤ λ ≤ λ0 + τ0 . (3.5)

We now turn to prove that, for every λ0 ≤ λ ≤ λ0 + τ0 and every i = 1, . . . ,m, one can find a constant Ci > 0,
depending on pi , qi , ai , fi , λ, Ω, and M, with

M = Mu := max
1≤j≤m
(‖uj‖L∞(Ωλ0+τ0 ) + ‖∇uj‖L∞(Ωλ0+τ0 )) < +∞,

such that

∫
Ωλ\K

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2 dx ≤ C

m
∑
j=1
∫

Ωλ\K

|w+j,λ|
2 dx. (3.6)

Taking (3.6) for granted for a moment, let us show how this integral estimate can be used in order to prove (3.1).
First of all, by taking the sum in (3.6) for i = 1, . . . ,m, we get

m
∑
i=1
∫

Ωλ\K

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2 dx ≤ C󸀠

m
∑
i=1
∫

Ωλ\K

|w+i,λ|
2 dx. (3.7)

Now, we have to distinguish the singular case from the degenerate one. To this end, let us suppose (up to
a rearrangement of the sum on both sides of inequality (3.7)) that

(2N + 2)
(N + 2) < pi ≤ 2 for every i = 1, . . . ,m󸀠 ,
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for some 1 ≤ m󸀠 ≤ m. In this case, we have that p∗i > 2. Applying theHölder inequalitywith conjugate exponents
((p∗i − 2)/p

∗
i , p
∗
i /2) and the Sobolev inequality to the firstm

󸀠 terms of the right-hand side of (3.7), we deduce that
m󸀠
∑
i=1
∫

Ωλ\K

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2 dx +

m
∑

i=m󸀠+1 ∫Ωλ\K

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2 dx

≤ C
m󸀠
∑
i=1
∫

Ωλ\K

|w+i,λ|
2 dx + C

m
∑

i=m󸀠+1 ∫Ωλ\K

|w+i,λ|
2 dx

≤ C
m󸀠
∑
i=1
|Ωλ \K|

p∗i −2
p∗i ( ∫

Ωλ\K

|w+i,λ|
p∗i dx) 2

p∗i + C m
∑

i=m󸀠+1 ∫Ωλ\K

|w+i,λ|
2 dx

≤ C
m󸀠
∑
i=1
|Ωλ \K|

p∗i −2
p∗i ( ∫

Ωλ\K

|∇w+i,λ|
pi dx)

2
pi + C

m
∑

i=m󸀠+1 ∫Ωλ\K

|w+i,λ|
2 dx.

(3.8)

In the first m󸀠 terms of the right-hand side of (3.8) we apply Lemma 2.4, while in the last terms (from m󸀠 + 1
tom) of the same inequality, since pi ≥ 2, we do apply the weighted Sobolev inequality [21, Theorem 2.3]. Hence,
we obtain

m󸀠
∑
i=1
∫

Ωλ\K

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2 dx +

m
∑

i=m󸀠+1 ∫Ωλ\K

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2 dx

≤ C
m󸀠
∑
i=1
|Ωλ \K|

p∗i −2
p∗i ∫

Ωλ\K

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2 dx

+ C
m
∑

i=m󸀠+1 CP(Ωλ \K) ∫Ωλ\K

|∇ui|pi−2|∇w+i,λ|
2 dx

≤ C
m󸀠
∑
i=1
|Ωλ \K|

p∗i −2
p∗i ∫

Ωλ\K

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2 dx

+ C
m
∑

i=m󸀠+1 CP(Ωλ \K) ∫Ωλ\K

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2 dx,

(3.9)

where CP(Ωλ \K) is the Poincaré constant that tends to zero, when the Lebesgue measure |Ωλ \K| tends to
zero. From (3.9), up to redefining constants, we have

m
∑
i=1
∫

Ωλ\K

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2 dx ≤ C(Ωλ \K)

m
∑
i=1
∫

Ωλ\K

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2 dx, (3.10)

where C(Ωλ \K) tends to zero when the Lebesgue measure |Ωλ \K| tends to zero. Now, we choose the compact
setK sufficiently large such that

C(Ωλ \K) < 1.

From this fact, we immediately deduce that ui ≤ ui,λ for each λ0 < λ ≤ λ0 + τ, and this gives a contradictionwith
the definition of λ0. Therefore λ0 = 0, and (i) is proved. Since the moving plane procedure can be performed in
the same way but in the opposite direction, this proves the desired symmetry result. To prove (ii), we observe
that the monotonicity of the solution is in fact implicit in the moving plane method, and in particular we get
that ∂x1ui ≥ 0 in Ω0. To get (1.3) it is sufficient to apply the strong maximum principle [16, Theorem 2.3].

Hence, we are left to prove (3.6). To this end, for every fixed λ ∈ (λ0 , λ0 + τ0] we choose an open neighbor-
hood Oλ ⊆ Ωλ \K of Γλ = Rλ(Γ), and a cut-off family {ψε}ε<ε0 for Γλ related with Oλ . This means, precisely, that
the following assertions hold:
(i) ψε ∈ Lip(ℝN) and 0 ≤ ψε ≤ 1 pointwise in ℝN .
(ii) There exists an open neighborhood Vλε ⊆ Oλ of Γλ such that

ψε ≡ 0 on Vλε .
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(iii) ψε(x) → 1 as ε → 0+ for a.e. x ∈ ℝN .
(iv) There exists a constant C0 > 0, independent of ε, such that

∫
ℝN

|∇ψε|pi dx ≤ C0ε.

We also fix i ∈ {1, . . . ,m}, and we distinguish two cases:
(i) qi < pi .
(ii) qi = pi .

Case (i). In this case, for every ε ∈ (0, ε0) we consider the map

φi,ε(x) :=
{
{
{

w+i,λ(x)ψ
pi
ε (x) = (ui − ui,λ)+(x)ψ

pi
ε (x) if x ∈ Ωλ ,

0 otherwise.

As already recognized in Lemma 2.3, φi,ε satisfies the following properties:
(i) φi,ε ∈ Lip(ℝN).
(ii) supp(φi,ε) ⊆ Ωλ and φi,ε ≡ 0 near Γλ .
Moreover, since we know that ui < ui,λ onK, we also have

w+i,λ = (ui − ui,λ)
+ ≡ 0 onK. (3.11)

As a consequence, a standard density argument allows us to use φi,ε as a test function both in (1.2) and (2.7).
From (3.11), we obtain

∫
Ωλ\K

⟨|∇ui|pi−2∇ui − |∇ui,λ|pi−2∇ui,λ , ∇φi,ε⟩ dx + ∫
Ωλ\K

(ai(ui)|∇ui|qi − ai(ui,λ)|∇ui,λ|qi )φi,ε dx

= ∫
Ωλ\K

(fi(u) − fi(uλ))φi,ε dx.

Starting from this identity, andproceeding exactly as in case (i) of the proof of Lemma2.3,we obtain the following
estimate, which is the analogue of (2.36):

∫
Ωλ\K

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2 dx ≤ C

m
∑
j=1
∫

Ωλ\K

|w+j,λ|
2 dx. (3.12)

Here, C > 0 is a suitable constant depending on pi , qi , ai , fi , λ, Ω,M, with

M = Mu := max
1≤j≤m
(‖uj‖L∞(Ωρ+τ0 ) + ‖∇uj‖L∞(Ωρ+τ0 )) < +∞.

But, in this case, (3.12) coincides with (3.6).

Case (ii). In this case, for every ε ∈ (0, ε0) we consider the maps

φ(1)i,ε (x) :=
{
{
{

e−Ai(ui(x))w+i,λ(x)ψ
pi
ε (x) if x ∈ Ωλ ,

0 otherwise,

φ(2)i,ε (x) :=
{
{
{

e−Ai(ui,λ(x))w+i,λ(x)ψ
pi
ε (x) if x ∈ Ωλ ,

0 otherwise,

where

Ai(t) :=
t

∫
0

ai(s) ds.
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Also in the present case,we have already recognized in the proof of Lemma 2.3 that φ(1)i,ε , φ
(2)
i,ε satisfy the following

properties:
(i) φ(1)i,ε , φ

(2)
i,ε ∈ Lip(ℝ

N).
(ii) supp(φ(1)i,ε ) ⊆ Ωλ , supp(φ

(2)
i,ε ) ⊆ Ωλ and φ

(1)
i,ε ≡ φ

(2)
i,ε ≡ 0 near Γλ .

As a consequence, a standard density argument shows that it is possible to use φ(1)i,ε , φ
(2)
i,ε as test functions in (1.2)

and (2.7), respectively. By subtracting the resulting identities, and by taking into account (3.11), we then obtain

∫
Ωλ\K

⟨|∇ui|pi−2∇ui , ∇φ(1)i,ε ⟩ dx − ∫
Ωλ\K

⟨|∇ui,λ|pi−2∇ui,λ , ∇φ(2)i,ε ⟩ dx

+ ∫
Ωλ\K

ai(ui)|∇ui|piφ(1)i,ε dx − ∫
Ωλ\K

ai(ui,λ)|∇ui,λ|piφ(2)i,ε dx

= ∫
Ωλ\K

fi(u)φ(1)i,ε dx − ∫
Ωλ\K

fi(uλ)φ(2)i,ε dx.

Starting from this identity, and proceeding exactly as in case (ii) of the proof of Lemma 2.3, we obtain the
following estimate, which is again the analogue of (2.36):

∫
Ωλ\K

(|∇ui| + |∇ui,λ|)pi−2|∇w+i,λ|
2 dx ≤ C

m
∑
j=1
∫

Ωλ\K

|w+j,λ|
2 dx. (3.13)

Here C > 0 is a suitable constant depending on pi , qi , ai , fi , λ, Ω,M, with

M = Mu := max
1≤j≤m
(‖uj‖L∞(Ωρ+τ0 ) + ‖∇uj‖L∞(Ωρ+τ0 )) < +∞.

But (3.13) coincides with (3.6) in this case.
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